ML4S

—+ S

—AML

SEP592, Summer 2021

Shin Yoo

Machine Learning

- "Afield of Al that uses statistical techniques to give
computer systems the abillity to learn from data, without
being explicitly programmed” (Wikipedia)

+ Supervised Learning: examples + desired outcome
- Unsupervised Learning: find inherent structure in data

Reinforcement Learning: learn from feedback given to the
orogram’s action in a changing environment

ML4S

- Broadly speaking, this course is Al4SE: we borrow from
specific sub-domains of Al to solve SE problems.

- At the highest level, GP can be thought of as
supervised learning

- Some applications of hyper-heuristic can be thought of
as reinforcement learning

Clustering

- Clustering is one of the representative form of
unsupervised learning

- Whenever you suspect there are internal patterns in a
problem, you can attempt clustering to reveal and exploit

the pattern

Maintenance &

_Reverse Engineering

- Module Clustering: assign modules

to clusters based on their
relationships

- B. S. Mitchell and S. Mancoridis.

On the automatic modularization
of software systems using the
bunch tool. IEEE Transactions
on Software Engineering,
32(3):193-208, 2006.

- K. Praditwong, M. Harman, and
X. Yao. Software module
clustering as a multi-objective
search problem. IEEE
Transactions on Software
Engineering, 37(2):264-282,
March-April 2010.

SS-L0:scopeC ontrolier

\\1‘(cetrodler

Scoonary) (ScddcSuch

g -

(SS-L0rparser

QW =
” — \\\
4

1SS ThimpeChecie ™

 —
-

(SS-LOrcodeCeneraor

/;’ P *_.i.\/

\
~

S - . Y
% - \
—— _— e — .
— - ~
— ‘__’ »

Figure 3. A Module Dependency Graph and its
Modularisation using Bunch, taken from [65]

Test Case Prioritisation

Multi-dimensional Scaling of Test Case Profiles: space

(@)
© (o)
O
Oo
o o oO O .
'e) (@)
(@) o [e)
P ©
© (@)
OO .
(@) o .
@,
S.00 0%
(98 (@)
(@) 5 O@ Qg
o o O o cbo ®)
O O
og @0
(@) o (@)
© o o
%) o}
° o
ON5)
o @

D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In Proceedings of
the IEEE International Symposium on Software Reliability Engineering (ISSRE 2003), pages 442—456. IEEE Computer Society Press, November 2003.

ase-Based
easoning

P. Tonella, P. Avesani, and A.
Susi. Using the case-based
ranking methodology for test
case prioritization, ICSME 2006

Human testers make pairwise
comparison between test
cases

CBR learns to put priority
scores to test cases, based on
human examples

Effective, but human
comparison is extremely
expensive

Using the Case-Based Ranking Methodology for Test Case Prioritization

Paolo Tonella, Paolo Avesani, Angelo Susi
ITC-irst, Trento, Italy

{tonella, avesani, susi}@itc.it

Abstract

The test case execution order affects the time at which
the objectives of testing are met. If the objective is fault de-
tection, an inappropriate execution order might reveal most
Sfaults late, thus delaying the bug fixing activity and eventu-
ally the delivery of the software. Prioritizing the test cases
so as to optimize the achievement of the testing goal has
potentially a positive impact on the testing costs, especially
when the test execution time is long.

Test engineers often possess relevant knowledge about
the relative priority of the test cases. However, this knowl-
edge can be hardly expressed in the form of a global rank-
ing or scoring. In this paper, we propose a test case pri-
oritization technique that takes advantage of user knowl-
edge through a machine leaming algorithm, Case-Based
Ranking (CBR). CBR elicits just relative priority informa-
tion from the user; in the form of pairwise test case compar-
isons. User input is integrated with multiple prioritization
indexes, in an iterative process that successively refines the
test case ordering. Preliminary results on a case study in-
dicate that CBR overcomes previous approaches and, for
maoderate suite size, gets very close to the optimal solution.

1. Introduction

Testing amounts for a large proportion of the software
development and evolution effort. This is especially true for
the system level testing, that typically occurs before each
major release of the software. During system testing the
whole application is exercised in a realistic setting. Corre-
spondingly, the opportunities for automation are often in-
ferior with respect to the previous testing phases (unit and
integration). In fact, it might be hard to run the whole ap-
plication unattended and to simulate any asynchronous in-
put (e.g., interactive inputs) the application may receive. In
such cases, system testing can last days or weeks and can
involve substantial human effort.

Test case prioritization aims at finding an execution or-
der for the test cases which maximizes a given objective

function. Among the others, the most important prioritiza-
tion objective is probably discovering faults as early as pos-
sible, that is, maximizing the rate of fault detection. In fact,
carly feedback about faults allows anticipating the costly
activities of debugging and corrective maintenance, with a
related economical return. When the time necessary to exe-
cute all test cases is long, prioritizing them so as to discover
most faults early might save substantial time, since bug fix-
ing can start earlier.

Previous work on test case prioritization [6, 11, 13, 14,
15] is based on the computation of a prioritization index,
which determines the ordering of the test cases (e.g., by de-
creasing values of the index). For example, the coverage
level achieved by each test case was used as a prioritiza-
tion index [13]. Another example is a fault proneness index
computed from a set of software metrics for the functions
exercised by each test case [6].

In this paper, we propose to incorporate user knowledge
into the prioritization process and to integrate multiple pri-
oritization indexes through the CBR (Case-Based Ranking)
machine learning algorithm. CBR learns the target ranking
from two inputs: a set of possibly partial indicators of prior-
ity and pairwise comparisons elicited from the user (cases).
On one hand, all the information that can be gathered auto-
matically about the test cases (coverage levels, fault prone-
ness metrics, etc.) is used by CBR to approximate the target
ranking. On the other hand, the user is involved in the pri-
oritization process to resolve the cases where contradictory
or insufficient data are available. The contribution required
from the user consists of very local information and has the
form of a pairwise comparison. Given two test cases, the
user is requested to indicate the one that should be given
higher priority. No quantification and no global evaluation
is required. No consistency, such as transitivity, in the elic-
itation process is assumed. CBR operates iteratively and it
produces a provisional ordering at each iteration. Thus, pri-
oritization can be stopped at any time and CBR provides the
user with the last ordering produced. Thus, the human ef-
fort dedicated to the prioritization process can be calibrated
arbitrarily.

The main contributions of this paper over the state of the

Interleaved Clusters Prioritisation

‘ ' Cluster
‘ ‘ Intra-cluster Prioritisation

Inter-cluster Prioritisation

‘ Interleaving Clusters

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable prioritisation
incorporating expert knowledge. In Proceedings of International Symposium on Software Testing and Analysis, ISSTA
2009, pages 201-211. ACM Press, July 2009.

Classification/Prediction

- To identify to which of a set of categories a new example
belongs

- Defect Prediction / Fault Localisation: Is this statement/
method/file (likely to be) faulty or not”

- Hypotheses

- “If a file goes through an unusually high number of
changes, it is more likely to be faulty”

- “If a file is modified by an unusually high numlber of
developers, it is more likely to be faulty”

Detfect

Prediction

- Collect past test history as well
as various features leading up
to the test results

Train a classification model

Before a large project moves
iInto the testing stage, feed the
collected data to see which file
Is more likely to be faulty

Table 4. List of Change metrics used in the study.

Metric name

Definition

REVISIONS Number of revisions of a file

REFACTORINGS Number 0{ times a file has been
refactored

BUGFIXES Numbef ot; times a file was involved in
bug-fixing

AUTHORS Numb‘er of distinct ?luthors that checked
a file into the repository
Sum over all revisions of the lines of

LOC_ADDED code added to a file

MAX Maximum number of lines of code added

LOC ADDED for all revisions

AVE_LOC ADDED

Average lines of code added per revision

LOC_DELETED

Sum over all revisions of the lines of
code deleted from a file

MAX Maximum number of lines of code

LOC DELETED deleted for all revisions

AVE Average lines of code deleted per

LOC DELETED revision

CODECHURN Sum of (added lines of cogg — deleted
lines of code) over all revisions

MAX Maximum CODECHURN for all

CODECHURN revisions

AVE Average CODECHURN per revision

CODECHURN

MAX CHANGESET

Maximum number of files committed
together to the repository

AVE CHANGESET

Average number of files committed
together to the repository

AGE

Age of a file in weeks (counting
backwards from a specific release)

WEIGHTED_AGE

See equation (1)

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect
prediction. In 2008 ACM/IEEE 30th International Conference on Software Engineering, pages 181-190, May 2008.

Spectrum Based Fault Localisation

- GIven some failing test case executions, fault localisation
aims to automatically identify the program elements that
are responsible for the observed failure

- One of the most widely studied technique is Spectrum-
Based Fault Localisation

Spectrum Based Fault Localisation

p
ep +np+ 1

Program Spectrum Risk Evaluation Formula

!

Higher ranking

Fewer statements
to check

Tests Ranking

Spectrum Based Fault Localisation

Structural | Test Test Test Spectrum Tarantula | Rank
Elements t1 ts e e, €f n, My

o1 s 1 0 0 2 0.00 9
72 0.00 9
73 0.00 9
o4 0.00 9
%5 0.00 9
76 0.33 4
o7 (i Loo | I
o8 0.33 1
°9 0.50 9

Result

—volving Formulae

ef(26p + 2ey —|— 3n,)
et 4%\74‘@9 +1

Program Spectrum Risk Evaluation Formula

s

Training DTta l

Fitness

(minimise)

TeStS S. Yoo. Evolving human competitive spectra-based fault localisation 3
techniques. SSBSE 2012, volume 7515 of Lecture Notes in Computer Ranklng

Science, pages 244-258. Springer, 2012.

Detfect Prediction and Fault Localisation: the ML
perspective

Defect Fault
Prediction Tests || mmmp ;:‘/ Localisation
p— & Do p— p— & Daw p—
= mm) FEA)y = = =)A=
E— Predictor S— E— Localizer —
A priori ..
Fault A posteriori

. Fault Localisation
Localisation

Defect prediction and Fault Localisation

- 0
Program Metri
-) Metic 4

Features I \

§

. J
Machine Tests ||| wmp < X </ Machine
Learning AN Learning

Defect - Fault

Prediction L.ocalisation

J. Sohn and S. Yoo. Fluccs: Using code and change metrics to improve fault localisation. In Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2017, pages 273-283, 2017.

Ranking Suspicious Program Elements

-+ Genetic Programming: we know the real faulty element in
the training data. We evolve a score formula that takes
iNnput features and returns suspiciousness scores: rank
the elements, and take the ranking of the real faulty
element as the fitness to minimise

Linear RankSVM: learns the ranking score function, which
IS linear sum of individual features

+ Gaussian Process / Random Forrest: use the faulty/non-
faulty labels in the training data to train classitiers - take
the classification scores to rank program elements

Information Retrieval

- IR Is also used to perform fault

localisation

- Given a bug report, the program element responsible for
the observed failure is the part of the source code that is
lexically the most similar to the bug report

-+ See for example: R. K. Saha, M. Lease, S. Khurshid, and

D. E. Perry. Improving bug loca

ization using structured

iINnformation retrieval. In Automa
(ASE), 2013.

‘ed Software Engineering

Recommendation System

*You buy X from Amazon, and give it five star. Amazon
gives you “people who bought (and liked) this also
bought...”

- Similarly, we can think of bug-triaging (i.e., the question of
who should handle the new bug report) as:

- You fix bug X from Project Z, and does the job well.
The project gives you “people who successftully fixed
bugs like this may also do well on...”

—4AML

- We will see ML components as part of larger systems

-+ Autonomous driving, photography manager, machine
translation...

ML research may deal with the core precision issues, but
SE research has to deal with the larger system, especially
IN terms of quality assurance.

But what is a fault in machine learning?

What are the faults?

Robustness Input is not malicious but learner fails anyway

77

Ao \VSTteTa e IR [alol¥|® Malicious inputs that trick the learner
Better :
ML
Training Mis-training, biased training data, etc
User Code Faults in YOUR TensorFlow Code
Traditional
Testing &
Analysis : |
Foundation Faults in TensorFlow, for example

What is the test oracle?

- For many practical ML/Deep Learning systems, inputs
are raw, real-world perceptions (such as photography/
video, voice, etc)

- Currently human judgement (a.k.a. data labelling) is often
the only effective test oracle, but this is extremely
expensive

Metamorphic Testing

- In testing, there Is a widely known technique that focuses
on metamorphic relationships between inputs and outputs

- Given an |O pair for program P, y=P(x), if metamorphic
relation f and g hold for input and output, it has to follow

that gly) = P(f(i)

||
x
e
=
|

+ For example: if P is the sine function, f(x)
y. That is, if yo = P(xo), y1 = yo = P(1T - Xo) = (X1)

- MT cannot replace a full oracle, but if a program violates
its own metamorphic properties, something is wrong

Metamorphic Testing for DL

- MT has been applied to test DL robustness

f we apply negligible (i.e., bearable by humans)
oerturbation to the input, the output of the DL system
should be the same

- Again, If a DL system violates this, something is wrong

Adversarial Examples

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified

4 4 2 4 Q4

4t02 2to3 Oto4

- q iy 0 #, 7 =3
| “3 v ;
9to 7 0to 8 7t09

ples for a neural network trained on MNIST

“stop” “80m speed limit” “go right”
to “30m speed limit” to “30m speed limit” to “go straight”

Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

Robustness lesting

original translatlon(40 40) scale(2 5x)

original shear(0.1) original rotation(6 degree) original contrast(1.8) original brightness(50)

Figure 7: Sample images showing erroneous behaviors detected by DeepTest using synthetic images. For original images the arrows are
marked in blue, while for the synthetic images they are marked in red. More such samples can be viewed at https://deeplearningtest.github.
io/deepTest/.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 303-314, New York, NY, USA,
2018. ACM.

Coverage for Deep Learning Systems

- Various coverage criteria have been suggested:

-+ Neuron Coverage: given a set of test input, NC measures % of
neutrons that have been activated above a given threshold (e.g., 0.6)

- K-Multisection Neuron Coverage: mark the range of neuron activation
during training, divide the range into k buckets, and count the
number of buckets checked during execution of the given input set

- Strong Neuron Activation Coverage: mark the range of neuron
activation during training, and count the number of neutrons that are
activated beyond the maximum observed activation value

- All designed to diversify neuron activation patterns

A Big Challenge

For traditional software, inputs can be either randomly
sampled, searched, or synthesised

For DL systems that interface with the real physical
world, inputs have to be collected from the real worlo

*You can try random sampling or search, but would it
be relevant”

Fooling

DNNs with Genetic Algorithm

e
L

RCAURES P eI A TARMEEE Cr T e L g
Figure 4. Directly encoded, thus irregular, images that MNI
DNNs believe with 99.99% confidence are digits 0-9. Each ¢

umn is a digitclass, and each row is the result after 200 generatic
of a randomly selected, independent run of evolution.

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 427-436, 2015.

| robin | cheetah " armadillo lesser panda I

jackfruit

E

| centde = ”

paa;a»rﬁamua*
v \\an\~\~4

AR AR .
P‘A‘J‘ PP PP e e e

A e o B NN

king penguin

| baseball electric guitar l

oos
ooe
gn

~ o8

1 2 88008 2

|
|
|
|

ontrol "

Crenannnit |
118000000801
Ugggﬁﬂ
STIIII I 11

100
100
1100

I freight car ” remote peacock “ I

n

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (zop) or indirectly (bottom) encoded.

How can we more freely

navigate this space?

ta
e
e
"
e
]
Y
.
e
-
]
e
.
e
.
a
-
-
.
]
.
]
.
»
L]
.
.
-
.
.
L]
.
L]
.
.
3
....
-
-
-
-
.
.
.
.
.
]
.
L]
-
]
]
.
]
]
.
.
]
3
-
.
.
.
.
.
3
.
.
.
.
.
.
.
.
3
.
-
.
.
3
.
.
3

Different

Weather Condition ’

Occlusion

" Boundary of correct

functional behaviour

Variational Auto-Encoders (VAES)

Encode
r

Our genotype!

VAE + GA = Search Based
Input Data Generation

Representation: a latent vector

: Blue trajectory movement of AT
that fits our VAE -

Fitness: Surprise Adequacy of “

the image decoded from a B
candidate solution (i.e., a latent 10
vector) 5

0

- We visualise the search s

trajectory using Activation
Trace (i.e., the output of a
specific layer of the DNN) and 10 -5 0 5 10 15 2
PCA

Many Open Questions

DL systems have continuous quality measure (precision/
recall/accuracy); traditional systems have discontinuous
quality measure (test pass/fail) - how do we connect
these two worlds, when a DL system is part of a larger,
conventional SW system?/

How do we automatically generate test inputs for a DL
system, without going into the real world?

How can search help? :)

