
Local Search
Shin Yoo

SEP592, Summer 2021
School of Computing, KAIST

If your problem forms a
fitness landscape, what is

optimisation?

Local Search Loop

• Start with a single, random
solution

• Consider the neighbouring
solutions

• Move to one of the neighbours
if better

• Repeat until no neighbour is
better

Local Search

Random start

Hill Climbing Algorithm

• This particular variation is also
known as the steepest-ascent
hill climbing.

• Why? :)

• What other versions are
there?

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) return s

Hill Climbing Algorithm

Steepest Ascent First Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) return s

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) break
(11) return s

Hill Climbing Algorithm

First Ascent

HillClimbing()
(1) s GetRandom()
(2) while True
(3) N GetNeighbours(s)
(4) N 0 {n 2 N |Fitness(n) > Fitness(s)}
(5) if |N 0| > 0
(6) s RandomPick(N 0)
(7) else
(8) break
(9) return s

Random Ascent

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(x)
(8) climb True
(9) s n
(10) break
(11) return s

Local Search

Random start

Ascent Strategy
• Not possible to know which one is better.

• IF the current solution is near a local optimum,
slowing down the ascent may (or may not) be
better.

• Regardless of strategy, hill climbing monotonically
climbs, until it reaches local/global optimum; it
never goes down.

Pros/Cons

• Pros:cheap (fewer fitness evaluations compared to
GAs), easy to implement, repeated applications
can give insights into the landscape, suitable for
solutions that need to be built through small
incremental changes

• Cons: more likely to get stuck in local optima,
unable to escape local optima

Alternating Variable Method
(AVM)

• A type of Pattern Search: searches for an input vector
that can maximise/minimise a given objective function

• It has two operation modes: exploratory move, and
pattern move.

• For each variable:

• Use exploratory move to decide which direction
results in fitter solutions

• Use pattern move to accelerate to that direction

Alternating Variable Method
• Based on the known empirical results, AVM is one of the most

effective algorithm for achieving C/C++ structural coverage

• M. Harman and P. McMinn. A theoretical and empirical
analysis of evolutionary testing and hill climbing for
structural test data generation. In Proceedings of the
International Symposium on Software Testing and Analysis
(ISSTA 2007), pages pp. 73–83. ACM Press, July 2007.

• M. Harman and P. McMinn. A theoretical and empirical
study of search based testing: Local, global and hybrid
search. IEEE Transactions on Software Engineering,
36(2):226–247, 2010.

(0, 0)

Starting from(6, 2), we want to
search for the red dot at (22, 34).
We can measure the distance to

the goal.

First we try exploratory move for
x: make the smallest change, and

see which direction results in
reduced distance. The initial

distance is 35.77.

-1: (5, 2) Increased (36.23). X

+1: (7, 2) Decreased (35.34) O

Consequently, x needs to be
increased at the moment.

AVM: Exploratory Move

Now that we decided to increase
x, try doubling the difference as
long as the distance continues to
decrease. At the beginning of the
pattern move, x is equal to 7.

x = 9 (Δx=2): decrease (34.53)

x = 13 (Δx=4): decrease (33.24)

x = 21 (Δx=8): decrease (32.01)

x = 37?(Δx=16): increase (35.34)

With increment of 16, the
distance starts to grow: this is
called overshooting. In this case,
we cancel the last pattern move,
and start the exploratory move for
the next variable, y.

AVM: Pattern Move
(0, 0)

We now change y by 1 and decide
the direction. The distance from
the last location, (21, 2), is 32.01.

So y needs to be increased.

-1: (21, 1) increase (33.01). X
+1: (21, 3) decrease (31.01) O

AVM: Exploratory Move
(0, 0)

We increase the variable y with
pattern moves now. Initially y
is 3.

y = 5 (Δy=2): decrease (29.01)

y = 9 (Δy=4): decrease (25.01)

y = 17 (Δy=8): decrease (17.02)

y = 33(Δy=16): decrease (1.41)

y = 65(Δy=32): Overshooting!

AVM: Pattern Move
(0, 0)

After overshooting of y, we start
the exploratory move for x. We
decide to increase, but as soon as
we try +2, it overshoots. After
cancellation of this, we have the
correct x.

After one more exploratory move
for y, we reach the goal.

(0, 0)

AVM: Exploratory Move

Alternating Variable Method

• For a reference implementation and basic applications,
see: http://avmframework.org

• P. McMinn and G. M. Kapfhammer. AVMf: An open-source
framework and implementation of the alternating variable
method. In International Symposium on Search-Based
Software Engineering (SSBSE 2016), volume 9962 of
Lecture Notes in Computer Science, pages 259–266.
Springer, 2016.

http://avmframework.org

Simulated Annealing
• Big question: how do we escape local optima, if we

are in one?

• Thought 1: we never know whether we are
climbing a local or a global optimum!

• Thought 2: assuming that there are more local
than global optima, it makes sense to escape.

• Thought 3: but not always - when we stop, we
want to stop near the top of SOME optimum.

Annealing (풀림)

• Keep metal in a very high
temperature for a long time,
and then slowly cool down: it
then becomes more workable.

• At high temperature, atoms
are released from internal
stress by the energy; during
the cool-down, they form new
nucleates without any strain,
becoming softer.

Simulated Annealing
• Introduce “temperature” into local search: start with

a high temperature, and slowly cool down.

• When the temperature is high, the solution (like
atom) is unstable and can make random moves
(i.e. escapes).

• As the temperature decreases, the energy level
gradually gets lower, and escapes become more
infrequent.

Simulated Annealing
SimulatedAnnealing()
(1) s = s0
(2) T T0

(3) for k = 0 to n
(4) snew GetRandomNeighbour(s)
(5) if P (F(s),F(snew), T) � random(0, 1) then s

snew
(6) T Cool(T)
(7) return s

P(F (s),F (snew), T)
(1) if F (snew) > F (s) then return 1.0

(2) else return e
F (snew)�F (s)

T

Acceptance Probability
• Borrowed from metallurgy

• When new solution is better
(F(snew) > F(s)), always accept (P
> 1)

• When new solution is equally
good, accept

• When new solution is worse:

• more likely to accept small
downhill movement

• gets smaller as temperature
drops

-1.0 -0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

3.
0

P = e
F (snew)�F (s)

T

Cooling Schedule
Temperature at time step t as a function of t:

• Linear: T (t) = T0 � ↵t

• Exponential: T (t) = T0↵t(0 < ↵ < 1)

• Logarithmic: T (t) = c
log (t+d)

• With large c, this can be very slow cooling
• There is an existence proof that says logarithmic will find

the global optimum in infinite time… huh?
• It becomes essentially a random search
• Theoretically interesting, but practically not so much.

Tabu Search

• Another attempt to escape local optima

• Two exceptions to local search:

• It is possible to accept a worse move

• Remember “visited” solutions and avoid coming
back

Tabu Search
TabuSearch()
(1) s s0
(2) sbest s
(3) T [] // tabu list
(4) while not stoppingCondition()
(5) cbest null
(6) foreach c 2 GetNeighbours(s)
(7) if (c /2 T) ^ (F (c) > F (cbest)) then cbest c
(8) s cbest
(9) if F (cbest) > F (sbest) then sbest cbest
(10) append(T , cbest)
(11) if |T | > maxTabuSize then removeAt(T , 0)
(12) return sBest

Tabu list is a FIFO queue: with the maxTabuSize
we can control the memory span of the search.

Random Restart

• Search budget is usually given in limited time
(“terminate after 5 minutes”) or in number of fitness
evaluation (“terminate after 5000 fitness
evaluations”)

• If a local search reaches optima and budget
remains? Start again from another random solution
and keep the best answer across multiple runs.

Search Radius

• For local search algorithms to be effective: the
search space may be large, but the search radius
should be reasonably small

• Search radius: the number of moves required to go
across the search space

Search Radius: TSP
• Travelling Salesman Problem: what is the shortest

path that visits all N cities?

• Search Space: N! (e.g
2,432,902,008,176,640,000 when N = 20)

• Search Radius: at most N(N-1)/2 swaps to
change any permutation of cities to any other
(e.g. 190 when N=20)

Summary
• Local search: direct use of fitness landscape

concept, with various mechanism to escape local
optima.

• Easy to implement, easy to understand what is
going on; good for insights into landscape

• Design of search space (especially discrete one)
affects the performance of search

