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Machine Learning

• “A field of AI that uses statistical techniques to give 
computer systems the ability to learn from data, without 
being explicitly programmed” (Wikipedia) 

• Supervised Learning: examples + desired outcome 

• Unsupervised Learning: find inherent structure in data 

• Reinforcement Learning: learn from feedback given to the 
program’s action in a changing environment



ML4SE

• Broadly speaking, this course is AI4SE: we borrow from 
specific sub-domains of AI to solve SE problems. 

• At the highest level, GP can be thought of as 
supervised learning 

• Some applications of hyper-heuristic can be thought of 
as reinforcement learning



Clustering

• Clustering is one of the representative form of 
unsupervised learning 

• Whenever you suspect there are internal patterns in a 
problem, you can attempt clustering to reveal and exploit 
the pattern



Maintenance & 
Reverse Engineering

• Module Clustering: assign modules 
to clusters based on their 
relationships


• B. S. Mitchell and S. Mancoridis. 
On the automatic modularization 
of software systems using the 
bunch tool. IEEE Transactions 
on Software Engineering, 
32(3):193–208, 2006.


• K. Praditwong, M. Harman, and 
X. Yao. Software module 
clustering as a multi-objective 
search problem. IEEE 
Transactions on Software 
Engineering, 37(2):264–282, 
March-April 2010.



Test Case Prioritisation
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Multi−dimensional Scaling of Test Case Profiles: space

D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In Proceedings of 
the IEEE International Symposium on Software Reliability Engineering (ISSRE 2003), pages 442–456. IEEE Computer Society Press, November 2003.



Case-Based 
Reasoning

• P. Tonella, P. Avesani, and A. 
Susi. Using the case-based 
ranking methodology for test 
case prioritization, ICSME 2006


• Human testers make pairwise 
comparison between test 
cases


• CBR learns to put priority 
scores to test cases, based on 
human examples


• Effective, but human 
comparison is extremely 
expensive



Interleaved Clusters Prioritisation

Cluster

Intra-cluster Prioritisation

Inter-cluster Prioritisation

Interleaving Clusters

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable prioritisation 
incorporating expert knowledge. In Proceedings of International Symposium on Software Testing and Analysis, ISSTA 
2009, pages 201–211. ACM Press, July 2009.



Classification/Prediction

• To identify to which of a set of categories a new example 
belongs 

• Defect Prediction / Fault Localisation: Is this statement/
method/file (likely to be) faulty or not? 

• Hypotheses 

• “If a file goes through an unusually high number of 
changes, it is more likely to be faulty” 

• “If a file is modified by an unusually high number of 
developers, it is more likely to be faulty”



Defect Prediction

• Collect past test history as well 
as various features leading up 
to the test results


• Train a classification model


• Before a large project moves 
into the testing stage, feed the 
collected data to see which file 
is more likely to be faulty

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect 
prediction. In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages 181–190, May 2008.



Spectrum Based Fault Localisation

• Given some failing test case executions, fault localisation 
aims to automatically identify the program elements that 
are responsible for the observed failure 

• One of the most widely studied technique is Spectrum-
Based Fault Localisation



Spectrum Based Fault Localisation

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

Higher ranking
=

Fewer statements 
to check



Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Spectrum Based Fault Localisation

Tarantula =

ef
ef+nf

ep
ep+np

+ ef
ef+nf



Evolving Formulæ

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

P S

P S
GP

Fitness 
(minimise)

e2f (2ep + 2ef + 3np)

e2f (e
2
f +

p
np)

. . .

Training Data

S. Yoo. Evolving human competitive spectra-based fault localisation 
techniques. SSBSE 2012, volume 7515 of Lecture Notes in Computer 
Science, pages 244–258. Springer, 2012.



Defect Prediction and Fault Localisation: the ML 
perspective

A	priori		
Fault	

Localisation

A	posteriori		
Fault	Localisation

Defect 
Prediction

Fault 
Localisation

Defect 
Prediction

Predictor Localizer



Defect prediction and Fault Localisation

Defect 
Prediction

Fault 
Localisation

?

J. Sohn and S. Yoo. Fluccs: Using code and change metrics to improve fault localisation. In Proceedings of the 
International Symposium on Software Testing and Analysis, ISSTA 2017, pages 273–283, 2017.



Ranking Suspicious Program Elements

• Genetic Programming: we know the real faulty element in 
the training data. We evolve a score formula that takes 
input features and returns suspiciousness scores: rank 
the elements, and take the ranking of the real faulty 
element as the fitness to minimise 

• Linear RankSVM: learns the ranking score function, which 
is linear sum of individual features 

• Gaussian Process / Random Forrest: use the faulty/non-
faulty labels in the training data to train classifiers - take 
the classification scores to rank program elements



Information Retrieval

• IR is also used to perform fault localisation 

• Given a bug report, the program element responsible for 
the observed failure is the part of the source code that is 
lexically the most similar to the bug report 

• See for example: R. K. Saha, M. Lease, S. Khurshid, and 
D. E. Perry. Improving bug localization using structured 
information retrieval. In Automated Software Engineering 
(ASE), 2013.



Recommendation System

• You buy X from Amazon, and give it five star. Amazon 
gives you “people who bought (and liked) this also 
bought…” 

• Similarly, we can think of bug-triaging (i.e., the question of 
who should handle the new bug report) as: 

• You fix bug X from Project Z, and does the job well. 
The project gives you “people who successfully fixed 
bugs like this may also do well on…”



SE4ML

• We will see ML components as part of larger systems 

• Autonomous driving, photography manager, machine 
translation… 

• ML research may deal with the core precision issues, but 
SE research has to deal with the larger system, especially 
in terms of quality assurance. 

• But what is a fault in machine learning?



What are the faults?

Foundation Faults in TensorFlow, for example

User Code Faults in YOUR TensorFlow Code

Training Mis-training, biased training data, etc

Adversarial Input Malicious inputs that trick the learner

Robustness Input is not malicious but learner fails anyway

Traditional 
Testing & 
Analysis

Better 
ML

??



What is the test oracle?

• For many practical ML/Deep Learning systems, inputs 
are raw, real-world perceptions (such as photography/
video, voice, etc) 

• Currently human judgement (a.k.a. data labelling) is often 
the only effective test oracle, but this is extremely 
expensive



Metamorphic Testing

• In testing, there is a widely known technique that focuses 
on metamorphic relationships between inputs and outputs 

• Given an IO pair for program P, y=P(x), if metamorphic 
relation f and g hold for input and output, it has to follow 
that g(y) = P(f(i)) 

• For example: if P is the sine function, f(x) = π - x, g(y) = 
y. That is, if y0 = P(x0), y1 = y0 = P(π - x0) = P(x1) 

• MT cannot replace a full oracle, but if a program violates 
its own metamorphic properties, something is wrong



Metamorphic Testing for DL

• MT has been applied to test DL robustness 

• If we apply negligible (i.e., bearable by humans) 
perturbation to the input, the output of the DL system 
should be the same 

• Again, if a DL system violates this, something is wrong



Adversarial Examples

Safety verification of deep neural networks, 
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940


Robustness Testing

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In 
Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 
2018. ACM.



Coverage for Deep Learning Systems

• Various coverage criteria have been suggested: 

• Neuron Coverage: given a set of test input, NC measures % of 
neutrons that have been activated above a given threshold (e.g., 0.6) 

• k-Multisection Neuron Coverage: mark the range of neuron activation 
during training, divide the range into k buckets, and count the 
number of buckets checked during execution of the given input set 

• Strong Neuron Activation Coverage: mark the range of neuron 
activation during training, and count the number of neutrons that are 
activated beyond the maximum observed activation value 

• All designed to diversify neuron activation patterns



A Big Challenge

• For traditional software, inputs can be either randomly 
sampled, searched, or synthesised 

• For DL systems that interface with the real physical 
world, inputs have to be collected from the real world 

• You can try random sampling or search, but would it 
be relevant?



Fooling DNNs with Genetic Algorithm

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily 
fooled: High confidence predictions for unrecognizable images. 2015 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pages 427–436, 2015.



Occlusion

Darken

Different 


Weather Condition

Seed

Boundary of correct  

functional behaviour

How can we more freely 

navigate this space?



Variational Auto-Encoders (VAEs)

Encode
r

m
ean

std. 

sam
pled 

Decode
r

Our genotype!



VAE + GA = Search Based 
Input Data Generation

• Representation: a latent vector 
that fits our VAE


• Fitness: Surprise Adequacy of 
the image decoded from a 
candidate solution (i.e., a latent 
vector)


• We visualise the search 
trajectory using Activation 
Trace (i.e., the output of a 
specific layer of the DNN) and 
PCA



Many Open Questions

• DL systems have continuous quality measure (precision/
recall/accuracy); traditional systems have discontinuous 
quality measure (test pass/fail) - how do we connect 
these two worlds, when a DL system is part of a larger, 
conventional SW system? 

• How do we automatically generate test inputs for a DL 
system, without going into the real world? 

• How can search help? :)


