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Blomimicry

Imitation of the models, systems, and elements of nature
for the purpose of solving complex human problems.

https://en.wikipedia.org/wiki/Biomimetics



Morpho Buttertly

e [he blue colour is not
oigmentation; it is structural
colouration.

e Microstructures (ridges, cross-
rios, etc) in the scale of the
outtertly interferes with specific
wavelengths of the light, resulting
N the blue colour.

* Mirasol display technology from
Qualcomm is based on the
reflective properties of the
outterdly.

https://commons.wikimedia.org/wiki/File:Morpho didius Male Dos MHNT. jpg



e SWISS electrical engineer,
George de Mestral, had to
remove burdock burrs (seeds)
from his cloths and his dog’s furs
whenever he returned from
walks in Alps.

e bventually he invented Velcro
nooks In 1957,

https://en.wikipedia.org/wiki/Biomimetics#/media/File:Bur Macro BlackBg.jpg



What about
algorithms”?



Particle Swarm Optimisation

A machine leaming technigue loosely based on a flock
of birds searching for food. Imagine a flock, in which:;

e the intensity of the cry of a bird Is proportional to how
much food (Insects) it can find at its current location

e Dirds know who are nearby

e Dirds know who is crying out the loudest



Particle Swarm Optimisation

e [he flock has a good chance of converging to the location
with the most food, If each bird follows the direction which
s the combination of the following three:

e keep the current direction

e return to the location where it found the most food

e move towards the neighbouring bird whose cry Is the
loudest

e GA Is competitive; PSO is cooperative.



Particle Swarm Optimisation
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Particle Swarm Optimisation

* Inherently designed for continuous space/real values.
e (Can be mapped/demapped 1o integer domains.
 [rickier to adapt to combinatorial/discrete spaces.
e Operations in PSO: distance between two solutions (-),
multiplication of a velocity (%), adding two velocities (+),

and applying the velocity to positions (+)

e [hese three operators need to be re-defined over the
discrete sets.
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https://www.youtube.com/watch?v=bbbUwyMr1W8



https://www.youtube.com/watch?v=bbbUwyMr1W8

Ant Colony Optimisation

* Ants In a colony needs to
palance exploitation and
exploration in terms of foraging
for food.

e Scouts leave pheromone trall
when they explore, find food,
and retumn; sulbseqguent workers
follow the deposit of
oheromones, and leave thelir
own, strengthening the trall,




Emergence of exploration network in a colony of Argentine
ants Linepithema humile (video from icouzin Lab in Princeton)

http://icouzin.princeton.edu/pheromone-trail-networks-in-ants/



Ant Colony Optimisation

e \We want to mimic ants to explore graphs (for example,
to solve TSP).

e However, there Is N0 guarantee that the scout ant
always finds the best path.

e Solution: our pheromone trall is artificial, so make it
evaporates (7)



ACO for TSP

Initialisation: drop ants on random nodes on the graph. Also,
deposit small amount of pheromone on all edges uniformly.

Ants choose which edge to cross probabilistically, considering the
length of the edge and the amount of pheromone on the edge.

When ants finish a tour, they retrace their tour, depositing
oheromones In amounts inversely proportional to the length of the
route.

Before starting another round, pheromones evaporates a little.

Eventually, ants converge on the shortest patn.



ACO for TSP

Probability of ant k£ choosing the edge from node i to j: p,’fj = =7 —,

- Zhejkz Tinlin
where 7);; 1s the visibility of the node j from ¢, calculated as i (1;; is the
length of the edge). Weights a and b balances whether ants chooses only
based on the shortest edge (a = 0), or only based on the pheromone
deposit (b = 0). H is the available edges; J* is the set of nodes not visited

by ant k yet.

Pheromone deposit: AT,L-’;- = %, where () is the estimated shortest tour

and L* is the length of the tour by ant k.

Amount of pheromone on each edge: AT;; = Z;;W AT,Z-

Evaporation: 777! = (1 — p)7}; + ATyj, where p is the evaporation rate

o]
constant.



Ant Algonthm Si..

https://www.youtube.com/watch?v=eVKAIufSrHs



https://www.youtube.com/watch?v=eVKAIufSrHs

Strength of ACO

Figure 7.8 Left: Virtual ants maintain multiple paths between source and destination
nodes. Shorter paths are traversed by more ants (thicker line). Right: If a node (or
edge) fails, ants immediately use and reinforce the second shortest path available.

e Edge selection is probabllistic: a small number of ants will
traverse paths that are not shortest.

* \\When the graph changes, ACO can adapts with second-
pest partial solutions.

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press



Applications

—valuations on simulated US T1 Internet backbone and
N T T telephone networks shows eqgual performance to
industry standard routing algorithms in terms of
throughput, but much better in terms of packet delay.

Problems should be able to be represented as path-
finding; there are attempts to solve combinatorial
optimisation, for example, but Not so successtul
compared to routing.

G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications
Networks, Journal of Artificial Intelligence Research, Volume 9, pages 317-365, 1998



Artificial Immune System

e Biological iImmune systems are
vast complex systems;
simulating the entire mechanism

would be pointless.

e (Certain stages can be emulated
for pattern recognition, etc.




“The problem of protecting computer systems
can be viewed general

learning to

Istinguis

y as i

ne problem of

N self |

rom other.”

—Stephanie Forrest, Alan Perelson, Lawrence Allen, Rajesh Cherukuri, “Self-
nonself discrimination in a computer”, 1994



Non-selt Detection

 Many applications in security: how to detect what is not
normal’’

e Cannot anticipate all attacks.
e Cannot anticipate all normal usages.

e Having a fixed set of rules/detectors does not work.



Negative Selection Algorithm

e Maintain a pool of multiple detection algorithms that are
unigue. Each may protect different sites/parts/etc.

* Detection is probabllistic: we risk allowing intrusion at
one site, but this Is mitigated by having multiple
detectors.

e A robust system should detect (probabllistically) all
foreign activities, and not just known intrusion pattermns.



Negative Selection Algorithm

Self Strings
(5)
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Figure 1: Generation of Valid Detector Set (Censoring) .

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer,
Research in Security and Privacy, 1994.



Negative Selection Algorithm
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Figure 2: Monitor Protected Strings for Changes.

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer,
Research in Security and Privacy, 1994.



Propbabilistic Detection

. . . . m r | Py
r-contiguous match: two strings 5 18 33 0.0502023
match if r characters from the 2 | 864 0.108697
. 2 |8 |128 0.2151
same location matches. 2 | 8 | 256 0.391316
2 |16} 32 0.000137329
| 9 |16 | 64 | 0.000381437
e [or strings of length 1, 2 |16 | 128 | 0.000869474
2 |16 | 256 | 0.00184483
compoged of m alphabetg, the 198 | 8 | 39 | 3.33067 * 10-16
orobability of r contiguous letters 128 | 8 | 64 | 7.77156 * 1016
B N 128 | 8 | 128 | 1.66533 * 1015
matching S sufficiently low for 198 | 8 | 256 | 3 44169 * 10-15
1:1 matching. 128 | 16 | 32 ~ 0.0
128 | 16 | 64 ~ 0.0
| | 128 | 16 | 128 ~ 0.0
e With multiple detectors, we can 128 | 16 | 256 ~ 0.0
reasonably learn to dISJ[IﬂgUISh Table 1: Example values of Py for varying values of
the self probab|||8t|ca||y m (alphabet size), r (number of contiguous matches

required for a match), and ! (string length).



AlS: Applications

 Anomaly detection: represent what you want to
distinguish as strings:

o Network packets: matching is made between TCP
flelds.

e System processes: strings are seguences of system
calls.



Coevolution

e [WO population evolving at the same time as parts of a
larger dynamic system: can e either cooperative or
competitive.

e \ery interesting concept, but it seems like we
understana very little.



Sorting Network

In(1) _4_g_1 o] Out(1)
In(2) _1 I4 o3 o2 Out(2)
In(3) _3 2 &2 Is Out(3)
In(4) _2 Is o4 Out(4)

Figure 7.21 A sorting network for arranging four arbitrary numbers in nondecreas-
ing order. Vertical connectors represent comparators that exchange the position of

two incoming elements if the lower is smaller than the higher. Redrawn from (Knuth
1998, p. 221).

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press



Coevolving Sorting Networks

* Hillis, 1992

e Shortest sorting network for
10 Inputs, developed by
human, uses 60 comparisons.

* By Cco-evolving sorting
networks and test cases (i.e.
inputs), Hillis achieved 61 (65
without coevolution).

Co-evolved (61 comparisons)
&

i
i
s




Coevolution of Programs and
lests

e (Given pre- and post-condition for programs:

e One population of programs: take pre-condition
satistying input, and tries to evolve programs that
satisty post-condition.

* One population of test cases: against evolved

orograms, tries to satisty precondition but break the
post-condition.



Coevolution of Programs and
lests

e [arget programs
* MaxValue
» AllEqual
 [riangleClassification
e Swap (two elements in an array)
e Order (swap two elements in an array only if they are out of order)
e Sort

e Median



Coevolution of Programs and
lests

Configurations in which extra functions were added to the base set of GP primitives. These functions are correct
implementations of the specifications we address in our case study.

Configurations Added primitives

Order_2

Sorting_2 Table 3

:/(I’;gggn—; Number of correct evolved programs out of 100 independent runs for each program versiol

ng;:g‘_i Programs RS COE SSP

l MaxValue 8 12 15

AllEqual 0 3 3
TriangleClassification 0 0 13
Swap 0 12 18
Order_1 0 0 0
Order_2 0 18 91
Sorting_1 0 0 0
Sorting_2 2 0 0
Sorting_3 97 97 86
Median_1 0 0 0
Median_2 0 0 0
Median_3 17 8 16
Median_4 99 96 99




Complex Dynamics

o Red Queen effects: features evolved earlier are l0st,
because the landscape (1.e. the other population)
changed.

e Hard to interpret fithess changes: did | get better, or did
my opponent get worse”?

* [t has been often observed that two populations tend to
get comfortable with each other at mediocre level,
instead of continuously improving each other.



BIo-INspired algorithms

e [tis NOT about mimicking micro-behaviours.
e [here are many hypes.

* [he key Is to understand the original behaviour and
mechanism sufficiently, before trying to mimic them.



