Introduction to SBSE
(1/2)

Shin Yoo
SEP592, Summer 2020, School of Computing, KAIST

Ve

COMPUTATIONAL
Shin Yoo INTELLIGENCE
FOR SOFTWARE
« PhD at King’s College London, UK ENGINEERING LAB

* AS S l Sta nt P rOfe S S O r at U n |Ve rS lty Computational Intelligence Software Engineering
College London, UK et / ézm';?;eggﬁff\&%@z:a;;m/

Genetic Programming Fault Localisation
Machine Learning Regression Testing
Monte Carlo Method Code Transplantation

COINSE (Computational Intelligence
for Software Engineering) Lab

Research interest: SBSE, regression
testing, automated debugging, /

evolutionary computation, Search

. . Optimise Unbiased Insight

I ﬂ fO r m at I O n th eO ry, p I'O g ram Forrlnullate software Suplport decision Automate SE tasks Prolvide insights
engineering making process so that humanf i[r;]tq[prot;lerr} spaces

B roblems as with quantitative engineers can focus that are too large

aﬂ alyS I S e gptimisation and gata—driven onghigh level and complicatgd for
and apply alternative abstraction. human engineers to
computational solutions. Machines are good navigate unguided.
intelligence. at trial and error.

shin.yoo@kaist.ac.kr

Advisor_ Shin Yoo | shin.yoo@kaist.ac.kr Room 2405 E3-1

mailto:shin.yoo@kaist.ac.kr

Course Webpage

* Reading materials will be
either linked or provided on
the page

* https://coinse.kaist.ac.kr/
teaching/2021/sep592/

COlNSE News Research Members Publications |

SEP592 Al Based Software Engineering (Summer 2020)

Syllabus Schedule Assignments Projects Reading List

Location

SEPS592 will take place online. Please use the following zoom link: https://kaist.zoom.us/j/9.
meeting room is password protected, and the password will be sent out in a separate emai

Syllabus

This class covers metaheuristic optimisation algorithms and their application to software er
problems. The goal of the class is twofold: the first objective is to understand major classes
algorithms, including local search algorithms and population based optimisation (such as g
and particle swarm optimisation). The second objective is to study the application of these
software engineering problems. For this, the class will introduce the fundamental concepts
Based Software Engineering, and then study various application cases across the software
lifecycle (requirements, design, planning, testing, maintenance, etc). The desired learning o
to use metaheuristic optimisation to automate, and/or gain insights into, software engineeri

The first half of the course will be a series of lectures on metaheuristic algoithms. The secol

— e . o . d N e e bl | e | b o] | | ., s | s s, ., s |]| | o . o e s | e] bl] o, o, e o d b | — o k|) b

https://coinse.kaist.ac.kr/teaching/2021/sep592/
https://coinse.kaist.ac.kr/teaching/2021/sep592/

Course Evaluation

* Assignments (20%)

 One essay

* One individual coursework - solve a classical optimisation
problems using algorithms learnt during the class. There
will be an online leaderboard that shows who's winning :)

e Quality of the solution
* Performance of the solution

* Quality of the implementation & SE practices

Course Evaluation

* Project (40%): put the knowledge you obtained
during the class to actual use.

* Proposal presentation: outline your idea, get
feedback.

* Final report: submit your implementation and
empirical evaluation.

Course Evaluation

 Mid-term Exam (40%) : written exam during the
mid-term week.

Seminars

 We will read recent research papers in different
subtields of software engineering, all using search-
based techniques to some degree.

 Due to the large class size, | haven't worked out all
the details yet. Please bear with me.

lextbook & reading material

* No textbook (we will read up to the bleeding edge)
* [ectures contain strongly recommend reading lists
e Supplementary books:

* Introduction to Evolutionary Computing, A. E. Eiben
& J. E. Smith, Springer

* A Field Guide to Genetic Programming, Ricardo Poli
William B. Langdon, & Nicholas McPhee (freely
available online at http://www.gp-field-guide.org.uk)

http://www.gp-field-guide.org.uk

Communication

e \We will use Slack for all class communication

o https://bit.ly/slack-sep592-2021

e |f you are in the class, join: N0 excuse.

https://bit.ly/slack-sep592-2021

Online Presence

* Course Webpage: where you can download
materials (slides, coursework descriptions, papers
to read)

 KLMS: where you upload your courseworks and
project deliverables

What is SBSE?

(wait, before that...)

What is SE?

Science: intellectual and practical activity
encompassing the systemic study of the structure
and behaviour of the physical and natural world

Mathematics: abstract science of number, quantity,
and space, either as abstract concepts or as
applied to other disciplines

Engineering: branch of science and technology
concerned with the design, building, and use of
engines, machines, and structures

Software as science

- Precise computation and algorithm
- Study of truth

- Simplicity of theory

Software as engineering

- Consideration of adequate cost
- Study of utility

- Scalability of theory

Science of sorting

1 def mergesort(x):

len(x) 0 len(x) 1:
X

middle = len(x)/2

a = mergesort(x[:middle])

b = mergesort(x[middle:])
merge(a,b)

#precise #theory #0O(nlogn) #provable

Engineering of sorting

16 B Elapsed
time

(hours)

urs)

Elapsed time (ho

2007 2008 2010 2011

1PB = 1,000,000,000,000,000 Byte (1015)

#1PB #onlyatGoogle #maynotbecorrect #notenoughstorage

Science

* |s the theory correct?

Engineering

|s the implementation
correct?

If it is not, how do we find out?

How can we commit fewer
mistakes while implementing?

How can N members
collaborate eftectively and
efficiently?

How can we reduce the
development cost?

How can we maintain quality
when team members change”

Software Crisis

* As |long as there were no
machines, programming was
no problem at all; when we
had a few weak computers,
programming became a mild
problem, and now we have
gigantic computers,
programming has become an
equally gigantic problem.

— Edsger Dijkstra, The
Humble Programmer,
Communications of the ACM,
1972

NATO conference 1968

e ...concluded that software engineering should use
the philosophies and paradigms of established
engineering disciplines, to solve the problem of
software crisis.

But what do “established engineering
principles” do to improve quality”?

* Theory
e Simulation

* Optimisation

| et’'s say we want to
pulld a steel bridge.

/ , O 0O ® 0 ®
: *"‘ = \ ‘;A-.

Iheory

Stress is the force per unit area.

force
area

stress =

hat does stress mean?

Stress allows us to get a fair comparison of the effects of a force on different samples of a
material. A tensile force will stretch and, possibly, break the sample. However, the force neede:
to break a sample will vary - depending on the cross sectional area of the sample. If the cross

P W h d | b sectional area is bigger, the breaking force will be bigger. However, the breaking stress will
e n O e S a Ste e e a m always be the same because the stress is the force per unit area.
b r e a k’? [n picture 4.2, sample A breaks with a force of 60 kN. Sample B breaks with a force of 120 kN

because it has twice the area (you can think of it as being two pieces of sample A next to each
other, with each one needing a force of 60 KN to break it). Although the force is bigger for

sample B, the stress is the same for both samples — it is 60 kN cm?.
P S . f | So breaking stress is a more useful measurement than breaking force because it is constant f
t re S S . O rC e p e r u n | t a re a a given material. It allows us to fairly compare the strengths of different materials.

For example:

The force needed to break a piece of steel wire with a cross sectional area of 2x 108 m?
is 2400 N.

[Te n SI |e Stre n gth : 'l:h e a) What is its breaking stress?

b) What force would be needed to break a steel bar with a cross section of 5x10~4m2?

m aX i m U m St re S S a m ate r i a | a) The breaking stress = breaking force + area

= 2400 + 2x10-6

can resist

b) To break the steel bar, the force needed = breaking stress x area

=1.2x10% x 5x107%
= 600,000 N

nsile strength

A tensile test is used to find out what happens when a material such as steel is stretched. A stee
bar is placed in a device that pulls one end away from the other fixed end. The tensile streng
is the maximum stress that the bar can withstand before breaking.

Simulation

Test Level (T Save Bridge (S) Main Menu (M)
Clear Bridge (C)

e (Given the physical laws as the
foundation, it is possible to
build simulations.

3 Follow @LearndgoodGames m

Optimisation

e ...and with simulation,
optimisation follows naturally.

e |tis, simply, trial and error,
which is only possible
because we have the
simulation environment.

Creating Models of Truss Structures with Optimization

Jeffrey Smith Jessica Hodgins
Carnegie Mellon University

Carnegie Mellon University

Irving Oppenheim
Carnegie Mellon University

Andrew Witkin
Pixar Animation Studios

Abstract

We present a method for designing truss structures, a common
and complex category of buildings, using non-linear optimization.
Truss structures are ubiquitous in the industrialized world, appear-
ing as bridges, towers, roof supports and building exoskeletons, yet
are complex enough that modeling them by hand is time consuming
and tedious. We represent trusses as a set of rigid bars connected
by pin joints, which may change location during optimization. By
including the location of the joints as well as the strength of individ-
ual beams in our design variables, we can simultaneously optimize
the geometry and the mass of structures. We present the details of
our technique together with examples illustrating its use, including
comparisons with real structures.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; G.1.6
[Numerical Analysis]: Optimization—Nonlinear programming;
G.1.6 [Numerical Analysis]: Optimization—Constrained optimiza-
tion

Keywords: Physically based modeling, truss structures, con-
strained optimization, nonlinear optimization

1 Introduction

A recurring challenge in the field of computer graphics is the cre-
ation of realistic models of complex man-made structures. The
standard solution to this problem is to build these models by hand,
but this approach is time consuming and, where reference images
are not available, can be difficult to reconcile with a demand for
visual realism. Our paper presents a method, based on practices
in the field of structural engineering, to quickly create novel and
physically realistic truss structures such as bridges and towers, us-
ing simple optimization techniques and a minimum of user effort.
“Truss structures” is a broad category of man-made structures,
including bridges (Figure 1), water towers, cranes, roof support
trusses (Figure 10), building exoskeletons (Figure 2), and tempo-
rary construction frameworks. Trusses derive their utility and dis-
tinctive look from their simple construction: rod elements (beams)

{jeffrey|jkh}@cs.cmu.edu, ijo@andrew.cmu.edu, aw@pixar.com

Figure 1: A cantilever bridge generated by our software, compared
with the Homestead bridge in Pittsburgh, Pennsylvania.

which exert only axial forces, connected concentrically with welded
or bolted joints.

These utilitarian structures are ubiquitous in the industrialized
world and can be extremely complex and thus difficult to model.
For example, the Eiffel Tower, perhaps the most famous truss struc-
ture in the world, contains over 15,000 girders connected at over
30,000 points [Harriss 1975] and even simpler structures, such as
railroad bridges, routinely contain hundreds of members of varying
lengths. Consequently, modeling of these structures by hand can be
difficult and tedious, and an automated method of generating them
is desirable.

1.1 Background

Very little has been published in the graphics literature on the
problem of the automatic generation of man-made structures.
While significant and successful work has been done in recre-

Theory Simulation Optimisation Product

Bridge Abstract Computation ~ Computation Real
Building World
So.ftvvar.e Be?’t ? ? Computation

Engineering Practices

Theory of software engineering is (somewhat) lacking.
Simulation is done via modelling.
Optimisation?

We are probably the only engineering principle, in which
the materials for product, simulation, and optimisation are the same.

Search-Based Software
Engineering

* A large movement(?) that seeks to apply various
optimisation technigues to software engineering
oroblems (NOT search engines or code search)

 Still relatively young (by academic standards)

Why optimisation?

 Automate SE tasks (either fully, or at least until
human engineers can attend to the issue)

* Gain insights into complicated problem domain
that are either too large or too complicated for
humans to understand

* Unbiased decision support that is data-driven

Our Toolbox

» (Classical (exact) optimisation would be desirable
but often cannot cope with the scale

* A heavy focus on stochastic optimisation, with a
heavy emphasis on evolutionary computation and
other nature-inspired algorithms (mostly due to
historical reasons).

 But we are open to applications of any machine
intelligence: neural nets and reinforcement learning
are gaining much attention these days naturally.

Our Stance

 \We stand at the intersection of
computational intelligence and
software engineering.

* Pragmatic application has
stimulated theoretical results
In computational intelligence,
and vice versa.

* Course: about 40% on
optimisation technigues, 60%
on applications on SE

COMPUTATIONAL
INTELLIGENCE
FOR SOFTWARE
ENGINEERING LAB

Computational Intelligence Software Engineering
Local Search Automated Test Genera tion
Genetic Algorithm Software Self-Adaptation
Genetic Programming Fault Localisation

Machine Learning Regression Testing

Monte Carlo Method Code Transplantation

Search-Based
Software Engineering
Optimise Unbiased Automate Insight

Formulate software Support decision Automate SE tasks Provide insights

engineering making process so that human into problem spaces
problems as with quantitative engineers can focus that are too large
optimisation and data-driven on high level and complicated for
and apply alternative abstraction. human engineers to
computational solutions. Machines are good navigate unguided.
intelligence. at trial and error.

Advisor_ Shin Yoo | shin.yoo@kaist.ac.kr Room 2405 E3-1

Up and Coming

Meta-heuristic and computational
intelligence techniques are found
increasingly frequently in SE
papers.

Two major conferences in software
engineering - ICSE and FSE - now
tend to have whole sessions
dedicated to SBSE.

Evolutionary computation
conferences have tracks dedicated
to SE.

Dedicated international conference
(SSBSE) and many other
workshops.

Number of Publications

g

E
<]

8

@
(¢}

o
o

uuuuuuuuuuuuuu

-

Publication growth up to 2012

Another Important Angle

« SEP592/CS454 is named Al-based Software
Engineering, Initially, this meant that we use Al
based technigues to solve SE problems (Al for SE).

* Increasingly, we need to solve SE problems in Al
(SE for Al). Most importantly, there is an urgent
need to test machine learning modules In larger
systems.

e Very early stage, but we are going to look into this.

Machine Learning
WS

p
rr
MO
]

M
OII
T

F Vx—A(x) — —A(a)
F A(a) = ~Vx—A(x)
- A(a) — IxA(x)

Deep Neural
Networks

= Of|lA|, & K= (supervision)E SsH &

== (classification): A, B, COl| sligst= O|MIZE 20| & Ct2, ME2 &
H0| A/B/C & 0 ARIX| 0=

3|4 (regression): y = f(x1,...,Xn)0ll O|M|E 20| E CI2, M2

C}
O

o si&rst=
B (X1,...,x'n)0| =S [[H y'aE o=

22 AEZ (clustering): 0124 7H2| 2I=0] FA!
7|E0M MEZ H|2E ZHETE| BS

O|AEX| (anomaly detection): HAX

OlLt= H|E& HEfVEFIE 22 44X

Coursework 1: Getting to
KNnow the subject

 Choose a paper from the reading list. Write an essay
containing the following points:

 What is the software engineering problem authors are
trying to solve”

* \WWhat are the technical contributions of the paper?
* Why do you like this work, or are interested in this work®
* Please submit a PDF file containing your essay. Submission

should be made via KLMS. It is due on 23:59, 14th July.
Late submission is not allowed for this coursework.

