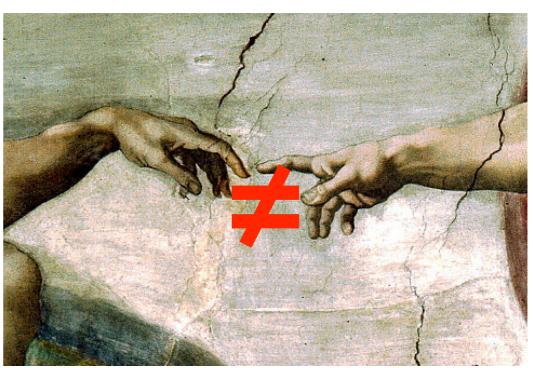

Evolutionary Computation #1

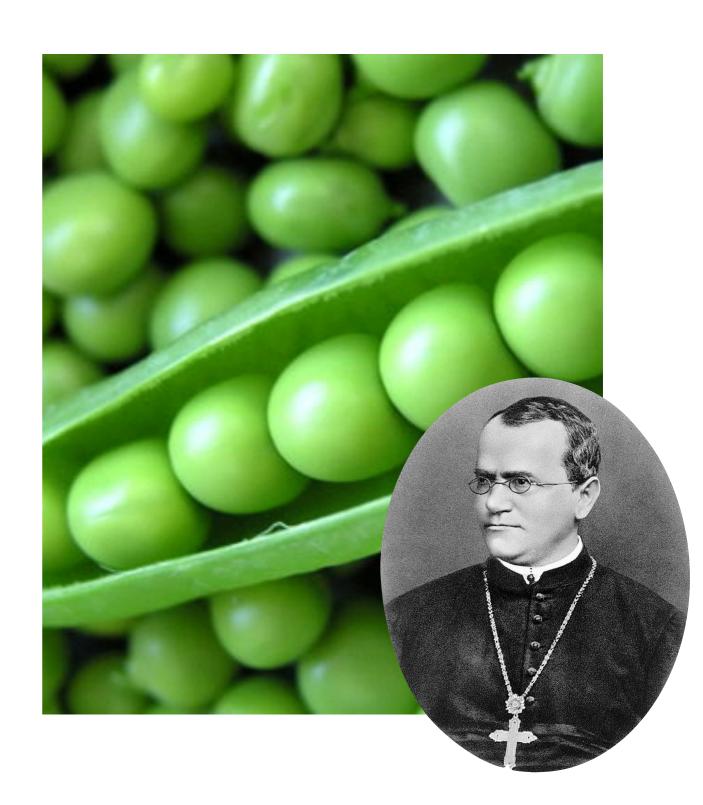

SEP592, Summer 2021 Shin Yoo

(with slides borrowed from Jinsuk Lim @ COINSE)

What is evolution?

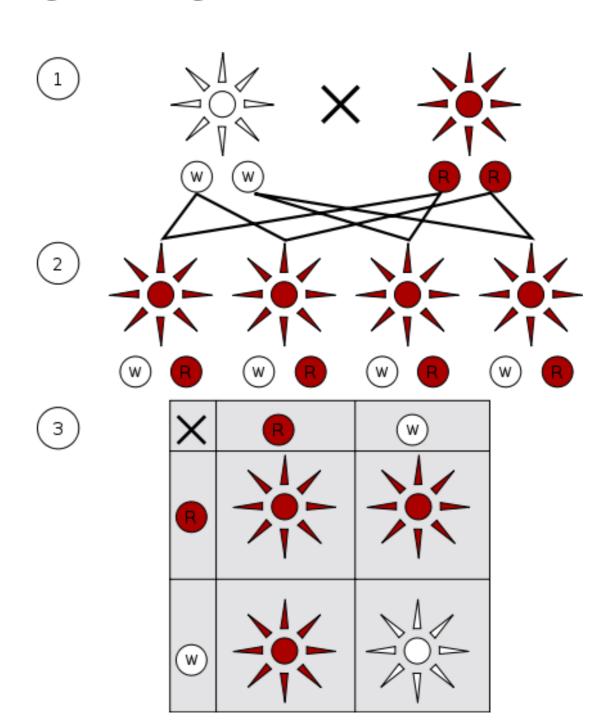
Lamarckism (用不用說)

- "Heritability of acquired characteristics"
- During lifetime, an organism will adapt to its environment and acquire certain traits.
- These traits are inherited to the offspring.
- Eventually, the species changes in the direction of adaptation.

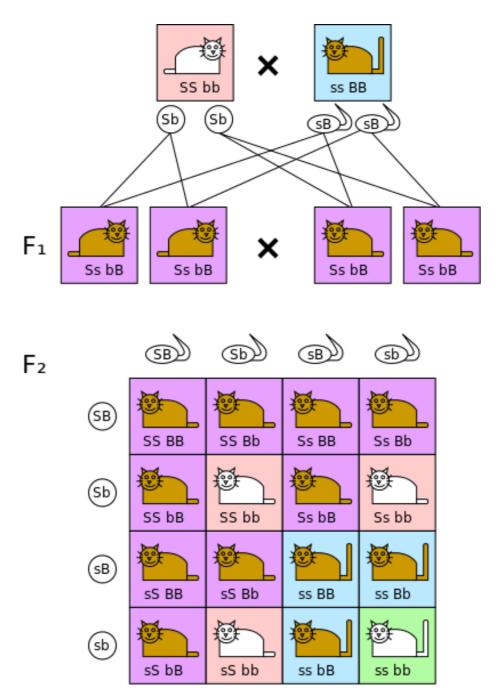

Is it correct?

- Does NOT explain the majority of what we call evolution; has been criticised for a long time.
- Interestingly, some people such as George Bernard Shaw

 thought that Lamarckism was more humane and
 optimistic than Darwinism: individuals can try to develop a
 new habit that are beneficial!
- Epigenetics: trait variations that are caused by environments (!)
 - Renewed interest, but still in the very early stage


Mendelism

- Hereditary "unit" (he called them "factors", now we know them as "genes")
- Explained the mechanism of inheritance.


Law of Segregation

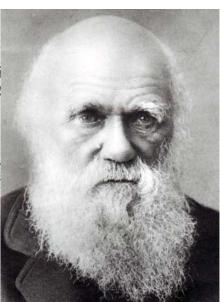
 Individuals contain a pair of alleles. During reproduction, the pair is separated; a child inherits one of these alleles, randomly chosen.

Law of Independent Assortment

- Informally: separate genes for separate traits are passed independently from parents to offsprings.
 - Colour and tail length are independent; any combination is possible.

Law of Dominance

- Recessive alleles will be masked by dominant alleles.
- Little evidence that tongue-rolling is a dominant Mendelian trait though.
 - Martin, N. G. No evidence for a genetic basis of tongue rolling or hand clasping. J. Hered. 66: 179-180, 1975.


Darwinism

- An attempt to theorise the emergence of new species.
- It should be noted that Alfred Wallace independently arrived at a very similar conclusion at the same time. Wallace's paper prompted Darwin to publish "On the Origin of Species".

Fig. 24.—Skulls of Pigeons viewed laterally, of natural size. A. W livia. B. Short-faced Tumbler. C. English Carrier. D. I

What is it exactly?

- If all offspring survived to reproduce the population would grow (fact).
- Despite periodic fluctuations, populations remain roughly the same size (fact).
- Resources are limited and are relatively stable over time (fact).
- A struggle for survival ensues (inference).
- Individuals in a population vary significantly from one another (fact).
- Much of this variation is heritable (fact).
- Individuals less suited to the environment are less likely to survive and less likely to reproduce; individuals more suited to the environment are more likely to survive and more likely to reproduce and leave their heritable traits to future generations, which produces the process of **natural** selection (inference).
- This slowly effected process results in populations changing to adapt to their environments, and ultimately, these variations accumulate over time to form new species (inference).

Does it explain everything?

- Genetic drift: nature does not select, it merely samples randomly, resulting in frequency of specific alleles.
 - A much more neutral view on evolution.
- Both work at the same time.

Genotype vs. Phenotype

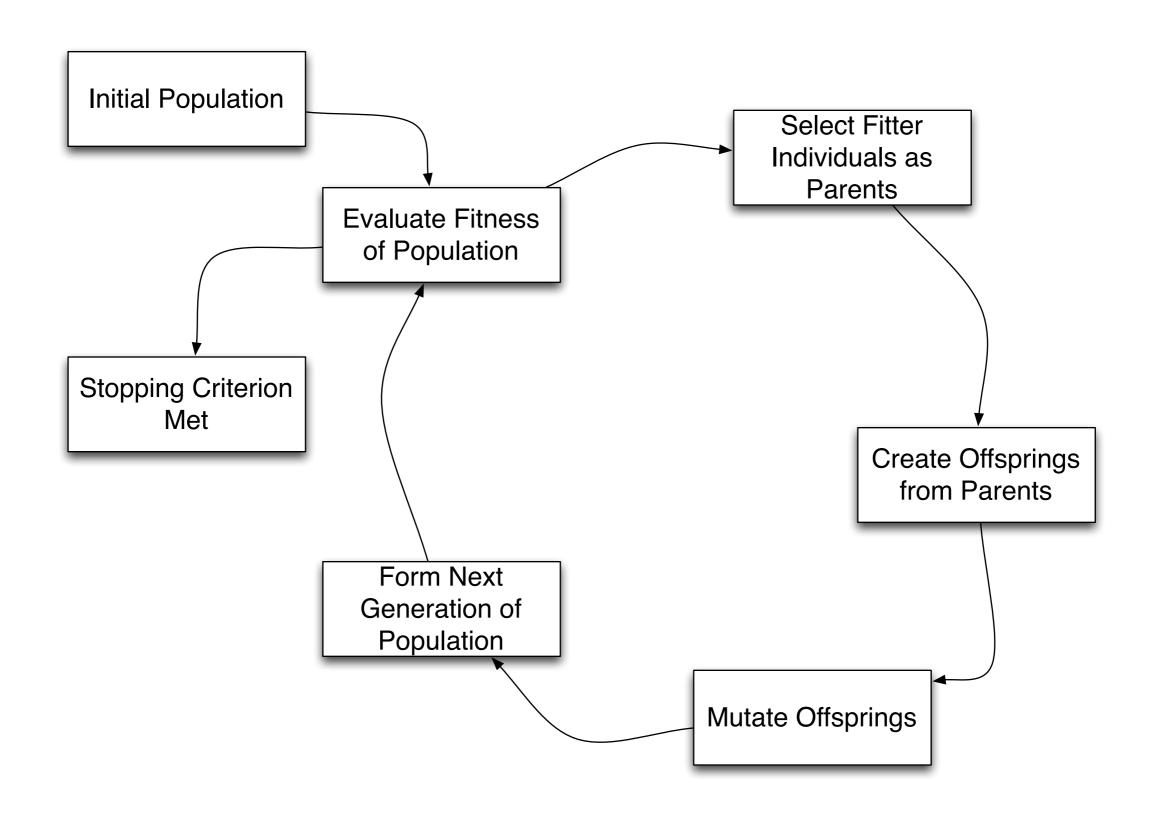
- Genotype: that part of the genetic material that determines a specific characteristic of an individual
- Phenotype: the characteristic manifested by a specific genotype

Genotype vs. Phenotype

- For example, 0-1 knapsack problem: given N items with individual weights and values, fill a knapsack that can hold X kilograms with the maximum value possible.
- Genotype: a bit string of length N; 1 if corresponding item is chosen, 0 if not.
- Phenotype: the weight and the value of the filled knapsack.

Evolutionary Pressure

- Also known as selection pressure: anything that affects the reproductive success rate exerts evolutionary pressure.
- One critical link in Darwinian evolution: fitter individuals are assumed to have better reproductive success rate.


Adaptation vs. Optimisation

- Does nature adapt or optimise?
- Experiments with artificial co-evolution often result in stale and stagnant populations: they co-adapt, rather than doing arms-race.
- Optimisation through Darwinian evolution may be a purely artificial concept.

Okay, now back to algorithms. Let's start with Genetic Algorithms.

Artificial Evolution

- Artificial evolution as computation and, especially, as optimisation.
- Apply selection pressure so that a species (a population) evolves towards better fitness values.
- We have to emulate the entire evolutionary loop.
- Remember: exploitation vs. exploration.
 - Too much pressure: premature convergence.
 - Too little pressure: search goes nowhere.

 Let's assume that we have a tool that tells us how many digits are correct #yessomewhatunrealistic

Password: 893714

1<u>93</u>562

243690

12<u>3</u>456

1212<u>14</u>

Randomly Generated Initial Population

 Let's assume that we have a tool that tells us how many digits are correct #yessomewhatunrealistic

Password: 893714

193562 Score: 2

121214 Score: 2

243690 Score: 1

123456 Score: 1

Evaluation

 Let's assume that we have a tool that tells us how many digits are correct #yessomewhatunrealistic

Password: 893714

193562 1935<u>14</u>
243690
1212<u>14</u>
121262
123456
Choose Parents Crossover

 Let's assume that we have a tool that tells us how many digits are correct #yessomewhatunrealistic

Password: 893714

1<u>93</u>562 **8**935<u>14</u>

24<u>3</u>690

121214 12**3**262

123456

Choose Parents Mutation

Initial Population

- Usually initialised randomly: this introduces the variance among individuals.
- We mean phenotype variance. Depending on problems, genotype variance may not always result in phenotype variance.

Selection Operators

- We apply selection operators to the population, to choose two parent individuals.
- This is one of two places where we apply evolutionary pressure: we should make sure that the fitter you are, the more successful you are in terms of reproduction.
- This is also relatively universal i.e. not dependent on the choice of representation

Fitness Proportional Selection (FPS)

- The probability of selecting an individual is proportional to its absolute fitness over the rest of the population.
- Given an individual *i*, its fitness f_i and population size μ ,

$$P_{FPS}(i) = \frac{f_i}{sum_{j=1}^{\mu} f_j}$$

Issues with FPS

- Outstanding individuals tend to take over the population quickly, leading to premature convergence.
- When fitness values are close together, there is almost no selection pressure.

Individual	Fitness	Sel. prob.	Fitness	Sel. prob.	Fitness	Sel. prob.
	for f	for f	for $f + 10$	for $f + 10$	for $f + 100$	for $f + 100$
A	1	0.1	11	0.275	101	0.326
В	4	0.4	14	0.35	104	0.335
С	5	0.5	15	0.375	105	0.339
Sum	10	1.0	40	1.0	310	1.0

Selection pressure rapidly falls as fitness is linearly translated...

Improving FPS

- Windowing: At each generation, fitness is transformed by subtracting $\beta(t)$ from the raw fitness.
- ullet Usually, eta(t) is the minimum fitness of the current population, *i.e.*,

$$\beta(t) = \min_{y \in P} f(y)$$

• Sigma scaling: $f'(x)=max(f(x)-(\bar{f}-c\cdot\sigma_f),0)$ \bar{f},σ_f,c are mean, standard deviation and hyperparameter (usually 2)

Ranking Selection

- Sort the population by fitness and allocate selection probabilities according to the individuals' rank.
- Maintains constant selection pressure, as opposed to FPS.
- Given a population of μ , the best individual is ranked $\mu-1$ and the worst 0.
- Linear ranking vs Exponential ranking

Linear ranking

• Parameterised by a value $s \ (1 \le s \le 2)$

$$P_{linear}(i) = \frac{2-s}{\mu} + \frac{i(s-1)}{\sum_{j=0}^{\mu} j}$$

Individual	Fitness	Rank	P_{selFP}	P_{selLR} $(s=2)$	P_{selLR} $(s=1.5)$
A	1	0	0.1	0	0.167
В	4	1	0.4	0.33	0.33
C	5	2	0.5	0.67	0.5
Sum	10		1.0	1.0	1.0

FPS versus Linear Ranking

Exponential Ranking

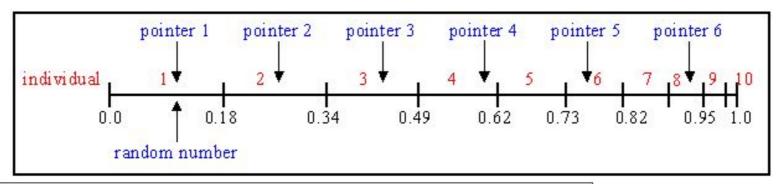
Exponential ranking is used for greater selection pressure.

$$P_{exp}(i) = \frac{1 - e^{-i}}{\sum_{j=0}^{\mu} 1 - e^{-j}}$$

Sampling from the selection probabilities

- How to sample individuals according to the selection probabilities? (either FPS or ranking selection)
 - Roulette Wheel Sampling
 - Stochastic Universal Sampling
 - Tournament Selection
 - Overselection

Roulette Wheel Sampling


• Given some order over the population from 1 to μ , compute the **cumulative** probabilities $[a_1, a_2, ..., a_{\mu}]$ and:

```
BEGIN /* Given the cumulative probability distribution a */ /* and assuming we wish to select \lambda members of the mating pool */ set current\_member = 1; WHILE ( current\_member \leq \lambda ) DO Pick a random value r uniformly from [0,1]; set i=1; WHILE ( a_i < r ) DO set i=i+1; OD set mating_pool[current\_member] = parents[i]; set current\_member = current\_member + 1; OD END
```


Intuitively, each individual is assigned with roulette area whose size corresponds to its selection probability: then spin the roulette to select one sample.

Stochastic Universal Sampling


```
BEGIN /* Given the cumulative probability distribution a */ /* and assuming we wish to select \lambda members of the mating pool */ set current\_member = i = 1; Pick a random value r uniformly from [0,1/\lambda]; WHILE ( current\_member \leq \lambda ) DO WHILE ( r \leq a[i] ) DO set mating\_pool[current\_member] = parents[i]; set r = r + 1/\lambda; set current\_member = current\_member + 1; OD set i = i + 1; OD END
```

When more than one sample is required, SUS is preferred. If we are sampling N individuals, think of this as a roulette wheel with N arms.

Tournament selection

- What if fitnesses cannot be measured on an absolute scale?
 - e.g. On evolving game strategies, fitnesses of two strategies can be evaluated only by playing against each other.
- Or if computing selection probabilities is impossible?
 - e.g. On a distributed setting, acquiring global knowledge of the fitnesses may not be possible.
- Tournament selection solves these problems.

Tournament selection

- Select k random individuals from the population (with or without replacement) and pick the best out of them.
- Add it to the mating pool until full.
- Increasing k increases selection pressure.
- The simplest, most widely used selection mechanism.

Overselection

- Intentionally oversample from the "better" individuals.
 For example:
 - 80% of selections made from the top 20%
 - 20% of selections made from the remaining 80%