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No Free Lunch Theorem

If an algorithm performs well on a certain class of
problems then it necessarily pays for that with degraded
performance on the set of all remaining problems.

Wolpert & Macready, No free lunch theorems for optimization,
IEEE Transactions on Evolutionary Computation, 1997[1].
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Let X be the search space, and Y be the finite space of fitness
values (e.g. the space of 32bit or 64it floating point numbers).

Fitness function f is of type f : X → Y.

Space of all problems: F = YX , the finite size of which is
|Y||X | (i.e., each solution has the choice of |Y| fitness values).

A search can be represented as a time ordered sample of m visited
points in the search space. We denote such samples as
dm ≡ {(dx

m(1), dy
m(1)), . . . , (dx

m(m), dy
m(m))}. Think of this as a

search trajectory. Here, dx
m(i) indicates the X value of the ith

successive element in the sample of size m, and dy
m(i) is the

corresponding fitness value. The space of all samples of size m is
Dm = (X × Y)m.
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NFL

We make a probabilistic argument. Let P(dy
m|f ,m, a) be the

conditional probability of obtaining a particular fitness value dy
m

when running algorithm a against fitness fucntion f using m
samples (i.e. fitness evaluations). Then

Theorem 1 (No Free Lunch Theorem for Optimisations)

For any pair of algorithm a1 and a2,∑
f

P(dy
m|f ,m, a1) =

∑
f

P(dy
m|f ,m, a2)

where m is the number of fitness evaluation used by a1 and a2, f is
the fitness(objective function).

In other words, aggregated over all fitness functions, algorithm a1
and a2 have the same probability to obtain dy

m.
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Proof.

Intuitively, the proof simply shows that
∑

f P(~c|f ,m, a) has no dependence on
a. The proof is based on induction on m, of which we only present a sketch
here.

When m = 1: the sample is d1 = {(dx
1 , f (dx

1 ))}. The only possible value
for dy

1 is f (dx
1 ). As such, for an arbitrary value dy , the fitness function

either returns dy (i.e., P(dy |f ,m, a) = 1), or not (i.e., P(dy |f ,m, a) = 0).

Consequently, ∑
f

P(dy
1 |f ,m = 1, a) =

∑
f

δ(dy
1 , fd(x1))

where δ is the Kronecker delta function (i.e., only returns 1 when two
arguments are equal to each other). Again, summing over all possible
cost functions f , δ(dy

1 , f (x1)) is 1 only for those functions which have
fitness of dy

1 at point dx
1 . There are |Y||X|−1 such functions (i.e., out of

|X | solutions, one has a fixed fitness value, and |X − 1| solutions have
the choice of |Y| fitness values), therefore:∑

f

P(dy
1 |f ,m = 1, a) = |Y||X|−1

which is not dependent on a.
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Proof.

For m + 1: ∑
f

P(dy
m+1|f ,m + 1, a) =

1

|Y|
∑
f

P(dy
m|f ,m, a)

Intuitively, each f at m samples have |Y| choices of fitness values for
m + 1 sample size, and we are only interested in one of them, dy

m+1,
hence the division. Please see Wolpert and Mcready [1] for full detail.
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No Free Lunch Theorem

Does it mean that we can just use whatever favourite optimisation
algorithm for whatever problem?

No. The proof was ade against all problems, i.e., the entire
set of |Y||X | fitness functions. For a specific fitness function,
there can be meaningful differences between algorithms.

Furthermore, additional knowledge into f (i.e., the fitness
landscape), will give us competitive edge. We have already
seen such a case: elementary landscape.
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