
Fitness Landscape
Shin Yoo

SEP592, Summer 2020, School of Computing, KAIST

Recap
• We need three key elements for SBSE

• Representation: how we express candidate
solutions for storage

• Fitness Function: how we compare candidate
solutions for selection

• Operators: how we modify candidate solutions
for trial-and-error

Fitness Landscape
• A spatial view of the search: there is no guarantee

that the actual optimisation you are working on can
be easily visualised spatially. However, this visual
analogy is a useful tool when discussing the
distribution of the fitness across possible solutions.

• Given a solution space S (a hyperplane), and a
fitness function F, a fitness landscape is a hyper
dimensional surface that represents F: S→ℝ

Fitness Landscape

• Let’s use a fake problem:

• Given 0 ≤ x ≤ 10, 0 ≤ y ≤ 10, find (x, y)
such that x + y = 10.

0 2 4 6 8 10

0
2

4
6

8
10

Solution Space

x

y

A single point in fitness landscape

 0 1 2 3 4 5 6 7 8 9 10
 0

 1
 2

 3
 4

 5
 6

 7
 8

 9
10

x

yfit
ne
ss

Fitness for Fake Problem
• Given (x, y), how far are we from solving the

problem?

• We solve the problem when x + y == 10

• If the current sum of x and y are s, we are |10 -
s| far away from solving the solution

• f(x, y) = |10 - (x + y)|

• Minimise the above function until it becomes 0.

x
y

z

0

2

4

6

8

10

Properties of Landscape

• Size: small/large but also finite/(effectively) infinite

• Flatness: is there a large plateau?

• Ruggedness: how many local optima should we
expect?

• Discreteness: continuous numeric, discrete
numeric, combinatoric

x
y

z

0.0

0.5

1.0

1.5

2.0

Plateau

• Large, flat region that does not
exhibit any gradient.

• Suppose current solution as
well as others generated by
operators all fall in a plateau.

• There is no guidance; hard to
escape.

Needle in the Haystack

• Worst landscape to search.

• Can be avoided by
transforming the problem and/
or designing better fitness
functions

• To search for (x, y) = (15, 15):

• f1(x, y) = (x==15 &&
y == 15) ? 0 : 10

x
y

z

0

2

4

6

8

10

Needle in the Haystack

• f2(x, y) = |x-15| + |
y-15|

x
y

z

0

5

10

15

20

25

30

(..later application in testing)

bool flag = (x == 42);
...
if(flag){

//do some computation
//that needs to be tested

}

...
if(x == 42){

//do some computation
//that needs to be tested

}

M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M.
Roper. Testability trans- formation. IEEE Transactions on Software Engineering,
30(1):3–16, Jan. 2004.

...
if(|x -42| == 0){

//do some computation
//that needs to be tested

}

Local vs. Global Optima

• Local optima: better fitness
than any surrounding region,
but not the best possible
fitness

• Global optima: better fitness
than any other point in the
landscape

Ruggedness

x
y

z

0

2

4

6

8

10

12

14

16

x
y

z

0

2

4

6

8

10

12

14

16

Easy to get stuck
in one of many local optima Smooth descent

Discrete Fitness Landscape
• In case of (x, y) = (15, 15), it is (relatively) obvious what the

neighbouring solutions are.

• (14, 15), (16, 15), (15, 14), (15, 16)

• (16, 16), (14, 14), (16, 14), (14, 16)

• What if we are searching for non-numeric solution?

• Set membership (e.g. Do I include this requirement or not?, Do I
execute this test case or not?)

• Permutations (e.g. In which order should I execute this test suite?)

• Highly structured data (e.g. To test this compiler, which program should
I use as input?)

