
ML4SE + SE4ML

SEP592, Summer 2021

Shin Yoo

Machine Learning

• “A field of AI that uses statistical techniques to give
computer systems the ability to learn from data, without
being explicitly programmed” (Wikipedia)

• Supervised Learning: examples + desired outcome

• Unsupervised Learning: find inherent structure in data

• Reinforcement Learning: learn from feedback given to the
program’s action in a changing environment

ML4SE

• Broadly speaking, this course is AI4SE: we borrow from
specific sub-domains of AI to solve SE problems.

• At the highest level, GP can be thought of as
supervised learning

• Some applications of hyper-heuristic can be thought of
as reinforcement learning

Clustering

• Clustering is one of the representative form of
unsupervised learning

• Whenever you suspect there are internal patterns in a
problem, you can attempt clustering to reveal and exploit
the pattern

Maintenance &
Reverse Engineering

• Module Clustering: assign modules
to clusters based on their
relationships

• B. S. Mitchell and S. Mancoridis.
On the automatic modularization
of software systems using the
bunch tool. IEEE Transactions
on Software Engineering,
32(3):193–208, 2006.

• K. Praditwong, M. Harman, and
X. Yao. Software module
clustering as a multi-objective
search problem. IEEE
Transactions on Software
Engineering, 37(2):264–282,
March-April 2010.

Test Case Prioritisation

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Multi−dimensional Scaling of Test Case Profiles: space

D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In Proceedings of
the IEEE International Symposium on Software Reliability Engineering (ISSRE 2003), pages 442–456. IEEE Computer Society Press, November 2003.

Case-Based
Reasoning

• P. Tonella, P. Avesani, and A.
Susi. Using the case-based
ranking methodology for test
case prioritization, ICSME 2006

• Human testers make pairwise
comparison between test
cases

• CBR learns to put priority
scores to test cases, based on
human examples

• Effective, but human
comparison is extremely
expensive

Interleaved Clusters Prioritisation

Cluster

Intra-cluster Prioritisation

Inter-cluster Prioritisation

Interleaving Clusters

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable prioritisation
incorporating expert knowledge. In Proceedings of International Symposium on Software Testing and Analysis, ISSTA
2009, pages 201–211. ACM Press, July 2009.

Classification/Prediction

• To identify to which of a set of categories a new example
belongs

• Defect Prediction / Fault Localisation: Is this statement/
method/file (likely to be) faulty or not?

• Hypotheses

• “If a file goes through an unusually high number of
changes, it is more likely to be faulty”

• “If a file is modified by an unusually high number of
developers, it is more likely to be faulty”

Defect Prediction

• Collect past test history as well
as various features leading up
to the test results

• Train a classification model

• Before a large project moves
into the testing stage, feed the
collected data to see which file
is more likely to be faulty

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect
prediction. In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages 181–190, May 2008.

Spectrum Based Fault Localisation

• Given some failing test case executions, fault localisation
aims to automatically identify the program elements that
are responsible for the observed failure

• One of the most widely studied technique is Spectrum-
Based Fault Localisation

Spectrum Based Fault Localisation

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

Higher ranking
=

Fewer statements
to check

Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Spectrum Based Fault Localisation

Tarantula =

ef
ef+nf

ep
ep+np

+ ef
ef+nf

Evolving Formulæ

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

P S

P S
GP

Fitness
(minimise)

e2f (2ep + 2ef + 3np)

e2f (e
2
f +

p
np)

. . .

Training Data

S. Yoo. Evolving human competitive spectra-based fault localisation
techniques. SSBSE 2012, volume 7515 of Lecture Notes in Computer
Science, pages 244–258. Springer, 2012.

Defect Prediction and Fault Localisation: the ML
perspective

A	priori		
Fault	

Localisation

A	posteriori		
Fault	Localisation

Defect
Prediction

Fault
Localisation

Defect
Prediction

Predictor Localizer

Defect prediction and Fault Localisation

Defect
Prediction

Fault
Localisation

?

J. Sohn and S. Yoo. Fluccs: Using code and change metrics to improve fault localisation. In Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2017, pages 273–283, 2017.

Ranking Suspicious Program Elements

• Genetic Programming: we know the real faulty element in
the training data. We evolve a score formula that takes
input features and returns suspiciousness scores: rank
the elements, and take the ranking of the real faulty
element as the fitness to minimise

• Linear RankSVM: learns the ranking score function, which
is linear sum of individual features

• Gaussian Process / Random Forrest: use the faulty/non-
faulty labels in the training data to train classifiers - take
the classification scores to rank program elements

Information Retrieval

• IR is also used to perform fault localisation

• Given a bug report, the program element responsible for
the observed failure is the part of the source code that is
lexically the most similar to the bug report

• See for example: R. K. Saha, M. Lease, S. Khurshid, and
D. E. Perry. Improving bug localization using structured
information retrieval. In Automated Software Engineering
(ASE), 2013.

Recommendation System

• You buy X from Amazon, and give it five star. Amazon
gives you “people who bought (and liked) this also
bought…”

• Similarly, we can think of bug-triaging (i.e., the question of
who should handle the new bug report) as:

• You fix bug X from Project Z, and does the job well.
The project gives you “people who successfully fixed
bugs like this may also do well on…”

SE4ML

• We will see ML components as part of larger systems

• Autonomous driving, photography manager, machine
translation…

• ML research may deal with the core precision issues, but
SE research has to deal with the larger system, especially
in terms of quality assurance.

• But what is a fault in machine learning?

What are the faults?

Foundation Faults in TensorFlow, for example

User Code Faults in YOUR TensorFlow Code

Training Mis-training, biased training data, etc

Adversarial Input Malicious inputs that trick the learner

Robustness Input is not malicious but learner fails anyway

Traditional
Testing &
Analysis

Better
ML

??

What is the test oracle?

• For many practical ML/Deep Learning systems, inputs
are raw, real-world perceptions (such as photography/
video, voice, etc)

• Currently human judgement (a.k.a. data labelling) is often
the only effective test oracle, but this is extremely
expensive

Metamorphic Testing

• In testing, there is a widely known technique that focuses
on metamorphic relationships between inputs and outputs

• Given an IO pair for program P, y=P(x), if metamorphic
relation f and g hold for input and output, it has to follow
that g(y) = P(f(i))

• For example: if P is the sine function, f(x) = π - x, g(y) =
y. That is, if y0 = P(x0), y1 = y0 = P(π - x0) = P(x1)

• MT cannot replace a full oracle, but if a program violates
its own metamorphic properties, something is wrong

Metamorphic Testing for DL

• MT has been applied to test DL robustness

• If we apply negligible (i.e., bearable by humans)
perturbation to the input, the output of the DL system
should be the same

• Again, if a DL system violates this, something is wrong

Adversarial Examples

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

Robustness Testing

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA,
2018. ACM.

Coverage for Deep Learning Systems

• Various coverage criteria have been suggested:

• Neuron Coverage: given a set of test input, NC measures % of
neutrons that have been activated above a given threshold (e.g., 0.6)

• k-Multisection Neuron Coverage: mark the range of neuron activation
during training, divide the range into k buckets, and count the
number of buckets checked during execution of the given input set

• Strong Neuron Activation Coverage: mark the range of neuron
activation during training, and count the number of neutrons that are
activated beyond the maximum observed activation value

• All designed to diversify neuron activation patterns

A Big Challenge

• For traditional software, inputs can be either randomly
sampled, searched, or synthesised

• For DL systems that interface with the real physical
world, inputs have to be collected from the real world

• You can try random sampling or search, but would it
be relevant?

Fooling DNNs with Genetic Algorithm

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 427–436, 2015.

Occlusion

Darken

Different

Weather Condition

Seed

Boundary of correct

functional behaviour

How can we more freely

navigate this space?

Variational Auto-Encoders (VAEs)

Encode
r

m
ean

std.

sam
pled

Decode
r

Our genotype!

VAE + GA = Search Based
Input Data Generation

• Representation: a latent vector
that fits our VAE

• Fitness: Surprise Adequacy of
the image decoded from a
candidate solution (i.e., a latent
vector)

• We visualise the search
trajectory using Activation
Trace (i.e., the output of a
specific layer of the DNN) and
PCA

Many Open Questions

• DL systems have continuous quality measure (precision/
recall/accuracy); traditional systems have discontinuous
quality measure (test pass/fail) - how do we connect
these two worlds, when a DL system is part of a larger,
conventional SW system?

• How do we automatically generate test inputs for a DL
system, without going into the real world?

• How can search help? :)

