
Random Search
Shin Yoo 

SEP592, Summer 2020, School of Computing, KAIST



Random Search

• The polar opposite to the deterministic, examine-
everything, search. 

• Within the given budget, repeatedly generate a 
random solution, compare its fitness to the known 
best, and keep the best one.



Pros and Cons

• VERY easy to implement, inherently automatable, 
no bias at all. 

• Depending on the problem, it may be extremely 
effective. 

• No guidance at all: depending on the problem, it 
may take forever to obtain a meaningful solution.



Usage of Random Search

• The lack of any guidance provides two useful 
scenarios. 

• First, random search should always be the default 
sanity check against your own search 
methodology: if it does not no better than random 
search, you are doing something wrong.



Usage of Random Search
• Somewhat ironically, random search is effective 

when the underlying problem does not give any 
guidance to begin with. For example: 

• “Search for the input to program A that will result 
in program crash” 

• In general, given an arbitrary program, you 
cannot measure the distance between the 
current program state and a crash!



Fuzz Testing
• Infinite Monkey Theorem: “Thousand monkeys at a 

thousand typewriters will eventually type out the 
entire works of Shakespeare" 

• Basic idea: provide a stream of random input to the 
program, until it crashes (=our Shakespeare). 

• Either a stream of really random bits (naive), or 

• Well-formed input randomly mutated (more 
effective)


