
Advanced Optimisation
Algorithms

SEP592, Summer 2021
Shin Yoo

Estimation of Distribution
Algorithm

• EDA mantra: avoid arbitrary operators; instead, explicitly
model what desirable solutions should look like.

• Do not evolve one solution, or even a group of
solutions

• Evolve a probability distribution, from which one or
more solutions can be sampled.

• Very new; emerged in 2000s.

EDA

(1) D0 generate M random individuals
(2) while stopping criterion is not met
(3) Ds

l�1 select N < M individuals from Dl�1

(4) pl(x) p(x|Ds
l�1) //est. p.d. of x being in Ds

l�1
(5) Dl sample M individuals from pl(x)

Independent Variables

Assume that variables are independent from each other, i.e. pl(x) = ⇧n
i=1p(xi)

for x = (x1, . . . , xn):

pl(xi) =

PN
j=1 �j(Xi = xi|Ds

l�1)

N

where �j(Xi = xi|Ds
l�1) = 1 if, in the jth case of Ds

l�1, Xi = xi, 0 if not.

Independent Variables

• We are looking for a bit string of
length 5; there *is* a fitness
function.

• M = 4; suppose we let N = 2,
and choose 2 and 4.

• What should we try the next?

Solutions Fitness

1 00100 1

2 11011 4

3 01101 0

4 10111 3

Independent Variables

Solutions Fitness

1 00100 1

2 11011 4

3 01101 0

4 10111 3

• Let x = (x0, x1, x2, x3, x4).

• Ds
l�1 = {11011, 10111}

• pl(x0 = 1) = 2
2 = 1.0

• pl(x1 = 1) = 1
2 = 0.5

• pl(x2 = 1) = 1
2 = 0.5

• pl(x3 = 1) = 2
2 = 1.0

• pl(x4 = 1) = 2
2 = 1.0

Univariate Marginal Distribution Algorithm

Independent Variables

Population Based Incremental Learning

pl+1(xi) = (1� ↵)pl(xi) + ↵
1

N

NX

k=1

xl
i, k : M,↵ 2 (0, 1]

• When one has to capture dependencies between
variables, the joint probability distribution needs to be
factorised:

• There are also algorithms that try to group variables, so
that each group can be considered as an independent
marginal distribution.

Multivariate Modelling

fXY (x, y) = fX|Y=y(x)fY (y)

Differential Evolution

• Recently developed optimisation for real variables

• BUT! The underlying function does not need to be
differentiable, i.e. it can be even discontinuous.

• DE can optimise this, unlike traditional gradient
descent, for example.

Differential Evolution
• CR: crossover rate

• F ∈ [0, 2]: differential weight

• Exploration: essentially we randomly
mix up vector elements, so we
always do random exploration

• Exploitation: gradually we update the
population with better solutions - if
“better” means “in the same fitness
valley”, then there is increased
chance of interpolating “within the
valley”, thereby exploiting the
corresponding part of the
landscape.

(1) P M random real vectors of length n
(2) evaluate(P)
(3) while termination criterion not met
(4) for j = 0 to M
(5) r1, r2, r3 unique random integers 2 [1,M]
(6) R a random integer 2 (1, n)
(7) for i = 0 to n
(8) if U(0, 1) < CR _ i == R then x0

i,j =
xi,r3 + F (xi,r1 � xi,r2)

(9) else x0
i,j = xi,j

(10) evaluate(x0
j)

(11) if IsBetter(x0
j , xj) then xj x0

j
<latexit sha1_base64="IJVDivtGFMl9TvO3itI/hQYYd+o=">AAAEg3icbVPNbhMxEN42KZTw14LEhQMjuohUDVU2RYIDkapWQnCoFCrSImWjyOtMEqdeO3i9aSvLD8AjcuUJeAS82U1I01qy9M2Mv5lvxnY04SzR9frvtfVSeePe/c0HlYePHj95urX97CyRqaLYppJL9SMiCXImsK2Z5vhjopDEEcfz6OI4i59PUSVMiu/6eoLdmAwFGzBKtHP1ttd/hREOmTCED6ViehTbyn+PJpGtAPgtCDkONFFKXsIJhHEkrwwoIvoyBleOwxSplioBOQCOYqhHYEH4EIaOHrpMlHBucEp4SjRa07KLyOWIcTR5So0qZmImDahTgypDQmqIUdtMSs4ZSKWl8cfQhLpvjX/i5zEnVfVMYP3aDDTm4MAuN1DITwX7meK8CyY0Dt2gnO6QiU5Qg5NuoX+W9/SODGSFnHOrjit2l7hLillzplcs9M7jbKBHKJAnaPx2tV4Ldj8du5JTRGDQbMJpRrt62zOsNrau7asMqZ5rbA8+VwsrsPBuHmnY3bsoY7sonZVF0V+yVi4pI499e6OPXKdZnP6aHKF291ScrrkqjpJZvfHyxPJUldAVXDysuVG8u97WTn2/PltwGwQF2PGK1ept/Qn7kqYxCk05SZJOUJ/oriFKM8rR5U8TnBB6QYbYcVCQGJOumf0ZC2+cpw/uWtwWGmbeZYYhcZJcx5E7GRM9SlZjmfOuWCfVg49dw8Qk1ShoXmiQctASsg8IfabcX+HXDpDsjTMKdEQUoW6KK1X4MBtKsDqC2+CssR8c7De+NXYOj4rxbHovvdde1Qu8D96h98VreW2Prv8tvSi9KkF5o7xXbpTf50fX1wrOc+/GKjf/ATg/acA=</latexit>

Differential Evolution

Seeding

• Ensure that whatever knowledge
of solution building blocks gets
incorporated into your
optimisation.

• Often this takes the form of
initialisation of population based
algorithms.

• Seed is strong, indeed.

Example 1. Test Suite
Generation for Java

• EvoSuite is a whole test suite generation tool for Java.

• Test data generation for OO languages is extra-challenging.

• Two layers of problems: method sequence for state
building, and parameter selection for method calls
themselves.

• Idea: find constants in the source code, and seed the initial
population with them.

G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in search-based software testing. In Software Testing,
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 121–130, April 2012.

Example 2. MO Test Suite
Minimisation

• Solutions produced by single-
objective greedy heuristic is not
always Pareto optimal

• But quite close!

• Idea: when initialising the
population, include (partial)
solutions generated by greedy.

• Faster convergence

S. Yoo and M. Harman. Using hybrid algorithm for pareto effcient multi-objective test
suite minimisation. Journal of Systems Software, 83(4):689–701, April 2010.

Memetic Algorithm

• “Memetic” as in internet memes 😧

• As I understand: what individual learns, gets propagated through the
population.

• Intuitively, memetic algorithm is evolutionary algorithm combined with
occasional local search.

Memetic Algorithm
• In GA, individuals in the population reach their current

location by the means of crossover and mutation, i.e. not
necessarily knowing the neighbourhood.

• Why not apply local search (e.g. hill climbing) to get a little
bit better?

• Parameters to consider:

• How often do you perform individual learning?

• What is the budget for local search?

Example: Test Suite
Generation for Java

• The same problem with OO that
we have seen earlier.

• If GA can evolve the correct
method sequence, we can try to
optimise the method parameters
locally.

G. Fraser, A. Arcuri, and P. McMinn. A memetic algorithm for whole test
suite generation. Journal of Systems and Software, 103:311 – 327, 2015.

Hyper-heuristic

• Q: I want to solve my problem
using metaheuristic, but I don’t
know which one to use.

• A: Simple! Use a metaheuristic
to choose one.

• 😵

–Stephen Hawking, “A Brief History of Time”

A well-known scientist (some say it was Bertrand Russell)
once gave a public lecture on astronomy. He described
how the earth orbits around the sun and how the sun, in
turn, orbits around the centre of a vast collection of stars
called our galaxy. At the end of the lecture, a little old lady
at the back of the room got up and said: "What you have
told us is rubbish. The world is really a flat plate supported
on the back of a giant tortoise." The scientist gave a
superior smile before replying, "What is the tortoise
standing on?" "You're very clever, young man, very clever,"
said the old lady. "But it's turtles all the way down!"

But more seriously, HH
• Selecting hyper-heuristics: for a given problem, what is

the best heuristic among the ones in the given library?

• Can only learn online, based on their actual
performance

• Generation hyper-heuristic: combine heuristic
component to build a domain-specific heuristic.

• IMHO, this is beginning to look like GP…

Example: HH Simulated
Annealing

• Inside: the simulated annealing,
we generate a neighbourhood
solution by applying one of many
local move operators.

• Outside: we learn which operator
is improving the fitness the best,
using machine learning, as the
optimisation progresses.

• That is, selection of low-level
heuristic baed on dynamic
learning.

Y. Jia, M. Cohen, M. Harman, and J. Petke. Learning combinatorial interaction test generation strategies using
hyperheuristic search. In IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), volume
1, pages 540–550, May 2015.

Example: HH Simulated
Annealing

• Different operators receives better reward in different
stages of optimisation, meaning that we are indeed
learning and choosing operators wisely.

Y. Jia, M. Cohen, M. Harman, and J. Petke. Learning combinatorial interaction test generation strategies using
hyperheuristic search. In IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), volume
1, pages 540–550, May 2015.

Problem Space Exploration
• Originally introduced for Job-Shop Scheduling (Storer et al. ’92)

• Do not search for a solution; search for a problem!

• You have a difficult problem.

• Change the problem a little bit, see if you can solve it more
easily.

• If solved, apply answer to the original problem and check if
it’s solved too.

• Rinse, lather, repeat. S. Yoo. A novel mask-coding representation for set cover problems with applications in
test suite min- imisation. In Proceedings of the 2nd International Symposium on
Search-Based Software Engineering (SSBSE 2010), 2010.

Optimisation based on PSE
• A perturbation M alters a problem instance P into P’. Similarly,

function m perturbs solution S to S’.

• We assume we have a cheap (but perhaps not optimal) heuristic
A that can solve the class of problems that include P and P’s.

• Our genotype individuals are instances of M, not S. Fitness of a
perturbation M is evaluated as fitness(S) s.t. S = m-1(S’), S’ =
A(P’), P’ = M(P).

• As we manipulate the genotype individuals (i.e. perturbations), we
obtain different instances of S by exploring the problem space, i.e.
different P’s.

PSE Intuition
• This is just another way to modify one solution into another.

• We do not define the modification operator in the solution
space.

• Instead, we modify the problem, solve it using another
simpler heuristic, take the solution, and bring it back to the
original problem.

• We then evaluate the obtained solution against the original
problem.

Optimisation based on PSE
• Pros

• It is much less restricted by the features of search
landscape formulated by the original problem and the
fitness function.

• Cons

• Hardly intuitive :)

• The use of construction heuristic not only requires
additional computation but also adds complexity.

Example

• Given a test suite minimisation
problem, how would represent
your solution?

• Given the representation
above, how would you initialise
your population?

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x

• Binary string representation: a string of length 4; digit si corresponds to
the inclusion of Ti

• Randomly set each digit of individual solution with P(st=0) = P(st=1) = 0.5

Problem: Dimensional Plateau

• Real minimisation looks very different
from toy examples.

• Program structure affects the
frequency each element is covered,
i.e. some parts of the SUT are covered
by a large number of tests in similar
patterns

• There are some highly redundant test
suites

• If we sample random test sets, the
variance of coverage may be very small.

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x

Problem: Dimensional Plateau

• Dimensional Plateau occurs when, in multi-objective optimisation, one of the
objectives manifests a plateau in the search space while others do not.

• What you think is random may not be random

• Hard to escape

x x

x x x xx x
x

x
x

x x

x
x

x

x
x

Cost

Co
ve

ra
ge

x x x x x x x x x x x x x x
Co

ve
ra

ge

Cost

Dimensional Plateau

4.1e+08 4.2e+08 4.3e+08 4.4e+08

0.
6

0.
8

1.
0

1.
2

printtokens

cost

co
ve
ra
ge

Perturbation for Set-Cover Problem

• Existing representations based on PSE are often called Weight Coding
because the perturbation is a vector of weights applied to P; however, we are
dealing with sets.

• Mask-Coding: perturbs an instance of Set-Cover problem by either masking
parts of the universe (i.e. the SUT) or the sets (i.e. the tests).

• Ironically, our masks are binary strings :)

U, S, US-Mask

• U-Mask : perturbs the Set-Cover problem by masking (i.e. hiding) some of the
elements that are to be covered (in our case, some structural elements of the
SUT)

• S-Mask : perturbs the Set-Cover problem by masking some of the sets that
are used to form the cover (in our case, some of the tests in the test suite)

• US-Mask : combines U- and S-Mask in a single binary string

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x

0 1 1 0 1
U-Mask

S-Mask

0
1
0
1

0 1 1 0 1
US-Mask

0
1
0
1

Diversity

• For search-spaces with
dimensional plateau,
Mask-Coding improves
the search significantly

• Binary string entirely fails
to escape the plateau

• When there is no
plateau, it is not as
successful as binary
string

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1e+05 1e+06 1e+07 1e+08 1e+09

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

printtokens

cost

co
ve

ra
ge

● US−mask
U−mask
S−mask
Binary String

●

●

●

●

●

●

●

●

●

●

1e+05 1e+06 1e+07 1e+08 1e+09

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

tcas

cost

co
ve

ra
ge

● US−mask
U−mask
S−mask
Binary String

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●●
●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

2e+06 5e+06 1e+07 2e+07 5e+07

0.
45

0.
50

0.
55

0.
60

flex

cost

co
ve

ra
ge

● US−mask
U−mask
S−mask
Binary String

●
●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●
●

●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5e+06 1e+07 2e+07 5e+07 1e+08 2e+08 5e+08

0.
3

0.
4

0.
5

0.
6

0.
7

gzip

cost

co
ve

ra
ge

● US−mask
U−mask
S−mask
Binary String

●

u0s0 u0s1 u1s0 u1s1

5
10

15

printtokens

of

 c
on

tri
bu

te
d

so
lu

tio
ns

u0s0 u0s1 u1s0 u1s1

2
4

6
8

10

tcas

of

 c
on

tri
bu

te
d

so
lu

tio
ns

●
●

u0s0 u0s1 u1s0 u1s1

10
20

30
40

50
60

flex

of

 c
on

tri
bu

te
d

so
lu

tio
ns

●●●

●

u0s0 u0s1 u1s0 u1s1

0
50

10
0

15
0

gzip

of

 c
on

tri
bu

te
d

so
lu

tio
ns

