
Introduction to SBSE
(1/2)

Shin Yoo
SEP592, Summer 2020, School of Computing, KAIST

Me
• Shin Yoo

• PhD at King’s College London, UK

• Assistant Professor at University
College London, UK

• COINSE (Computational Intelligence
for Software Engineering) Lab

• Research interest: SBSE, regression
testing, automated debugging,
evolutionary computation,
information theory, program
analysis…

• shin.yoo@kaist.ac.kr

mailto:shin.yoo@kaist.ac.kr

Course Webpage

• Reading materials will be
either linked or provided on
the page

• https://coinse.kaist.ac.kr/
teaching/2021/sep592/

https://coinse.kaist.ac.kr/teaching/2021/sep592/
https://coinse.kaist.ac.kr/teaching/2021/sep592/

Course Evaluation
• Assignments (20%)

• One essay

• One individual coursework - solve a classical optimisation
problems using algorithms learnt during the class. There
will be an online leaderboard that shows who’s winning :)

• Quality of the solution

• Performance of the solution

• Quality of the implementation & SE practices

Course Evaluation

• Project (40%): put the knowledge you obtained
during the class to actual use.

• Proposal presentation: outline your idea, get
feedback.

• Final report: submit your implementation and
empirical evaluation.

Course Evaluation

• Mid-term Exam (40%) : written exam during the
mid-term week.

Seminars

• We will read recent research papers in different
subfields of software engineering, all using search-
based techniques to some degree.

• Due to the large class size, I haven’t worked out all
the details yet. Please bear with me.

Textbook & reading material
• No textbook (we will read up to the bleeding edge)

• Lectures contain strongly recommend reading lists

• Supplementary books:

• Introduction to Evolutionary Computing, A. E. Eiben
& J. E. Smith, Springer

• A Field Guide to Genetic Programming, Ricardo Poli,
William B. Langdon, & Nicholas McPhee (freely
available online at http://www.gp-field-guide.org.uk)

http://www.gp-field-guide.org.uk

Communication

• We will use Slack for all class communication

• https://bit.ly/slack-sep592-2021

• If you are in the class, join: no excuse.

https://bit.ly/slack-sep592-2021

Online Presence

• Course Webpage: where you can download
materials (slides, coursework descriptions, papers
to read)

• KLMS: where you upload your courseworks and
project deliverables

What is SBSE?

(wait, before that…)

What is SE?

Science: intellectual and practical activity
encompassing the systemic study of the structure
and behaviour of the physical and natural world

Mathematics: abstract science of number, quantity,
and space, either as abstract concepts or as

applied to other disciplines

Engineering: branch of science and technology
concerned with the design, building, and use of

engines, machines, and structures

Software as science
- Precise computation and algorithm
- Study of truth
- Simplicity of theory

Software as engineering
- Consideration of adequate cost
- Study of utility
- Scalability of theory

Science of sorting

#precise #theory #O(nlogn) #provable

Engineering of sorting

#1PB #onlyatGoogle #maynotbecorrect #notenoughstorage

1PB = 1,000,000,000,000,000 Byte (1015)

• Is the theory correct? • Is the implementation
correct?

• If it is not, how do we find out?

• How can we commit fewer
mistakes while implementing?

• How can N members
collaborate effectively and
efficiently?

• How can we reduce the
development cost?

• How can we maintain quality
when team members change?

Science Engineering

Software Crisis
• As long as there were no

machines, programming was
no problem at all; when we
had a few weak computers,
programming became a mild
problem, and now we have
gigantic computers,
programming has become an
equally gigantic problem.
— Edsger Dijkstra, The
Humble Programmer,
Communications of the ACM,
1972

NATO conference 1968

• …concluded that software engineering should use
the philosophies and paradigms of established
engineering disciplines, to solve the problem of
software crisis.

But what do “established engineering
principles” do to improve quality?

• Theory

• Simulation

• Optimisation

Let’s say we want to
build a steel bridge.

Theory

• When does a steel beam
break?

• Stress: force per unit area

• Tensile strength: the
maximum stress a material
can resist

Simulation

• Given the physical laws as the
foundation, it is possible to
build simulations.

Creating Models of Truss Structures with Optimization

Jeffrey Smith
Carnegie Mellon University

Jessica Hodgins
Carnegie Mellon University

Irving Oppenheim
Carnegie Mellon University

Andrew Witkin
Pixar Animation Studios

Abstract

We present a method for designing truss structures, a common
and complex category of buildings, using non-linear optimization.
Truss structures are ubiquitous in the industrialized world, appear-
ing as bridges, towers, roof supports and building exoskeletons, yet
are complex enough that modeling them by hand is time consuming
and tedious. We represent trusses as a set of rigid bars connected
by pin joints, which may change location during optimization. By
including the location of the joints as well as the strength of individ-
ual beams in our design variables, we can simultaneously optimize
the geometry and the mass of structures. We present the details of
our technique together with examples illustrating its use, including
comparisons with real structures.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; G.1.6
[Numerical Analysis]: Optimization—Nonlinear programming;
G.1.6 [Numerical Analysis]: Optimization—Constrained optimiza-
tion

Keywords: Physically based modeling, truss structures, con-
strained optimization, nonlinear optimization

1 Introduction

A recurring challenge in the field of computer graphics is the cre-
ation of realistic models of complex man-made structures. The
standard solution to this problem is to build these models by hand,
but this approach is time consuming and, where reference images
are not available, can be difficult to reconcile with a demand for
visual realism. Our paper presents a method, based on practices
in the field of structural engineering, to quickly create novel and
physically realistic truss structures such as bridges and towers, us-
ing simple optimization techniques and a minimum of user effort.
“Truss structures” is a broad category of man-made structures,

including bridges (Figure 1), water towers, cranes, roof support
trusses (Figure 10), building exoskeletons (Figure 2), and tempo-
rary construction frameworks. Trusses derive their utility and dis-
tinctive look from their simple construction: rod elements (beams)

{jeffrey|jkh}@cs.cmu.edu, ijo@andrew.cmu.edu, aw@pixar.com

Figure 1: A cantilever bridge generated by our software, compared
with the Homestead bridge in Pittsburgh, Pennsylvania.

which exert only axial forces, connected concentrically with welded
or bolted joints.
These utilitarian structures are ubiquitous in the industrialized

world and can be extremely complex and thus difficult to model.
For example, the Eiffel Tower, perhaps the most famous truss struc-
ture in the world, contains over 15,000 girders connected at over
30,000 points [Harriss 1975] and even simpler structures, such as
railroad bridges, routinely contain hundreds of members of varying
lengths. Consequently, modeling of these structures by hand can be
difficult and tedious, and an automated method of generating them
is desirable.

1.1 Background

Very little has been published in the graphics literature on the
problem of the automatic generation of man-made structures.
While significant and successful work has been done in recre-

Optimisation

• …and with simulation,
optimisation follows naturally.

• It is, simply, trial and error,
which is only possible
because we have the
simulation environment.

Bridge
Building

Theory Simulation Optimisation Product

Real
WorldAbstract Computation Computation

Software
Engineering ComputationBest

Practices ? ?

We are probably the only engineering principle, in which
the materials for product, simulation, and optimisation are the same.

Simulation is done via modelling.

Optimisation?

Theory of software engineering is (somewhat) lacking.

Search-Based Software
Engineering

• A large movement(?) that seeks to apply various
optimisation techniques to software engineering
problems (NOT search engines or code search)

• Still relatively young (by academic standards)

Why optimisation?

• Automate SE tasks (either fully, or at least until
human engineers can attend to the issue)

• Gain insights into complicated problem domain
that are either too large or too complicated for
humans to understand

• Unbiased decision support that is data-driven

Our Toolbox
• Classical (exact) optimisation would be desirable

but often cannot cope with the scale

• A heavy focus on stochastic optimisation, with a
heavy emphasis on evolutionary computation and
other nature-inspired algorithms (mostly due to
historical reasons).

• But we are open to applications of any machine
intelligence: neural nets and reinforcement learning
are gaining much attention these days naturally.

Our Stance
• We stand at the intersection of

computational intelligence and
software engineering.

• Pragmatic application has
stimulated theoretical results
in computational intelligence,
and vice versa.

• Course: about 40% on
optimisation techniques, 60%
on applications on SE

Up and Coming
• Meta-heuristic and computational

intelligence techniques are found
increasingly frequently in SE
papers.

• Two major conferences in software
engineering - ICSE and FSE - now
tend to have whole sessions
dedicated to SBSE.

• Evolutionary computation
conferences have tracks dedicated
to SE.

• Dedicated international conference
(SSBSE) and many other
workshops.

Publication growth up to 2012

Another Important Angle
• SEP592/CS454 is named AI-based Software

Engineering, Initially, this meant that we use AI
based techniques to solve SE problems (AI for SE).

• Increasingly, we need to solve SE problems in AI
(SE for AI). Most importantly, there is an urgent
need to test machine learning modules in larger
systems.

• Very early stage, but we are going to look into this.

일반지능

AI: 기계가 보이는
지능 전체

풀어야 하는 문제

논리추론

학습

계획 자연어처리

인지/감각

운동

Machine Learning
(기계학습)

접근 방법

기호

통계

소프트
컴퓨팅

신경망

진화연산

메타
휴리스틱 Deep Neural

Networks

지도학습

비지도
학습

강화학습

학습

지도학습

비지도학습

강화학습

주어진 “정답” 예제, 즉 지도(supervision)를 통해 학습

• 분류 (classification): A, B, C에 해당하는 예제를 많이 본 다음, 새로운 입
력이 A/B/C 중 어떤 것인지 예측

• 회귀 (regression): y = f(x1,…,xn)에 해당하는 예제를 많이 본 다음, 새로운
입력 (x’1,…,x’n)이 주어졌을 때 y’값을 예측

주어진 학습 자료에 내재한 공통점을 기반으로 학습

• 클러스터링 (clustering): 여러 개의 입력이 주어졌을 경우, 입력들을 특정
기준에서 서로 비슷한 것들끼리 모음

• 이상탐지 (anomaly detection): 정상적 상태의 특징을 학습한 뒤, 이를 벗
어나는 비정상 상태가 됐을 경우 감지 및 경보

환경으로부터 보상이 주어질 때, 보상을 최대화하도록 학습

• 몬테카를로 트리 서치(Monte Carlo Tree Search): 게임을 할 경우, 상대의
수를 모르는 상황에서 확률적으로 가장 유리한 수를 탐색

소프트
컴퓨팅

신경망

진화연산

메타
휴리스틱

다윈의 진화론을 계산을 통해 모방, 원하는 답이 자연 선택을 통해 “진화”할
수 있다는 입장에 기반.

연결주의(connectionism), 즉 두뇌의 구조인 뉴런의 연결을 통해 지능을 구현
할 수 있다는 입장에 기반.

최적의 답(optimal solution)을 계산하는 것이 불가능할 경우 쓸만한 답을 구
하는 문제풀이법을, 문제 유형에 관계없이 적용할 수 있도록 개발.

Coursework 1: Getting to
know the subject

• Choose a paper from the reading list. Write an essay
containing the following points:

• What is the software engineering problem authors are
trying to solve?

• What are the technical contributions of the paper?

• Why do you like this work, or are interested in this work?

• Please submit a PDF file containing your essay. Submission
should be made via KLMS. It is due on 23:59, 14th July.
Late submission is not allowed for this coursework.

