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If your problem forms a 
fitness landscape, what is 

optimisation?



Local Search Loop

• Start with a single, random 
solution 

• Consider the neighbouring 
solutions 

• Move to one of the neighbours 
if better 

• Repeat until no neighbour is 
better



Local Search

Random start



Hill Climbing Algorithm

• This particular variation is also 
known as the steepest-ascent 
hill climbing. 

• Why? :) 

• What other versions are 
there?

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N  GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) return s



Hill Climbing Algorithm

Steepest Ascent First Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N  GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) return s

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N  GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) break
(11) return s



Hill Climbing Algorithm

First Ascent

HillClimbing()
(1) s GetRandom()
(2) while True
(3) N  GetNeighbours(s)
(4) N 0  {n 2 N |Fitness(n) > Fitness(s)}
(5) if |N 0| > 0
(6) s RandomPick(N 0)
(7) else
(8) break
(9) return s

Random Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N  GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) break
(11) return s



Local Search

Random start



Ascent Strategy
• Not possible to know which one is better. 

• IF the current solution is near a local optimum, 
slowing down the ascent may (or may not) be 
better. 

• Regardless of strategy, hill climbing monotonically 
climbs, until it reaches local/global optimum; it 
never goes down.



Pros/Cons

• Pros:cheap (fewer fitness evaluations compared to 
GAs), easy to implement, repeated applications 
can give insights into the landscape, suitable for 
solutions that need to be built through small 
incremental changes 

• Cons: more likely to get stuck in local optima, 
unable to escape local optima



Alternating Variable Method 
(AVM)

• A type of Pattern Search: searches for an input vector 
that can maximise/minimise a given objective function


• It has two operation modes: exploratory move, and 
pattern move.


• For each variable:


• Use exploratory move to decide which direction 
results in fitter solutions


• Use pattern move to accelerate to that direction



Alternating Variable Method
• Based on the known empirical results, AVM is one of the most 

effective algorithm for achieving C/C++ structural coverage


• M. Harman and P. McMinn. A theoretical and empirical 
analysis of evolutionary testing and hill climbing for 
structural test data generation. In Proceedings of the 
International Symposium on Software Testing and Analysis 
(ISSTA 2007), pages pp. 73–83. ACM Press, July 2007.


• M. Harman and P. McMinn. A theoretical and empirical 
study of search based testing: Local, global and hybrid 
search. IEEE Transactions on Software Engineering, 
36(2):226–247, 2010.



(0, 0)

Starting from(6, 2), we want to 
search for the red dot at (22, 34). 
We can measure the distance to 

the goal.

First we try exploratory move for 
x: make the smallest change, and 

see which direction results in 
reduced distance. The initial 

distance is 35.77.

-1: (5, 2) Increased (36.23). X

+1: (7, 2) Decreased (35.34) O

Consequently, x needs to be  
increased at the moment.

AVM: Exploratory Move



Now that we decided to increase 
x, try doubling the difference as 
long as the distance continues to 
decrease. At the beginning of the 
pattern move, x is equal to 7.

x = 9 (Δx=2): decrease (34.53)

x = 13 (Δx=4): decrease (33.24)

x = 21 (Δx=8): decrease (32.01)

x = 37?(Δx=16): increase (35.34)

With increment of 16, the 
distance starts to grow: this is 
called overshooting. In this case, 
we cancel the last pattern move, 
and start the exploratory move for 
the next variable, y.

AVM: Pattern Move
(0, 0)



We now change y by 1 and decide 
the direction. The distance from 
the last location, (21, 2), is 32.01.

So y needs to be increased.

-1: (21, 1) increase (33.01). X
+1: (21, 3) decrease (31.01) O

AVM: Exploratory Move
(0, 0)



We increase the variable y with 
pattern moves now. Initially y 
is 3.

y = 5 (Δy=2): decrease (29.01)

y = 9 (Δy=4): decrease (25.01)

y = 17 (Δy=8): decrease (17.02)

y = 33(Δy=16): decrease (1.41)

y = 65(Δy=32): Overshooting!

AVM: Pattern Move
(0, 0)



After overshooting of y, we start 
the exploratory move for x. We 
decide to increase, but as soon as 
we try +2, it overshoots. After 
cancellation of this, we have the 
correct x.

After one more exploratory move 
for y, we reach the goal.

(0, 0)

AVM: Exploratory Move



Alternating Variable Method

• For a reference implementation and basic applications, 
see: http://avmframework.org


• P. McMinn and G. M. Kapfhammer. AVMf: An open-source 
framework and implementation of the alternating variable 
method. In International Symposium on Search-Based 
Software Engineering (SSBSE 2016), volume 9962 of 
Lecture Notes in Computer Science, pages 259–266. 
Springer, 2016.

http://avmframework.org


Simulated Annealing
• Big question: how do we escape local optima, if we 

are in one? 

• Thought 1: we never know whether we are 
climbing a local or a global optimum! 

• Thought 2: assuming that there are more local 
than global optima, it makes sense to escape. 

• Thought 3: but not always - when we stop, we 
want to stop near the top of SOME optimum.



Annealing (풀림)

• Keep metal in a very high 
temperature for a long time, 
and then slowly cool down: it 
then becomes more workable. 

• At high temperature, atoms 
are released from internal 
stress by the energy; during 
the cool-down, they form new 
nucleates without any strain, 
becoming softer.



Simulated Annealing
• Introduce “temperature” into local search: start with 

a high temperature, and slowly cool down. 

• When the temperature is high, the solution (like 
atom) is unstable and can make random moves 
(i.e. escapes). 

• As the temperature decreases, the energy level 
gradually gets lower, and escapes become more 
infrequent.



Simulated Annealing
SimulatedAnnealing()
(1) s = s0
(2) T  T0

(3) for k = 0 to n
(4) snew  GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T ) � random(0, 1) then s  

snew
(6) T  Cool(T )
(7) return s

P(F (s),F (snew), T )
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T



Acceptance Probability
• Borrowed from metallurgy 

• When new solution is better 
(F(snew) > F(s)), always accept (P 
> 1) 

• When new solution is equally 
good, accept 

• When new solution is worse: 

• more likely to accept small 
downhill movement 

• gets smaller as temperature 
drops
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Cooling Schedule
Temperature at time step t as a function of t:

• Linear: T (t) = T0 � ↵t

• Exponential: T (t) = T0↵t(0 < ↵ < 1)

• Logarithmic: T (t) = c
log (t+d)

• With large c, this can be very slow cooling 
• There is an existence proof that says logarithmic will find 

the global optimum in infinite time… huh? 
• It becomes essentially a random search 
• Theoretically interesting, but practically not so much.



Tabu Search

• Another attempt to escape local optima 

• Two exceptions to local search: 

• It is possible to accept a worse move 

• Remember “visited” solutions and avoid coming 
back



Tabu Search
TabuSearch()
(1) s s0
(2) sbest  s
(3) T  [] // tabu list
(4) while not stoppingCondition()
(5) cbest  null
(6) foreach c 2 GetNeighbours(s)
(7) if (c /2 T ) ^ (F (c) > F (cbest)) then cbest  c
(8) s cbest
(9) if F (cbest) > F (sbest) then sbest  cbest
(10) append(T , cbest)
(11) if |T | > maxTabuSize then removeAt(T , 0)
(12) return sBest

Tabu list is a FIFO queue: with the maxTabuSize 
we can control the memory span of the search.



Random Restart

• Search budget is usually given in limited time 
(“terminate after 5 minutes”) or in number of fitness 
evaluation (“terminate after 5000 fitness 
evaluations”) 

• If a local search reaches optima and budget 
remains? Start again from another random solution 
and keep the best answer across multiple runs.



Search Radius

• For local search algorithms to be effective: the 
search space may be large, but the search radius 
should be reasonably small 

• Search radius: the number of moves required to go 
across the search space



Search Radius: TSP
• Travelling Salesman Problem: what is the shortest 

path that visits all N cities? 

• Search Space: N! (e.g 
2,432,902,008,176,640,000 when N = 20) 

• Search Radius: at most N(N-1)/2 swaps to 
change any permutation of cities to any other 
(e.g. 190 when N=20)



Summary
• Local search: direct use of fitness landscape 

concept, with various mechanism to escape local 
optima. 

• Easy to implement, easy to understand what is 
going on; good for insights into landscape 

• Design of search space (especially discrete one) 
affects the performance of search


