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Estimation of Distribution 
Algorithm

• EDA mantra: avoid arbitrary operators; instead, explicitly 
model what desirable solutions should look like. 

• Do not evolve one solution, or even a group of 
solutions 

• Evolve a probability distribution, from which one or 
more solutions can be sampled. 

• Very new; emerged in 2000s.



EDA

(1) D0  generate M random individuals
(2) while stopping criterion is not met
(3) Ds

l�1  select N < M individuals from Dl�1

(4) pl(x) p(x|Ds
l�1) //est. p.d. of x being in Ds

l�1
(5) Dl  sample M individuals from pl(x)





Independent Variables

Assume that variables are independent from each other, i.e. pl(x) = ⇧n
i=1p(xi)

for x = (x1, . . . , xn):

pl(xi) =

PN
j=1 �j(Xi = xi|Ds

l�1)

N

where �j(Xi = xi|Ds
l�1) = 1 if, in the jth case of Ds

l�1, Xi = xi, 0 if not.



Independent Variables

• We are looking for a bit string of 
length 5; there *is* a fitness 
function. 

• M = 4; suppose we let N = 2, 
and choose 2 and 4. 

• What should we try the next?

# Solutions Fitness

1 00100 1

2 11011 4

3 01101 0

4 10111 3



Independent Variables

# Solutions Fitness

1 00100 1

2 11011 4

3 01101 0

4 10111 3

• Let x = (x0, x1, x2, x3, x4).

• Ds
l�1 = {11011, 10111}

• pl(x0 = 1) = 2
2 = 1.0

• pl(x1 = 1) = 1
2 = 0.5

• pl(x2 = 1) = 1
2 = 0.5

• pl(x3 = 1) = 2
2 = 1.0

• pl(x4 = 1) = 2
2 = 1.0

Univariate Marginal Distribution Algorithm 



Independent Variables

Population Based Incremental Learning

pl+1(xi) = (1� ↵)pl(xi) + ↵
1

N

NX

k=1

xl
i, k : M,↵ 2 (0, 1]



• When one has to capture dependencies between 
variables, the joint probability distribution needs to be 
factorised: 

• There are also algorithms that try to group variables, so 
that each group can be considered as an independent 
marginal distribution.

Multivariate Modelling

fXY (x, y) = fX|Y=y(x)fY (y)



Differential Evolution

• Recently developed optimisation for real variables 

• BUT! The underlying function does not need to be 
differentiable, i.e. it can be even discontinuous. 

• DE can optimise this, unlike traditional gradient 
descent, for example.



Differential Evolution
• CR: crossover rate 

• F ∈ [0, 2]: differential weight 

• Exploration: essentially we randomly 
mix up vector elements, so we 
always do random exploration 

• Exploitation: gradually we update the 
population with better solutions - if 
“better” means “in the same fitness 
valley”, then there is increased 
chance of interpolating “within the 
valley”, thereby exploiting the 
corresponding part of the 
landscape.

(1) P  M random real vectors of length n
(2) evaluate(P)
(3) while termination criterion not met
(4) for j = 0 to M
(5) r1, r2, r3  unique random integers 2 [1,M ]
(6) R a random integer 2 (1, n)
(7) for i = 0 to n
(8) if U(0, 1) < CR _ i == R then x0

i,j =
xi,r3 + F (xi,r1 � xi,r2)

(9) else x0
i,j = xi,j

(10) evaluate(x0
j)

(11) if IsBetter(x0
j , xj) then xj  x0

j
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Differential Evolution



Seeding

• Ensure that whatever knowledge 
of solution building blocks gets 
incorporated into your 
optimisation. 

• Often this takes the form of 
initialisation of population based 
algorithms. 

• Seed is strong, indeed.



Example 1. Test Suite 
Generation for Java

• EvoSuite is a whole test suite generation tool for Java. 

• Test data generation for OO languages is extra-challenging. 

• Two layers of problems: method sequence for state 
building, and parameter selection for method calls 
themselves. 

• Idea: find constants in the source code, and seed the initial 
population with them.

G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in search-based software testing. In Software Testing, 
Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 121–130, April 2012.



Example 2. MO Test Suite 
Minimisation

• Solutions produced by single-
objective greedy heuristic is not 
always Pareto optimal 

• But quite close! 

• Idea: when initialising the 
population, include (partial) 
solutions generated by greedy. 

• Faster convergence

S. Yoo and M. Harman. Using hybrid algorithm for pareto effcient multi-objective test 
suite minimisation. Journal of Systems Software, 83(4):689–701, April 2010.



Memetic Algorithm

• “Memetic” as in internet memes 😧 

• As I understand: what individual learns, gets propagated through the 
population. 

• Intuitively, memetic algorithm is evolutionary algorithm combined with 
occasional local search.



Memetic Algorithm
• In GA, individuals in the population reach their current 

location by the means of crossover and mutation, i.e. not 
necessarily knowing the neighbourhood. 

• Why not apply local search (e.g. hill climbing) to get a little 
bit better? 

• Parameters to consider: 

• How often do you perform individual learning? 

• What is the budget for local search?



Example: Test Suite 
Generation for Java

• The same problem with OO that 
we have seen earlier. 

• If GA can evolve the correct 
method sequence, we can try to 
optimise the method parameters 
locally.

G. Fraser, A. Arcuri, and P. McMinn. A memetic algorithm for whole test 
suite generation. Journal of Systems and Software, 103:311 – 327, 2015.



Hyper-heuristic

• Q: I want to solve my problem 
using metaheuristic, but I don’t 
know which one to use. 

• A: Simple! Use a metaheuristic 
to choose one.  

• 😵



–Stephen Hawking, “A Brief History of Time”

A well-known scientist (some say it was Bertrand Russell) 
once gave a public lecture on astronomy. He described 
how the earth orbits around the sun and how the sun, in 
turn, orbits around the centre of a vast collection of stars 
called our galaxy. At the end of the lecture, a little old lady 
at the back of the room got up and said: "What you have 
told us is rubbish. The world is really a flat plate supported 
on the back of a giant tortoise." The scientist gave a 
superior smile before replying, "What is the tortoise 
standing on?" "You're very clever, young man, very clever," 
said the old lady. "But it's turtles all the way down!"



But more seriously, HH
• Selecting hyper-heuristics: for a given problem, what is 

the best heuristic among the ones in the given library? 

• Can only learn online, based on their actual 
performance 

• Generation hyper-heuristic: combine heuristic 
component to build a domain-specific heuristic. 

• IMHO, this is beginning to look like GP…



Example: HH Simulated 
Annealing 

• Inside: the simulated annealing, 
we generate a neighbourhood 
solution by applying one of many 
local move operators. 

• Outside: we learn which operator 
is improving the fitness the best, 
using machine learning, as the 
optimisation progresses. 

• That is, selection of low-level 
heuristic baed on dynamic 
learning.

Y. Jia, M. Cohen, M. Harman, and J. Petke. Learning combinatorial interaction test generation strategies using 
hyperheuristic search. In IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), volume 
1, pages 540–550, May 2015.



Example: HH Simulated 
Annealing 

• Different operators receives better reward in different 
stages of optimisation, meaning that we are indeed 
learning and choosing operators wisely.

Y. Jia, M. Cohen, M. Harman, and J. Petke. Learning combinatorial interaction test generation strategies using 
hyperheuristic search. In IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), volume 
1, pages 540–550, May 2015.



Problem Space Exploration
• Originally introduced for Job-Shop Scheduling (Storer et al. ’92) 

• Do not search for a solution; search for a problem! 

• You have a difficult problem. 

• Change the problem a little bit, see if you can solve it more 
easily. 

• If solved, apply answer to the original problem and check if 
it’s solved too. 

• Rinse, lather, repeat. S. Yoo. A novel mask-coding representation for set cover problems with applications in 
test suite min- imisation. In Proceedings of the 2nd International Symposium on 
Search-Based Software Engineering (SSBSE 2010), 2010.



Optimisation based on PSE
• A perturbation M alters a problem instance P into P’. Similarly, 

function m perturbs solution S to S’. 

• We assume we have a cheap (but perhaps not optimal) heuristic 
A that can solve the class of problems that include P and P’s. 

• Our genotype individuals are instances of M, not S. Fitness of a 
perturbation M is evaluated as fitness(S) s.t. S = m-1(S’), S’ = 
A(P’), P’ = M(P). 

• As we manipulate the genotype individuals (i.e. perturbations), we 
obtain different instances of S by exploring the problem space, i.e. 
different P’s.



PSE Intuition
• This is just another way to modify one solution into another. 

• We do not define the modification operator in the solution 
space. 

• Instead, we modify the problem, solve it using another 
simpler heuristic, take the solution, and bring it back to the 
original problem. 

• We then evaluate the obtained solution against the original 
problem.



Optimisation based on PSE
• Pros 

• It is much less restricted by the features of search 
landscape formulated by the original problem and the 
fitness function. 

• Cons 

• Hardly intuitive :) 

• The use of construction heuristic not only requires 
additional computation but also adds complexity.



Example

• Given a test suite minimisation 
problem, how would represent 
your solution?


• Given the representation 
above, how would you initialise 
your population?

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x

• Binary string representation: a string of length 4; digit si corresponds to 
the inclusion of Ti


• Randomly set each digit of individual solution with P(st=0) = P(st=1) = 0.5



Problem: Dimensional Plateau

• Real minimisation looks very different 
from toy examples.


• Program structure affects the 
frequency each element is covered, 
i.e. some parts of the SUT are covered 
by a large number of tests in similar 
patterns


• There are some highly redundant test 
suites


• If we sample random test sets, the 
variance of coverage may be very small.

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x



Problem: Dimensional Plateau

• Dimensional Plateau occurs when, in multi-objective optimisation, one of the 
objectives manifests a plateau in the search space while others do not.


• What you think is random may not be random


• Hard to escape
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Dimensional Plateau
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Perturbation for Set-Cover Problem

• Existing representations based on PSE are often called Weight Coding 
because the perturbation is a vector of weights applied to P; however, we are 
dealing with sets.


• Mask-Coding: perturbs an instance of Set-Cover problem by either masking 
parts of the universe (i.e. the SUT) or the sets (i.e. the tests).


• Ironically, our masks are binary strings :)



U, S, US-Mask

• U-Mask : perturbs the Set-Cover problem by masking (i.e. hiding) some of the 
elements that are to be covered (in our case, some structural elements of the 
SUT)


• S-Mask : perturbs the Set-Cover problem by masking some of the sets that 
are used to form the cover (in our case, some of the tests in the test suite)


• US-Mask : combines U- and S-Mask in a single binary string

S1 S2 S3 S4 S5

T1 x x x

T2 x x

T3 x

T4 x

0  1  1  0  1
U-Mask

S-Mask

0 
1 
0 
1

0  1  1  0  1
US-Mask

0 
1 
0 
1



Diversity

• For search-spaces with 
dimensional plateau, 
Mask-Coding improves 
the search significantly


• Binary string entirely fails 
to escape the plateau


• When there is no 
plateau, it is not as 
successful as binary 
string
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