
Multi-Objective
Optimisation

SEP592, Summer 2021
Shin Yoo

More Than One Objectives
• If you have more than one objective, what would you

do with your GA?

• “I want to maximise travel distance of my EV but
minimise power consumption” - ratio may work
(distance per kW)

• “I want to minimise the number of test cases to
execute, but maximise the coverage, detect as many
previous faults as possible, minimise test execution
time, while using the least amount of power” - ???

Classical Methods
• Weighted Sum

• ℇ-Constraint Method

• ... and other assorted methods

• Each of these assumes we have a single objective
solver (i.e. optimisation algorithm): either a precise
algorithm (e.g. linear programming) or a single objective
GA

Weighted-Sum Approach
• Add the objectives into a single fitness value using

weights.

• Advantages:

• Simple and easy to use

• For convex problems, it guarantees to find all solutions

f =
nX

i=0

wi · fi

Weighted-Sum Approach
Obj.

Obj.

W1

W2

a

b

c

feasible solution
space

Weighted-Sum Approach
• Disadvantages:

• All objectives should be either max or min

• Yields a single global optimum w.r.t. weights

• No a priori method to determine weights effectively

• Non-convex problems

Weighted Sum Approach
Obj.

Obj.a

b

feasible solution
space

ℇ-Constraint Method

• Focus only on one objective; turn others into user-
defined constraints:

minimise fi(x)
subject to [f1(x), . . . , fi�1(x), fi+1(x), fM (x)] ✏

ℇ-Constraint Method
Obj.1

Obj.2

feasible solution
space

ℇ1 ℇ3ℇ2

ℇ-Constraint Method
• Advantages:

• Copes with non-convex solution space

• Disadvantages:

• ℇ vector largely decides which part of Pareto front is
obtained

• The higher the dimension, the more input the human
needs to provide (ℇ vector size increases)

Pareto Optimality
• Vilfredo Pareto, Economist/

Philosopher,1848 - 1923

• Given a set of alternative
allocations and a set of
individuals, a movement is
Pareto optimal when it
makes at least one
individual better off without
making anyone else worse
off.

Pareto Optimality

English: 80
Math: 60

English: 70
Math: 90

Who is the better student?

Pareto Optimality

English: 80
Math: 60

English: 70
Math: 90

• Average: 70 vs. 80

• What if you are hiring a
copywriter?

• What if you are choosing a
CS PhD candidate?

• Comparing average
assumes that two subjects
are equally important, i.e.,
weights 0.5 and 0.5.

Pareto Optimality

English: 80
Math: 60

English: 70
Math: 90

A student from one allocation of
marks compared to another is

Pareto-optimal if and only if he/
she excels in at least one subject

without being inferior in any other
subject.

Pareto Optimality

English: 80
Math: 60

English: 70
Math: 90

♫

English: 80
Math: 90

This person dominates the other two.These two are non-dominating to each other.

How do we optimise with this?

• With single-objective optimisation, we sort the
population and pick the best solution.

• Now we may not have a single best solution, because
there many be a non-dominating pair of solutions (or
more!).

Pareto-fronts
• As a result, what you get as a “result” of your

optimisation is not a single solution, but a set of non-
dominated solutions - called Pareto-fronts.

• The true Pareto-front represents the real trade-offs
between the objectives.

• With real-world applications, the true Pareto-front is
often unknown.

Pareto Optimality

English: 80
Math: 60

English: 60
Math: 80

♫

English: 80
Math: 90

These two are non-dominating to each other.

♫

English: 90
Math: 80

These two are non-dominating to each other.

Pareto FrontsObj.1
(max)

Obj.2
(max)

Non-dominated level 1
Non-dominated level 2

Non-dominated level 3

Implications for Optimisation
• Any comparisons (e.g. for selection) should be based on

Pareto-optimality.

• A good result is one that is:

• as close to the true Pareto-front as possible (generally
not measurable)

• as uniformly distributed as possible

• Many variations of MOEAs regarding how to achieve
convergence and diversity at the same time

NSGA-II (Deb et al., 2000)
• Non-dominated Sorting Genetic Algorithm

• Non-dominated sorting in O(MN2) complexity

• (M: number of objectives, N: population size)

• Crowding distance to encourage diversity

• Elitism (the best front always carries over to the next
gen.)

Fast Non-dominated Sort

184 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

front, the solutions of the first front are discounted temporarily
and the above procedure is repeated. In the worst case, the task
of finding the second front also requires computa-
tions, particularly when number of solutions belong to
the second and higher nondominated levels. This argument is
true for finding third and higher levels of nondomination. Thus,
the worst case is when there are fronts and there exists only
one solution in each front. This requires an overall
computations. Note that storage is required for this pro-
cedure. In the following paragraph and equation shown at the
bottom of the page, we describe a fast nondominated sorting
approach which will require computations.
First, for each solution we calculate two entities: 1) domi-

nation count , the number of solutions which dominate the
solution , and 2) , a set of solutions that the solution dom-
inates. This requires comparisons.
All solutions in the first nondominated front will have their

domination count as zero. Now, for each solution with ,
we visit each member () of its set and reduce its domina-
tion count by one. In doing so, if for any member the domi-
nation count becomes zero, we put it in a separate list . These
members belong to the second nondominated front. Now, the
above procedure is continued with each member of and the
third front is identified. This process continues until all fronts
are identified.
For each solution in the second or higher level of nondom-

ination, the domination count can be at most . Thus,
each solution will be visited at most times before its
domination count becomes zero. At this point, the solution is
assigned a nondomination level and will never be visited again.
Since there are at most such solutions, the total com-

plexity is . Thus, the overall complexity of the procedure
is . Another way to calculate this complexity is to re-
alize that the body of the first inner loop (for each) is
executed exactly times as each individual can be the member
of at most one front and the second inner loop (for each)
can be executed at maximum times for each individual
[each individual dominates individuals at maximum and
each domination check requires at most comparisons] results
in the overall computations. It is important to note
that although the time complexity has reduced to , the
storage requirement has increased to .

B. Diversity Preservation
We mentioned earlier that, along with convergence to the

Pareto-optimal set, it is also desired that an EAmaintains a good
spread of solutions in the obtained set of solutions. The original
NSGA used the well-known sharing function approach, which
has been found to maintain sustainable diversity in a popula-
tion with appropriate setting of its associated parameters. The
sharing function method involves a sharing parameter ,
which sets the extent of sharing desired in a problem. This pa-
rameter is related to the distance metric chosen to calculate the
proximity measure between two population members. The pa-
rameter denotes the largest value of that distance metric
within which any two solutions share each other’s fitness. This
parameter is usually set by the user, although there exist some
guidelines [4]. There are two difficulties with this sharing func-
tion approach.
1) The performance of the sharing function method in
maintaining a spread of solutions depends largely on the
chosen value.

- - -
for each

for each
if then If dominates

Add to the set of solutions dominated by
else if then

Increment the domination counter of
if then belongs to the first front

Initialize the front counter
while

Used to store the members of the next front
for each
for each

if then belongs to the next front

Crowding Distance
Obj.1

Obj.2

A

B

If you have to discard one solution,
which would you choose?

Crowding Distance
• A solution that is farther away from the others is rarer

and, therefore, more valuable.

• If selecting from non-dominating pair, crowding
distance can help differentiating solutions.

I1 = In = 1

Ii =
Ii+1 � Ii�1

fmax � fmin
(2 i n� 1)

Crowding DistanceDEB et al.: A FAST AND ELITIST MULTIOBJECTIVE GA: NSGA-II 185

Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not require any user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.
1) Density Estimation: To get an estimate of the density of

solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this the crowding
distance). In Fig. 1, the crowding distance of the th solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).
The crowding-distance computation requires sorting the pop-

ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continuedwith other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set .

Here, refers to the th objective function value of the
th individual in the set and the parameters and are
the maximum and minimum values of the th objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front) are in-
volved, the above algorithm has computational
complexity.
After all population members in the set are assigned a

distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.
2) Crowded-Comparison Operator: The crowded-compar-

ison operator () guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individual in the population
has two attributes:
1) nondomination rank ();
2) crowding distance ().
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.
With these three new innovations—a fast nondominated

sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop
Initially, a random parent population is created. The pop-

ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism

- -
number of solutions in

for each set initialize distance
for each objective

sort sort using each objective value
so that boundary points are always selected

for to for all other points

Partial Order in Population

SPEA2 (Zitzler et al., 2001)

• Assigns fitness of x based on the strength of x’s
dominators.

• SPEA2 minimises: we want solutions that are not
dominated.

• Density function for niching

SPEA2 (Zitzler et al., 2001)
solutions it dominates:1

S(i) = |{j | j ∈ Pt + P t ∧ i # j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the symbol
corresponds to the Pareto dominance relation. On the basis of the S values, the raw
fitness R(i) of an individual i is calculated:

R(i) =
∑

j∈Pt+P t,j"i

S(j)

That is the raw fitness is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members are considered in
this context. It is important to note that fitness is to be minimized here, i.e., R(i) =
0 corresponds to a nondominated individual, while a high R(i) value means that i
is dominated by many individuals (which in turn dominate many individuals). This
scheme is illustrated in Figure 1.

Although the raw fitness assignment provides a sort of niching mechanism based on
the concept of Pareto dominance, it may fail when most individuals do not dominate
each other. Therefore, additional density information is incorporated to discriminate
between individuals having identical raw fitness values. The density estimation tech-
nique used in SPEA2 is an adaptation of the k-th nearest neighbor method (Silverman
1986), where the density at any point is a (decreasing) function of the distance to the
k-th nearest data point. Here, we simply take the inverse of the distance to the k-th
nearest neighbor as the density estimate. To be more precise, for each individual i the
distances (in objective space) to all individuals j in archive and population are calcu-
lated and stored in a list. After sorting the list in increasing order, the k-th element
gives the distance sought, denoted as σk

i . As a common setting, we use k equal to the
square root of the sample size (Silverman 1986), thus, k =

√

N + N . Afterwards, the
densityD(i) corresponding to i is defined by

D(i) =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than zero and
that D(i) < 1. Finally, adding D(i) to the raw fitness value R(i) of an individual i
yields its fitness F (i):

F (i) = R(i) + D(i)

The run-time of the fitness assignment procedure is dominated by the density es-
timator (O(M2 log M)), while the calculation of the S and R values is of complexity
O(M2), whereM = N + N .

1This (and the following) formula slightly differs from the one presented in (Bleuler, Brack, Thiele, and
Zitzler 2001), where also individuals which have identical objective values contribute to the strength of an
individual.

7

Strength:

solutions it dominates:1

S(i) = |{j | j ∈ Pt + P t ∧ i # j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the symbol
corresponds to the Pareto dominance relation. On the basis of the S values, the raw
fitness R(i) of an individual i is calculated:

R(i) =
∑

j∈Pt+P t,j"i

S(j)

That is the raw fitness is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members are considered in
this context. It is important to note that fitness is to be minimized here, i.e., R(i) =
0 corresponds to a nondominated individual, while a high R(i) value means that i
is dominated by many individuals (which in turn dominate many individuals). This
scheme is illustrated in Figure 1.

Although the raw fitness assignment provides a sort of niching mechanism based on
the concept of Pareto dominance, it may fail when most individuals do not dominate
each other. Therefore, additional density information is incorporated to discriminate
between individuals having identical raw fitness values. The density estimation tech-
nique used in SPEA2 is an adaptation of the k-th nearest neighbor method (Silverman
1986), where the density at any point is a (decreasing) function of the distance to the
k-th nearest data point. Here, we simply take the inverse of the distance to the k-th
nearest neighbor as the density estimate. To be more precise, for each individual i the
distances (in objective space) to all individuals j in archive and population are calcu-
lated and stored in a list. After sorting the list in increasing order, the k-th element
gives the distance sought, denoted as σk

i . As a common setting, we use k equal to the
square root of the sample size (Silverman 1986), thus, k =

√

N + N . Afterwards, the
densityD(i) corresponding to i is defined by

D(i) =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than zero and
that D(i) < 1. Finally, adding D(i) to the raw fitness value R(i) of an individual i
yields its fitness F (i):

F (i) = R(i) + D(i)

The run-time of the fitness assignment procedure is dominated by the density es-
timator (O(M2 log M)), while the calculation of the S and R values is of complexity
O(M2), whereM = N + N .

1This (and the following) formula slightly differs from the one presented in (Bleuler, Brack, Thiele, and
Zitzler 2001), where also individuals which have identical objective values contribute to the strength of an
individual.

7

Raw Fitness:

Population Archive

sum of dominators’
strength

sols. that i dominates

solutions it dominates:1

S(i) = |{j | j ∈ Pt + P t ∧ i # j}|

where | · | denotes the cardinality of a set, + stands for multiset union and the symbol
corresponds to the Pareto dominance relation. On the basis of the S values, the raw
fitness R(i) of an individual i is calculated:

R(i) =
∑

j∈Pt+P t,j"i

S(j)

That is the raw fitness is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members are considered in
this context. It is important to note that fitness is to be minimized here, i.e., R(i) =
0 corresponds to a nondominated individual, while a high R(i) value means that i
is dominated by many individuals (which in turn dominate many individuals). This
scheme is illustrated in Figure 1.

Although the raw fitness assignment provides a sort of niching mechanism based on
the concept of Pareto dominance, it may fail when most individuals do not dominate
each other. Therefore, additional density information is incorporated to discriminate
between individuals having identical raw fitness values. The density estimation tech-
nique used in SPEA2 is an adaptation of the k-th nearest neighbor method (Silverman
1986), where the density at any point is a (decreasing) function of the distance to the
k-th nearest data point. Here, we simply take the inverse of the distance to the k-th
nearest neighbor as the density estimate. To be more precise, for each individual i the
distances (in objective space) to all individuals j in archive and population are calcu-
lated and stored in a list. After sorting the list in increasing order, the k-th element
gives the distance sought, denoted as σk

i . As a common setting, we use k equal to the
square root of the sample size (Silverman 1986), thus, k =

√

N + N . Afterwards, the
densityD(i) corresponding to i is defined by

D(i) =
1

σk
i + 2

In the denominator, two is added to ensure that its value is greater than zero and
that D(i) < 1. Finally, adding D(i) to the raw fitness value R(i) of an individual i
yields its fitness F (i):

F (i) = R(i) + D(i)

The run-time of the fitness assignment procedure is dominated by the density es-
timator (O(M2 log M)), while the calculation of the S and R values is of complexity
O(M2), whereM = N + N .

1This (and the following) formula slightly differs from the one presented in (Bleuler, Brack, Thiele, and
Zitzler 2001), where also individuals which have identical objective values contribute to the strength of an
individual.

7

Density:

�k
i = distance to nearest k-th neighbour

(k =
p

N + N̄)

Fitness: F (i) = R(i) +D(i)

*Note that Deb et al. and Zitzler et al. are using the precedence symbol in two different ways

SPEA2 (Zitzler et al., 2001)
Updating Archive

3.2 Environmental Selection
The archive update operation (Step 3 in Algorithm 1) in SPEA2 differs from the one in
SPEA in two respects: i) the number of individuals contained in the archive is constant
over time, and ii) the truncation method prevents boundary solutions being removed.

During environmental selection, the first step is to copy all nondominated individ-
uals, i.e., those which have a fitness lower than one, from archive and population to the
archive of the next generation:

P t+1 = {i | i ∈ Pt + P t ∧ F (i) < 1}

If the nondominated front fits exactly into the archive (|P t+1| = N) the environmental
selection step is completed. Otherwise, there can be two situations: Either the archive
is too small (|P t+1| < N) or too large (|P t+1| > N). In the first case, the best
N − |P t+1| dominated individuals in the previous archive and population are copied to
the new archive. This can be implemented by sorting the multiset Pt + P t according
to the fitness values and copy the first N − |P t+1| individuals i with F (i) ≥ 1 from
the resulting ordered list to P t+1. In the second case, when the size of the current
nondominated (multi)set exceedsN , an archive truncation procedure is invoked which
iteratively removes individuals from P t+1 until |P t+1| = N . Here, at each iteration
that individual i is chosen for removal for which i ≤d j for all j ∈ P t+1 with

i ≤d j :⇔ ∀ 0 < k < |P t+1| : σk
i = σk

j ∨
∃ 0 < k < |P t+1| :

[(

∀ 0 < l < k : σl
i = σl

j

)

∧ σk
i < σk

j

]

where σk
i denotes the distance of i to its k-th nearest neighbor in P t+1. In other

words, the individual which has the minimum distance to another individual is chosen
at each stage; if there are several individuals with minimum distance the tie is broken by
considering the second smallest distances and so forth. How this truncation technique
works is illustrated in Figure 2.

Although, the worst run-time complexity of the truncation operator is O(M3)
(M = N + N)2, on average the complexity will be lower (O(M2 log M)) as indi-
viduals usually differ with regard to the second or third nearest neighbor, and thus the
sorting of the distances governs the overall complexity.

4 Experimental Design
The behavior of SPEA2 is compared to SPEA, NSGA-II and PESA on a number of
test functions. The algorithms are implemented according to their description in the
literature. As the main feature under concern is the fitness assignment and the selection
processes, our implementation only differ in these respects, where the other operators
(recombination, mutation, sampling) remain identical. For each algorithm we used
identical population and archive sizes.

2Constructing for each individual the list of distances to all other individual takes O(M2), sorting all
distance lists is of complexity O(M2 log M), choosing an individual for removal can be done in O(M2)
time, and updating the remaining distance lists after removal of an individual can be done in timeO(M) (or
even omitted with appropriate data structures).

8

(means R(i) = 0,
i.e., no dominators)

⇢
add N̄ � |P̄t+1| solutions from Pt if |P̄t+1| < N̄
truncate i such that 8j 2 P̄t+1, i d j if |P̄t+1| > N̄

3.2 Environmental Selection
The archive update operation (Step 3 in Algorithm 1) in SPEA2 differs from the one in
SPEA in two respects: i) the number of individuals contained in the archive is constant
over time, and ii) the truncation method prevents boundary solutions being removed.

During environmental selection, the first step is to copy all nondominated individ-
uals, i.e., those which have a fitness lower than one, from archive and population to the
archive of the next generation:

P t+1 = {i | i ∈ Pt + P t ∧ F (i) < 1}

If the nondominated front fits exactly into the archive (|P t+1| = N) the environmental
selection step is completed. Otherwise, there can be two situations: Either the archive
is too small (|P t+1| < N) or too large (|P t+1| > N). In the first case, the best
N − |P t+1| dominated individuals in the previous archive and population are copied to
the new archive. This can be implemented by sorting the multiset Pt + P t according
to the fitness values and copy the first N − |P t+1| individuals i with F (i) ≥ 1 from
the resulting ordered list to P t+1. In the second case, when the size of the current
nondominated (multi)set exceedsN , an archive truncation procedure is invoked which
iteratively removes individuals from P t+1 until |P t+1| = N . Here, at each iteration
that individual i is chosen for removal for which i ≤d j for all j ∈ P t+1 with

i ≤d j :⇔ ∀ 0 < k < |P t+1| : σk
i = σk

j ∨
∃ 0 < k < |P t+1| :

[(

∀ 0 < l < k : σl
i = σl

j

)

∧ σk
i < σk

j

]

where σk
i denotes the distance of i to its k-th nearest neighbor in P t+1. In other

words, the individual which has the minimum distance to another individual is chosen
at each stage; if there are several individuals with minimum distance the tie is broken by
considering the second smallest distances and so forth. How this truncation technique
works is illustrated in Figure 2.

Although, the worst run-time complexity of the truncation operator is O(M3)
(M = N + N)2, on average the complexity will be lower (O(M2 log M)) as indi-
viduals usually differ with regard to the second or third nearest neighbor, and thus the
sorting of the distances governs the overall complexity.

4 Experimental Design
The behavior of SPEA2 is compared to SPEA, NSGA-II and PESA on a number of
test functions. The algorithms are implemented according to their description in the
literature. As the main feature under concern is the fitness assignment and the selection
processes, our implementation only differ in these respects, where the other operators
(recombination, mutation, sampling) remain identical. For each algorithm we used
identical population and archive sizes.

2Constructing for each individual the list of distances to all other individual takes O(M2), sorting all
distance lists is of complexity O(M2 log M), choosing an individual for removal can be done in O(M2)
time, and updating the remaining distance lists after removal of an individual can be done in timeO(M) (or
even omitted with appropriate data structures).

8

Truncating Archive

SPEA2 (Zitzler et al., 2001)

3

2

1

f1

f2

f1

f2

Figure 2: Illustration of the archive truncation method used in SPEA2. On the right, a
nondominated set is shown. On the left, it is depicted which solutions are removed in
which order by the truncate operator (assuming thatN = 5).

4.1 Test Problems and representation of solutions
The test functions are summarized in Tab. 1, where both combinatorial and continuous
problems were chosen.

As combinatorial problems three instances of the knapsack problem were taken
from (Zitzler and Thiele 1999), each with 750 items and 2, 3, and 4 objectives, respec-
tively. For the random choice of the profit and weight values as well as the constraint
handling technique we refer to the original study. The individuals are represented as
bit strings, where each bit corresponds to one decision variable. Recombination of two
individuals is performed by one-point crossover. Point mutations are used where each
bit is flipped with a probability of 0.006, this value is taken using the guidelines derived
in (Laumanns, Zitzler, and Thiele 2001). The population size and the archive size were
set to 250 form = 2, to 300 form = 3, and to 400 form = 4.

In the continuous test functions different problems difficulties arise, for a discussion
we refer to (Veldhuizen 1999). Here, we enhanced the difficulty of each problem by
taking 100 decision variables in each case. For the Sphere Model (SPH-m) and for
Kursawe’s function (KUR) we also chose large domains in order to test the algorithms’
ability to locate the Pareto-optimal set in a large objective space. For all continuous
problems, the individuals are coded as real vectors, where the SBX-20 operator is used
for recombination and a polynomial distribution for mutation (Deb and Agrawal 1995).
Furthermore, the population size and the archive size were set to 100.

The function SPH-m is a multi-objective generalization of the Sphere Model, a
symmetric unimodal function where the isosurfaces are given by hyperspheres. The
Sphere Model has been subject to intensive theoretical and empirical investigations
with evolution strategies, especially in the context of self-adaptation. In a multi-
objective environment a two-variable version of it was used for empirical evaluation
of VEGA (Schaffer 1985), while in (Rudolph 1998) it was used for theoretical con-

9

PESA2 (Corne et al., 2001)
• Spatial approach for selecting solutions:

• Defines hyper-boxes in the multi-dimensional search
space.

• Each occupied hyper-box gets assigned a fitness
based on the crowdedness.

• Select hyper-box instead of individual solutions; then
pick a random solution from the box.

• Maintain a non-dominated archive.

PESA2 (Corne et al., 2001)
• Probabilistic Arguments: assume that we have two hyper-

boxes, one containing 9 solutions and the other just 1. The
latter happens to be the most isolated. We do binary
tournament selection.

• With NSGA-II: chance of selecting the most isolated
solution is 1 - (9/10)^2 = 0.19, therefore chance of
choosing one of the more crowded solutions is 0.81

• With PESA2: chance of choosing the less crowded box is
1 - (1/2)^2 = 0.75, therefore chance of choosing one of the
more crowded solutions is 0.25.

Two Archive (Praditwong &
Yao, 2006)

• Maintains two different archives: one for convergence, the other
for diversity.

• If a new solution is not dominated by both archives and
dominates at least one solution in either archive, it goes into
the convergence archive.

• If a new solution is not dominated by both archives but fails to
dominate any solution in either archive, it goes into the diversity
archive.

• When archive gets full, convergence archive is preserved while
diversity archive gets pruned based on crowding distance.

Multi-Objective Optimisation

• Engineering is all about fine-tuning trade-offs.

• Software engineering is no exception!

• e.g. binary size vs. compiler optimisation, time to
execute test vs. confidence in quality, cost of
implementing requirements vs. expected revenue...

Case Study: Test Suite Minimisation

Pareto-Efficient Multi-Objective Test Case Selection, Yoo & Harman, ISSTA 2007

Test Suite Minimisation

• The Problem: Your regression test suite is too large.

• The Idea: There must be some redundant test cases.

• The Solution: Minimise (or reduce) your regression test
suite by removing all the redundant tests.

r0

r3

r4

r2

r1

Test Suite Minimisation
Usually the information you need can be expressed as a matrix.

Your tests

Things to tick off
(branches, statements,

DU-paths, etc)

Now the problem becomes the following: what is the subset of
rows (i.e. tests) that, when combined, will cover (i.e. put ‘1’ on)

the most of the columns (i.e. things to tick off)?

r0 r1 r2 r3 Time

t0 1 1 0 0 2

t1 0 1 0 1 3

t2 0 0 1 1 7

t3 0 0 1 0 3 Cost of ticking things off

Test Suite Minimisation
• The problem definition you just saw maps nicely into

“set-cover” problem (http://en.wikipedia.org/wiki/
Set_cover).

• Unfortunately, the problem is known to be NP-
complete, meaning that there is no known efficient AND
exact algorithm.

• We rely on approximated heuristics.

http://en.wikipedia.org/wiki/Set_cover
http://en.wikipedia.org/wiki/Set_cover

Multi-Objective Optimisation
• We want to select a subset of tests that:

• minimises the cost

• maximises the coverage (ticking-off)

• and possibly maximises other desirable things, such
as inclusion of tests that previously detected faults

• The 2007 ISSTA paper studies the use of NSGA-2

Test Case
Program Blocks

Time
1 2 3 4 5 6 7 8 9 10

T1 x x x x x x x x 4

T2 x x x x x x x x x 5

T3 x x x x 3

T4 x x x x x 3

0 2 4 6 8 10

Execution Time

0

20

40

60

80

100

C
o
v
e
ra

g
e
(%

)

Additional Greedy

{T1}

{T1, T2}

T1: 8(blocks) / 4(units of time) = 2.0T2: 2(blocks) / 5(units of time) = 0.4
T3: 1(blocks) / 3(units of time) = 0.3
T2: 2(blocks) / 5(units of time) = 0.4

0 2 4 6 8 10

Execution Time

0

20

40

60

80

100

C
o
v
e
ra

g
e
(%

)

Additional Greedy

Pareto Frontier

{T1}

{T1,T2}

{T4}

{T2}
{T2,T3}

Test Case

Program Blocks

Time

1 2 3 4 5 6 7 8 9 10

T1 x x x x x x x x 4

T2 x x x x x x x x x 5

T3 x x x x 3

T4 x x x x x 3

Adventure in Google

• An automated testing infrastructure that executes 120M
tests per day against all code submitted to the single
repository

• For each project/module, a list of “must-run” tests is
maintained and executed

 Copland. Google’s Innovation Factory, ICST 2010 Keynote

Adventure in Google

• Need for early feedback: better understanding of
expected behaviour, less waiting, better fault
localisation

Multi-Objective Optimisation

Two-Archive algorithm
Objectives: dependency coverage, execution cost, fault history

(invited to GTAC 2010, Yoo, Harman & Nilsson)

Even weirder tradeoff
• Can we trade functional and non-

functional properties?

• Your software is 100% correct,
but the laptop battery runs out
after 3 hours.

• Your software is ever so slightly
wrong (or crashes every now
and then), but the battery lasts
6 hours.

• Energy-efficient random number
generator: if you allow a little less
randomness (?), you can save
energy. D. R. White, J. Clark, J. Jacob, and S. M. Poulding. Searching for

resource-efficient programs: Low- power pseudorandom number
generators. In Proceedings of the 10th Annual Conference on

Genetic and Evolutionary Computation, GECCO ’08, pages 1775–
1782, New York, NY, USA, 2008. ACM.

Criticisms to MO formulations

• In the end, don’t we have to pick one solution? Which
one do we pick? If there are too many solutions on the
Pareto front, it does not mean good optimisation, it
means bad news for the user.

• One counter-claim is that the insight lies not in single
solutions but in the shape of the Pareto front. But, this
is still a reasonable critique, to which no real answer
exists.

Summary
• Pareto optimality results in a group of non-dominated

solutions, rather than a single solution.

• Preserving and promoting diversity becomes even
more important!

• Observing trade-offs is often important in SE context,
but just producing more solutions is not the goal in
itself.

