Random Search

Shin Yoo
SEP592, Summer 2020, School of Computing, KAIST



Random Search

* [he polar opposite to the deterministic, examine-
everything, search.

e Within the given budget, repeatedly generate a

random solution, compare its fitness to the known
best, and keep the best one.



Pros and Cons

 VERY easy to implement, inherently automatable,
no bias at all.

 Depending on the problem, it may be extremely
eftective.

 No guidance at all: depending on the problem, it
may take forever to obtain a meaningtul solution.



Usage of Random Search

* The lack of any guidance provides two useful
scenarios.

e First, random search should always be the default
sanity check against your own search
methodology: if it does not no better than random
search, you are doing something wrong.



Usage of Random Search

 Somewhat ironically, random search is eftective
when the underlying problem does not give any
guidance to begin with. For example:

e “Search for the input to program A that will result
N program crash”

* |n general, given an arbitrary program, you
cannot measure the distance between the
current program state and a crash!



~uzz lesting

* |nfinite Monkey Theorem: “Thousand monkeys at a
thousand typewriters will eventually type out the
entire works of Shakespeare'

e Basic idea: provide a stream of random input to the
program, until it crashes (=our Shakespeare).

e Either a stream of really random bits (naive), or

e Well-formed input randomly mutated (more
effective)



