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More Than One Objectives

e [f you have more than one objective, what would you
do with your GA?

e | want to maximise travel distance of my EV but
MmiNimMise power consumption” - ratio may work
(distance per kW)

e | want to minimise the number of test cases to
execute, but maximise the coverage, detect as many
orevious faults as possible, minimise test execution
time, while using the least amount of power” - 7?77




Classical Methods

VWeighted Sum

E-Constraint Methoad

... and other assorted methods

Each of these assumes we have a single objective
solver (i.e. optimisation algorithm): either a precise

algorithm (e.qg. linear programming) or a single objective
GA




Weighted-Sum Approach

e Add the objectives into a single fithess value using
welghts.

e Advantages:
e Simple and easy to use

e FOr convex problems, it guarantees to find all solutions
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Weighted-Sum Approach

e Disadvantages:
o All objectives should be either max or min
* Yields a single global optimum w.r.t. weights
* No a priori method to determine weights effectively

e Non-convex problems



Welghted Sum Approach

feasible solution
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E-Constraint Method

e Focus only on one objective; tumn others into user-

defined constraints:

minimise  f;(z)

subject to  [f1(x),. .., fi—1(x), fix1(x), far ()] <€



E-Constraint Method
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E-Constraint Method

e Advantages:
e Copes with non-convex solution space

e Disadvantages:

o & vector largely decides which part of Pareto front is
obtaineo

* [he higher the dimension, the more input the human
needs to provide (€ vector size increases)



Pareto Optimality

o \/ilfredo Pareto, Economist/
Philosopher, 1848 - 1923

e (Given a set of alterative
allocations and a set of
iNndividuals, a movement Is
Pareto optimal when it
makes at least one
iNndividual better off without
making anyone else worse

Off.




Pareto Optimality

L

English: 80 English: 70
Math: 60 Math: 90

Who is the better student?



Pareto Optimality

®

English: 80
Math: 60

o

English: 70
Math: 90

Average: 70 vs. 80

VWhat it you are hiring a
copywriter?

VWhat it you are choosing a
CS PhD candidate”

Comparing average
assumes that two subjects
are equally important, 1.e.,
welights 0.5 and 0.5.



Pareto Optimality

A student from one allocation of
marks compared to another is
Pareto-optimal if and only if he/

she excels in at least one subject
without being inferior in any other
subject.

English: 80 English: 70
Math: 60 Math: 90



Pareto Optimality

Re &

English: 80 English: 70 English: 80
Math: 60 Math: 90 Math: 90

These two are non-dominating to each other. This person dominates the other two.



How do we optimise with this®

e \With single-objective optimisation, we sort the
population and pick the best solution.

 Now we may not have a single best solution, because
there many be a non-dominating pair of solutions (or
more!).




Pareto-fronts

e As aresult, what you get as a "result” of your

optimisation is not a single solution, but a set of non-
dominated solutions - called Pareto-fronts.

* [he true Pareto-front represents the real trade-offs
between the opbjectives.

o With real-world applications, the true Pareto-front is
often unknown.



Pareto Optimality

LR

English: 80  English: 60 English: 90  English: 80
Math: 60 Math: 80 Math: 80 Math: 90

These two are non-dominating to each other.

These two are non-dominating to each other.
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Implications for Optimisation

e Any comparisons (e.g. for selection) should be based on
Pareto-optimality.

e A good result is one that is:

* as close to the true Pareto-front as possible (generally
Nnot measurable)

e as uniformly distributed as possible

* Many variations of MOEAs regarding how to achieve
convergence and diversity at the same time



NSGA-Il (Deb et al., 2000)

e Non-dominated Sorting Genetic Algorithm
o Non-dominated sorting in O(MNZ2) complexity
e (M: number of objectives, N: population size)
e Crowding distance to encourage diversity

o Elitism (the best front always carries over 10 the next
gen.)



Fast Non-dominated Sort

fast-non-dominated-sort (P )
foreachp € P

S, =0
n, =0
foreach g € P
if (p < q) then If p dominates g
S, =5, U{q} Add ¢ to the set of solutions dominated by p
else if (¢ < p) then
Np = Nyp + 1 Increment the domination counter of p
if n, = 0 then p belongs to the first front
Prank = 1
Fi=F1U{p}
1 =1 Initialize the front counter
while F; 75 0
Q=1 Used to store the members of the next front

for each p € F;
for each g € .5,
ng =ng — 1

if n, = 0 then ¢ belongs to the next front
Grank — t+1
Q=QU{q}
1



Crowding Distance

Obj.1 4 A\
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If you have to discard one solution,
which would you choose”
@

Obj.2



Crowding Distance

o A solution that is farther away from the others Is rarer
and, therefore, more valuable.

* [f selecting from non-dominating pair, crowding
distance can help differentiating solutions.
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Crowding Distance
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.



Partial Order in Population

1) nondominatian rank (2. .\ |

2) CTOWI Non-dominated Crowding
sorting distance
We now sorting
P
— Q v .
- Rejected

Ry

Fig. 2. NSGA-II procedure.




SPEAZ (Zitzler et al., 2001)

e AsSIgns fitness of x based on the strength of x’s
dominators.

o SPEA2? minimises: we want solutions that are not
dominated.

Density function for niching



SPEAZ (Zitzler et al., 2001)

Population  Archive

Strength: S@) =|{j|j dP. HP:ni > j} # sols. that | dominates
- . o : sum of dominators’
Raw Fitness: R(i)=  »  S(j) strength

JEP,+P,,j~4

Density: D(z) = k1+2 (k:\/N+N)
93

k

o; = distance to nearest k-th neighbour

Fitness:  F(i) = R(i) + D(7)

*Note that Deb et al. and Zitzler et al. are using the precedence symbol in two different ways



SPEAZ (Zitzler et al., 2001)

Updating Archive

B o _ , means R(i) = 0,
Piy={1|1€e P+ P NF(1) <1} /'e( no dom(/'fvators)

" add N — |P,11] solutions from P, if |Pyq| < N
| truncate ¢ such that Vj € Pq,1 <q7 it |[Pr1| >N

Truncating Archive

1<4q7 & VO<k<|Pti1 :Jf:cf;? V

30 <k <|Pi1 :[(Vo<l<k : a,i.:ag.)/\ J§<aﬂ




SPEAZ (Zitzler et al., 2001)
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Figure 2. Illustration of the archive truncation method used in SPEA2. On the right, a
nondominated set 1s shown. On the left, it 1s depicted which solutions are removed 1n

which order by the truncate operator (assuming that N = 5).




PESAZ2 ( Corne et al., 2001)

o Spatial approach for selecting solutions:

e Defines hyper-boxes Iin the multi-dimensional search
space.

e Fach occupied hyper-box gets assigned a fithess
based on the crowdedness.

e Select hyper-box instead of individual solutions: then
pick a random solution from the box.

e Maintain a non-dominated archive.



PESAZ2 ( Corne et al., 2001)

e Probabllistic Arguments: assume that we have two hyper-
boxes, one containing 9 solutions and the other just 1. The
atter happens to be the most isolated. VWe do binary
tournament selection.

o With NSGA-Il: chance of selecting the most isolated
solutionis 1 - (9/10)A2 = 0.19, therefore chance of
choosing one of the more crowded solutions is 0.81

o \With PESAZ: chance of choosing the less crowded box IS
1 - (1/2)N2 = 0.75, therefore chance of choosing one of the

more crowded solutions I1s 0.25.



Two Archive (Praditwong &
Yao, 2000)

e Maintains two different archives: one for convergence, the other
for diversity.

* [f a new solution is not dominated by both archives ano
dominates at least one solution in either archive, it goes into
the convergence archive.

* [f anew solution is not dominated by both archives but fails to
dominate any solution in either archive, it goes into the diversity
archive,

* \When archive gets full, convergence archive is preserved while
diversity archive gets pruned based on crowding distance.



Multi-Objective Optimisation

* Engineering is all about fine-tuning trade-offs.
e SoOftware engineering Is no exception!
* £.g. binary size vs. compiler optimisation, time to

execute test vs. confidence in quality, cost of
mplementing requirements vs. expected revenue...



Case Study: Test Suite Minimisation



Test Suite Minimisation

* [he Problem: Your regression test suite Is too large.
* [he ldea: There must be some redundant test cases.

e [he Solution: Minimise (or reduce) your regression test
sulte by removing all the redundant tests.






Test Suite Minimisation

Usually the information you need can be expressed as a matrix.

Things to tick off

/branches, statements,

DU-paths, etc)

r0 rl r2 r3 | Time
t0 1 1 0 0 2
tl 0 1 0 1 3
t2 0 0 1 1 7 \
t3 0 0 1 0 3 Cost of ticking things off
T
Your tests

Now the problem becomes the following: what is the subset of
rows (i.e. tests) that, when combined, will cover (i.e. put ‘1’ on)
the most of the columns (i.e. things to tick off)?



Test Suite Minimisation

* [he problem definition you just saw maps nicely INto

‘set-cover” problem (http://en.wikipedia.org/wiki/
oSet_cover).

e Unfortunately, the problem is known to lbe NP-

complete, meaning that there is no known efficient AND
exact algorithm.

e \\e rely on approximated heuristics.


http://en.wikipedia.org/wiki/Set_cover
http://en.wikipedia.org/wiki/Set_cover

Multi-Objective Optimisation

e \\e want to select a subset of tests that:
e MINIMISES the cost
e maximises the coverage (ticking-off)

e and possipbly maximises other desirable things, such
as inclusion of tests that previously detected faults

e [he 2007 ISSTA paper studies the use of NSGA-2



Program Blocks
Test Case Time
I 2 5 6 10
Tl X X X X 4
T2 X X X X X 5
T3 X X 3

- -l - Additional Greedy




Program Blocks
Test Case Time
2 4 5 6 10
Tl X X X X 4
T2 X X X X X 5
T3 X 3
T4 X X X 3

100 [~

- -l - Additional Greedy

80 - —4— Pareto Frontier

i




Code Coverage
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Fault Coverage
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Adventure in Google

e An automated testing infrastructure that executes 120M

tests per day against all code submitted to the single
repository

e For each project/module, a list of “must-run” tests is
maintained and executeo

Copland. Google’s Innovation Factory, ICST 2010 Keynote



Adventure in Google

* Need for early feedback: better understanding of
expected behaviour, less waiting, better fault
localisation



Multi-Objective Optimisation
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Fven welrder tradeoftt

e Can we trade functional and non-
functional properties?

e Your software is 100% correct, " '
but the laptop battery runs out R

after 3 hours. o

-
-
L)

e Your software is ever so slightly
wrong (or crashes every now _
and then), but the battery lasts
6 hours. :

Iog‘ l(Fitness]

= e

1 1 1 1
ERER L LR Mi KiR L] LI L

* Energy-efficient random number rower Consumtion (.} o
generator: if you allow a little less

randomness (?), you can save
D. R. White, J. Clark, J. Jacob, and S. M. Poulding. Searching for
energy- resource-efficient programs: Low- power pseudorandom number
generators. In Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, GECCO '08, pages 1775-
1782, New York, NY, USA, 2008. ACM.



Criticisms to MO formulations

e |nthe end, don’t we have to pick one solution”? VWhich
one do we pick? If there are too many solutions on the
Pareto front, it does not mean good optimisation, it
means bad news for the user.

e One counter-claim is that the insight lies not in single
solutions but in the shape of the Pareto front. But, this
s still a reasonable critique, to which no real answer
exists.



Summary

e Pareto optimality results in a group of non-dominated
solutions, rather than a single solution.

e Preserving and promoting diversity becomes even
more Important!

* Observing trade-offs is often important in SE context,
out just producing more solutions is Not the goal In
tself.



