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- A Field Guide to Genetic Programming

“In genetic programming we evolve a population of 
computer programs. That is, generation by 
generation, GP stochastically transforms populations 
of programs into new, hopefully better, populations 
of programs…” 





The End.
Or is it?



Programs, not numbers
• Programs are highly structured. 

• GP mostly (but not exclusively) 
uses syntax tree to represent 
solutions. 

• max(x + x, x + 3 * y) 
= (max (+ x x) (+ x ( 
* 3 y)))

• Obviously, it is easier to 
implement GP with some 
languages: high-level ADT, 
garbage collection, etc



Initialisation

• What is a random tree? 

• We need to limit the size of the 
tree (i.e. depth): we do not want 
arbitrarily large trees as solutions. 

• Many initialisation methods: full, 
grow, ramped half-and-half, and 
others.



Full Initialisation
• Grow full trees 

• Add non-terminal 
nodes only until the 
depth limit is 
reached. 

• Then only add 
terminals as leaves. 

• All trees are fully 
grown.



Grow Initialisation
• Grow various trees 

• Add any node while 
there are empty slots 
and the depth limit is 
not reached. 

• Results in trees of 
various sizes, but the 
ratio between 
terminals and non-
terminals will bias the 
average size. 



Ramped Half and Half

• Half of population is initialised with Full method 

• Half of population is initialised with Grow method 

• A better diversity in terms of shapes and size



Uniform Initialisation

• Ramped method tends to generate bushy trees. Some 
programs have highly asymmetric shape, which is hard 
to achieve with ramped method. 

• Various methods have been developed to sample trees 
with sizes that are more uniformly distributed (highly 
sophisticated combinatorics).



Selection
• Nothing different really, except: 

• GP evolves programs; 

• The fitness of the program is usually measured by 
executing the candidate program; 

• This can be time consuming, despite the evaluation 
essentially being inherently parallel.



Crossover

• Initial idea 

• Randomly choose 
two crossover points 
in parent trees; 

• Cut and swap 
subtrees below the 
crossover points.



Crossover
• Often crossover points are NOT sampled with uniform 

random distribution: 

• Average branching factor is 2 or more, which means 
the majority of the nodes are leaves, which means 
the majority of branches will simply cut a single leaf. 

• Type-aware crossover (Koza 1992): 90% chance of 
choosing a non-terminal node, 10% chance of 
choosing a terminal node



Uniform Crossover
• Find the common region 

between two parents. 

• For each node in the common 
region, flip a coin to decide 
whose node to take; when 
taking a non-terminal node, take 
its subtree. 

• Mixes code nearer to the root 
more often, compared to other 
crossover operators.



Size-fair Crossover

• First crossover point in one parent chosen randomly; 

• Measure the subtree size; 

• Constrain the size of the second subtree to be chosen 
from the other parent.



Subtree Mutation

• Subtree mutation (a.k.a. headless chicken mutation): 

• Choose a subtree 

• Replace it with a randomly generated subtree :)



Point Mutation

• For each node: 

• With a certain probability, replace the node with 
another node of same arity. 

• Independently consider all nodes; may mutate more 
than one.



… and many more
• Hoist mutation: create a new individual, which is a 

randomly chosen subtree of the parent. 

• Shrink mutation: replace a randomly chosen subtree 
with a randomly chosen terminal node. 

• Permutation mutation: change the order of function 
arguments in trees. 

• Systematic constant mutation: use external optimisation 
to tune the constants in the expression tree.



Type Closure

• Non-terminals need to be type consistent: it is 
necessary that any subtree can be used in any 
argument position of any function in the set. 

• Rewriting may do. For example, if(boolean, 
expr1, expr2) can be rewritten as if(expr1, 
expr2, expr3, expr4) where the predicate is 
expr1 < expr2.



Strongly-typed GP

• An alternative to basic type consistency: all node have 
types, and operators should follow the type rules. 

• Has been extended to generics, polymorphism, and 
higher-order functions



Target Language Can Help 

• The target language, with which GP is trying to evolve a 
program, may also help the type problem. 

• You can even design your own target language! :) 

• For example, imagine a stack based language where 
each type uses separate stack. 

• GP for Ahui(아희), anyone?



Evaluation Safety

• Some combinations of nodes will fail at runtime: division 
by zero! 

• Rewrite functions to be fail-proof: 

• 1 / x → 1 if x == 0 else 1 / x

• Overflows are trickier to deal with.



Sufficiency

• Is the given set of terminals and non-terminals sufficient 
to express the solution to the problem? 

• Unless there is a theoretical guarantee that comes 
WITH the problem, this is hard to answer. 

• We can always approximate.



Interpretation

• Again, fitness evaluation equals execution of the 
program (or evaluation of the expression) 

• Typically GP systems will implement a small 
interpreter for the tree representations. 

• Language features can help too.



Bloats

• Average size of trees in the population remains relatively 
static for certain number of generations, then: 

• It increases rapidly and significantly. This growth in size 
is not accompanied by improvement in fitness. 

• Many attempt to explain why this happens; no unified 
theory yet.



Three Theoretical Attempts
• Replication accuracy theory (McPhee and Miller 1995): success 

of a GP individual depends on its ability to have offsprings that are 
functionally similar to itself, hence the tendency to repeat itself. 

• Removal bias theory (Soule and Foster 1998): inactive (dead) 
code usually lies lower in the tree, and are smaller than average. 
When replaced (and removed), larger subtrees take their place, 
increasing the tree size. 

• Program Search Space theory (Langdon and Poli 1997): above 
certain size, there is no correlation between size and fitness, but 
there are more longer programs, so they are just sampled more 
often.



Bloat Control

• Size and depth limit: do not accept too large individuals 
into population 

• Bloat-aware genetic operators: do not generate too 
large individuals 

• Bloat aware selection: consider program size as part of 
selection pressure



Other Forms of GP

• Linear GP: programs are, eventually, a sequence of 
instructions, so why not use linear list of instructions? 
X86 code has been evolved. 

• Parallel and Distributed GP: uses graphs, not trees, 
to reuse partial evaluations. Execution is bottom-up 
propagation of input value, rather than top-down 
evaluation (visit) of trees.



Parallel and Distributed GP



Symbolic Regression

• Regression analysis estimates 
the relationship between 
variables: for example, linear 
regression is to find the set of 
(a, b, c) such that y = ax 
+ b fits the given data points 
with minimum error



Symbolic Regression

• Symbolic regression searches 
for the model itself in the space 
of all possible equations.



Symbolic Regression: Fitness

• The usual choice for 
fitness is to minimise MSE 
(Mean Square Error): for 
each data point, measure 
the squared error, and get 
their average.



Symbolic Regression: 
Constants

• When it is relatively obvious which set of constants will 
be “helpful”, you can provide them. 

• You can provide building blocks of them (1, 10, 100, 
etc) 

• You can use Ephemeral Random Constant (ERC): a 
constant whose value is randomly determined when it 
is first created.



Examples of Symbolic 
Regression

Better GP Benchmarks: Community Survey Results and Proposals 19

Training Set
Name Variables Equation Testing Set

Keijzer-6 [25] [46] 1
Px

i
1
i E[1, 50, 1]

E[1, 120, 1]

Korns-12 [27] 5 2� 2.1 cos(9.8x) sin(1.3w) U[-50, 50, 10000]
U[-50, 50, 10000]

Vladislavleva-4 [50] 5 10
5 +

P5
i=1(xi � 3)2

U[0.05, 6.05, 1024]
U[-0.25, 6.35, 5000]

Nguyen-7 [33] 1 ln(x+ 1) + ln(x2 + 1) U[0, 2, 20]
None

Pagie-1 [36] 2 1
1 + x�4 + 1

1 + y�4 E[-5, 5, 0.4]
None

Dow Chemical 57 chemical process data6 747 points
(see Section 6.1) 319 points

GP Challenge [56] 8 protein energy data 1250–2000 per protein
(see Section 6.1) None

Table 5 Proposed symbolic regression benchmarks. In the training and testing sets, U[a,b,c]
is c uniform random samples drawn from a to b, inclusive. E[a,b,c] is a grid of points evenly
spaced with an interval of c, from a to b inclusive.

which are fast to evaluate and problems which require more complex processing;
and to allow some tunability of problems.

We do not argue that papers using the replacement problems must neces-
sarily use all of them. However, we caution against cherry-picking, a problem
identified in the community survey: if one runs experiments on multiple prob-
lems, clearly one must not choose to report only the best results.

The following sub-sections briefly discuss the problem domains, explaining
our choice of benchmarks. We emphasize that we welcome feedback from the
community on both the blacklist and the proposed replacements.

6.1 Symbolic Regression

As Symbolic Regression was the most requested problem domain from the
survey (Question 19) as well as the most commonly used benchmark in the
literature survey, we have suggested more benchmarks for this domain than
any other. The seven proposed problems are listed in Table 5.

In order to ensure variety, we have selected one problem from each of
several well-known sources in the specialist literature. We have chosen the more
di�cult problems available, both real-world and synthetic. The selection aims
for robust di�culty: changes in alphabet, GP technique, numerical constant
creation, and so on should not render the problems trivial. In fact, we have
chosen not to specify such details here (they are specified in the original
papers and collected in our previous work [32]), in order to make the problems
representation-independent. These were issues mentioned by several respondents

6 http://casnew.iti.upv.es/index.php/evocompetitions/105-symregcompetition

Better GP Benchmarks: Community Survey Results and Proposals: David R. White, James McDermott, Mauro Castelli, Luca Manzoni, Brian 
W. Goldman, Gabriel Kronberger, Wojciech Jaskowski, Una-May O’Reilly, and Sean Luke. Genetic Programming and Evolvable Machines 14:1 
(3-29), 2013.

http://gpbenchmarks.org/wp-content/uploads/2014/09/GP-Benchmarks-GPEM-2013-preprint-correction-v2.pdf


GP as Modification not 
Evolution

• Borrow GP to slightly modify a large, existing, code 
base, rather than to evolve something from the scratch. 

• Grammar based modification (Langdon and Harman 
2015): 

• First, represent the existing code as a typed BNF 
grammar rule. 

• Second, modify the grammar, and expand the 
modified grammar.



(Slides borrowed from Dr. Landgon’s keynote at SSBSE 2015, “Genetic Improvement of Software for Multiple Objectives”)



(Slides borrowed from Dr. Landgon’s keynote at SSBSE 2015, “Genetic Improvement of Software for Multiple Objectives”)



(Slides borrowed from Dr. Landgon’s keynote at SSBSE 2015, “Genetic Improvement of Software for Multiple Objectives”)



GP as a Complete 
Autonomous programmer

• Evolving a complete application 
is hard. 

• PushCalc is a complicated 
system that uses Clojure (a Perl-
variant on Java) and Push GP 
system (stack-based GP): its aim 
is to evolve a complete 
calculator application. 

K. Yeboah-Antwi. Evolving software applications using genetic programming – pushcalc: The evolved calculator. In 
Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’12, pages 
569–572, New York, NY, USA, 2012. ACM.

pressed; for example, the operation “3+4” is represented by
three keypresses, “3” “+” “4”. These sample sets of inputs
are all mapped to their corresponding resulting values which
are the result of running the key presses specificed in each
key. During evaluation, individuals in the population being
evolved are executed on a new stack state that has been
initialized with the inputs popped onto the string stack in
the order of when the keys were pressed, ie. first keypress
being pushed onto the string stack first and so on. The
fitness of each indiviual is the difference between the final
item on the integer stack after executing the individual and
the pre-specified expected corresponding output of the ini-
tialized input from the map of test data. Each individual is
evaluated at the end of every generation and if no individual
exists with a total error of 0, a new generation is then ini-
tialized with a population bred from the population of the
previous generation.

The test cases are composed of possible combinations of
the buttons on a calculator (eg. “43”“43+3”“27/4” 45*2-5”
,etc)

6. RESULTS
Four different experiments with different instruction sets

were created.
The first experiment, titled PushCalc-ALL enabled access

to all the instruction sets/primitives listed above for all the
programs. The VPS and DSGOU techniques were also en-
abled. The population was also allowed access to the tagging
mechanism present in PushCalc.

The second experiment, titled PushCalc-NONE also en-
abled access to all the instruction sets/primitives listed above
except for the tagging instructions for all the programs. The
VPS and DSGOU techniques were disabled and the popula-
tion had no access to tagging mechanisms and as such tags
did not exist in this experiment.

The third experiment, titled PushCalc-TagOnly enabled
access to all the instruction sets/primitives listed above for
all the programs. The VPS and DSGOU techniques were
disabled but the population had access to the tagging mech-
anism in PushCalc.

The fourth and final experiment, titled PushCalc-NoTag
enabled access to all the instruction sets/primitives listed
above except for the tagging instructions for all the pro-
grams. The VPS and DSGOU techniques were also enabled.

Each experiment was allowed a maximum population of
1000 individuals and a max-generation of 1000.Each popula-
tion also had an initial program size limit of 100. Numerous
runs were done for each experiment and the data for the
runs for each experiment were averaged and are presented
in Table 2.

Table 2: Standard GP runs for the different experi-
ments

Experiment Average
Best In-
dividual
Size

Average
Best Initial
Error

Average
Best Total
Error at
end of run

ALL 42 635457 3675
NONE 80 782784 34146
NOTAG 32 772780 16968

TAGONLY 62 690435 3015

Seperate runs were also done to measure the effects of
each of the techniques that were crafted to help improve
the fitnesses of individuals in the population. The average
change in error-rate per generation were calculated for the
populations that used each technique and this data is also
presented in Table 3.

Table 3: Average rate of increase in fitness per gen-
eration for each technique

Technique Average fitness increase per generation

DSGOU 668.149
VS 782.548

DSGOU-VS 752.744
NONE 687.42

The average size of individuals that used each of the tech-
niques was also calculated and is presented in Table 4.

Table 4: Average size of individuals in population
for each technique

Technique Average size of individuals

DSGOU 86
VS 53

DSGOU-VS 44
NONE 88

Since there were no succesful individuals in any of the
experiments, the techniques were also tested on the ”Dirt-
Sensing, Obstacle-Avoiding Robot”problem presented in [6].
The results are presented in Table 5.

Table 5: Standard GP run for techniques on Dirt
Sensing Obstacle Avoiding Robot Problem

Techniques Average Best In-
dividual Size

Average Best
Generation

DSGOU 40 69
VS 180 21

DSGOU-VS 149 27
NONE 147 108

7. CONCLUSION
We have described four experiments that were used to

test the hypothesis that complete software applications can
evolved by a genetic programming system that has the abil-
ity to automatically evolve and name its own modular func-
tions.

No individuals in any of the populations were able to
evolve a complete calculator within 1000 generations. In-
dividuals that had access to the tagging mechanism present
in PushCalc had smaller average initial error rates than in-
dividuals without tags and these individuals also succeeded
the most at evolving the calculator by having the smallest
errors. At the end of 1000 generations, individuals with ac-
cess to the tagging mechanism had error rates that were
over 400% smaller than individuals that had no access to
the tagging mechanism. This supports the hypothesis that
tags would be very useful in solving the problem.

571



Summary

• GP at its bare basic is simply GA with structured 
representations. 

• Evolving complete applications from the scratch is still 
very hard; however, applying GP to existing code has 
produced some very interesting results.


