
Bio-inspired Algorithms
SEP592, Summer 2020 

Shin Yoo



Biomimicry
Imitation of the models, systems, and elements of nature  

for the purpose of solving complex human problems.

https://en.wikipedia.org/wiki/Biomimetics



Morpho Butterfly
• The blue colour is not 

pigmentation; it is structural 
colouration. 

• Microstructures (ridges, cross-
ribs, etc) in the scale of the 
butterfly interferes with specific 
wavelengths of the light, resulting 
in the blue colour. 

• Mirasol display technology from 
Qualcomm is based on the 
reflective properties of the 
butterfly.

https://commons.wikimedia.org/wiki/File:Morpho_didius_Male_Dos_MHNT.jpg



Burrs

• Swiss electrical engineer, 
George de Mestral, had to 
remove burdock burrs (seeds) 
from his cloths and his dog’s furs 
whenever he returned from 
walks in Alps. 

• Eventually he invented Velcro 
hooks in 1951. 

https://en.wikipedia.org/wiki/Biomimetics#/media/File:Bur_Macro_BlackBg.jpg



What about 
algorithms?



Particle Swarm Optimisation

• A machine learning technique loosely based on a flock 
of birds searching for food. Imagine a flock, in which: 

• the intensity of the cry of a bird is proportional to how 
much food (insects) it can find at its current location 

• birds know who are nearby 

• birds know who is crying out the loudest



Particle Swarm Optimisation
• The flock has a good chance of converging to the location 

with the most food, if each bird follows the direction which 
is the combination of the following three: 

• keep the current direction 

• return to the location where it found the most food 

• move towards the neighbouring bird whose cry is the 
loudest 

• GA is competitive; PSO is cooperative.



Particle Swarm Optimisation
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Particle Swarm Optimisation
• Inherently designed for continuous space/real values. 

• Can be mapped/demapped to integer domains. 

• Trickier to adapt to combinatorial/discrete spaces. 

• Operations in PSO: distance between two solutions (-), 
multiplication of a velocity (*), adding two velocities (+), 
and applying the velocity to positions (+) 

• These three operators need to be re-defined over the 
discrete sets.



https://www.youtube.com/watch?v=bbbUwyMr1W8

https://www.youtube.com/watch?v=bbbUwyMr1W8


Ant Colony Optimisation
• Ants in a colony needs to 

balance exploitation and 
exploration in terms of foraging 
for food. 

• Scouts leave pheromone trail 
when they explore, find food, 
and return; subsequent workers 
follow the deposit of 
pheromones, and leave their 
own, strengthening the trail.



Emergence of exploration network in a colony of Argentine 
ants Linepithema humile (video from icouzin Lab in Princeton)

http://icouzin.princeton.edu/pheromone-trail-networks-in-ants/



Ant Colony Optimisation

• We want to mimic ants to explore graphs (for example, 
to solve TSP). 

• However, there is no guarantee that the scout ant 
always finds the best path. 

• Solution: our pheromone trail is artificial, so make it 
evaporates (?)



ACO for TSP
• Initialisation: drop ants on random nodes on the graph. Also, 

deposit small amount of pheromone on all edges uniformly. 

• Ants choose which edge to cross probabilistically, considering the 
length of the edge and the amount of pheromone on the edge. 

• When ants finish a tour, they retrace their tour, depositing 
pheromones in amounts inversely proportional to the length of the 
route. 

• Before starting another round, pheromones evaporates a little. 

• Eventually, ants converge on the shortest path.



ACO for TSP
• Probability of ant k choosing the edge from node i to j: pkij =
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where ⌘ij is the visibility of the node j from i, calculated as 1
lij

(lij is the

length of the edge). Weights a and b balances whether ants chooses only
based on the shortest edge (a = 0), or only based on the pheromone
deposit (b = 0). H is the available edges; Jk is the set of nodes not visited
by ant k yet.

• Pheromone deposit: �⌧
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Lk , where Q is the estimated shortest tour
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• Evaporation: ⌧
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constant.



https://www.youtube.com/watch?v=eVKAIufSrHs

https://www.youtube.com/watch?v=eVKAIufSrHs


Strength of ACO

• Edge selection is probabilistic: a small number of ants will 
traverse paths that are not shortest. 

• When the graph changes, ACO can adapts with second-
best partial solutions.

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press



Applications
• Evaluations on simulated US T1 Internet backbone and 

NTT telephone networks shows equal performance to 
industry standard routing algorithms in terms of 
throughput, but much better in terms of packet delay. 

• Problems should be able to be represented as path-
finding; there are attempts to solve combinatorial 
optimisation, for example, but not so successful 
compared to routing.

G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications 
Networks, Journal of Artificial Intelligence Research, Volume 9, pages 317-365, 1998



Artificial Immune System

• Biological immune systems are 
vast complex systems; 
simulating the entire mechanism 
would be pointless. 

• Certain stages can be emulated 
for pattern recognition, etc.



–Stephanie Forrest, Alan Perelson, Lawrence Allen, Rajesh Cherukuri, “Self-
nonself discrimination in a computer”, 1994

“The problem of protecting computer systems 
can be viewed generally as the problem of 

learning to distinguish self from other.” 



Non-self Detection

• Many applications in security: how to detect what is not 
normal? 

• Cannot anticipate all attacks. 

• Cannot anticipate all normal usages. 

• Having a fixed set of rules/detectors does not work.



Negative Selection Algorithm

• Maintain a pool of multiple detection algorithms that are 
unique. Each may protect different sites/parts/etc. 

• Detection is probabilistic: we risk allowing intrusion at 
one site, but this is mitigated by having multiple 
detectors. 

• A robust system should detect (probabilistically) all 
foreign activities, and not just known intrusion patterns.



Negative Selection Algorithm

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer, 
Research in Security and Privacy, 1994.



Negative Selection Algorithm

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer, 
Research in Security and Privacy, 1994.



Probabilistic Detection
• r-contiguous match: two strings 

match if r characters from the 
same location matches. 

• For strings of length l, 
composed of m alphabets, the 
probability of r contiguous letters 
matching is sufficiently low for 
1:1 matching. 

• With multiple detectors, we can 
reasonably learn to distinguish 
the self probabilistically. 



AIS: Applications

• Anomaly detection: represent what you want to 
distinguish as strings: 

• Network packets: matching is made between TCP 
fields. 

• System processes: strings are sequences of system 
calls.



Coevolution

• Two population evolving at the same time as parts of a 
larger dynamic system: can be either cooperative or 
competitive. 

• Very interesting concept, but it seems like we 
understand very little.



Sorting Network

Dario Floreano and Claudio Mattiussi, Bio-inspired Artificial Intelligence, MIT Press



Coevolving Sorting Networks

• Hillis, 1992 

• Shortest sorting network for 
16 inputs, developed by 
human, uses 60 comparisons. 

• By co-evolving sorting 
networks and test cases (i.e. 
inputs), Hillis achieved 61 (65 
without coevolution).



Coevolution of Programs and 
Tests

• Given pre- and post-condition for programs: 

• One population of programs: take pre-condition 
satisfying input, and tries to evolve programs that 
satisfy post-condition. 

• One population of test cases: against evolved 
programs, tries to satisfy precondition but break the 
post-condition.



Coevolution of Programs and 
Tests

• Target programs 

• MaxValue 

• AllEqual 

• TriangleClassification 

• Swap (two elements in an array) 

• Order (swap two elements in an array only if they are out of order) 

• Sort 

• Median 



Coevolution of Programs and 
Tests



Complex Dynamics
• Red Queen effects: features evolved earlier are lost, 

because the landscape (i.e. the other population) 
changed. 

• Hard to interpret fitness changes: did I get better, or did 
my opponent get worse? 

• It has been often observed that two populations tend to 
get comfortable with each other at mediocre level, 
instead of continuously improving each other.



Bio-inspired algorithms

• It is NOT about mimicking micro-behaviours. 

• There are many hypes. 

• The key is to understand the original behaviour and 
mechanism sufficiently, before trying to mimic them.


