
Environmental
Impacts

CS489

Shin Yoo

90% of Greenlanders feel
anxiety and depression

caused by climate change.

https://www.theguardian.com/commentisfree/2019/aug/
13/climate-crisis-mental-health-environmental-anguish

https://www.theguardian.com/commentisfree/2019/aug/13/climate-crisis-mental-health-environmental-anguish
https://www.theguardian.com/commentisfree/2019/aug/13/climate-crisis-mental-health-environmental-anguish

What can we do as
software engineers /
computer scientists?

Develop energy efficient systems.

How?

Moore’s Law

• An observation that the
number of transistors in a
dense integrated circuits
doubles roughly every two
years (named after Gordon
Moore, ex-CEO of Intel)

• Moore initially claimed double
every year in 1965.

https://danluu.com/input-lag/

https://danluu.com/input-lag/

1980 1990 2000 2010

50
10
0

15
0

20
0

25
0

30
0

Dan Luu's Latency Data

year

la
te
nc
y(
m
s)

Computers are exponentially getting slower (what?)

1980 1990 2000 2010

50
10
0

15
0

20
0

Dan Luu's Latency Data (w/o outliers)

year

la
te
nc
y(
m
s)

packet around the world = 190ms

If we had to pick one root cause of latency bloat, we might say that it’s because of
“complexity”. Of course, we all know that complexity is bad. If you’ve been to a
non-academic non-enterprise tech conference in the past decade, there’s a good
chance that there was at least one talk on how complexity is the root of all evil and
we should aspire to reduce complexity.

Unfortunately, it's a lot harder to remove complexity than to give a talk saying that
we should remove complexity. A lot of the complexity buys us something, either
directly or indirectly. When we looked at the input of a fancy modern keyboard vs.
the apple 2 keyboard, we saw that using a relatively powerful and expensive
general purpose processor to handle keyboard inputs can be slower than dedicated
logic for the keyboard, which would both be simpler and cheaper. However, using
the processor gives people the ability to easily customize the keyboard, and also
pushes the problem of “programming” the keyboard from hardware into software,
which reduces the cost of making the keyboard. The more expensive chip increases
the manufacturing cost, but considering how much of the cost of these small-batch
artisanal keyboards is the design cost, it seems like a net win to trade
manufacturing cost for ease of programming.

A lot of the complexity might be called accidental complexity, but most of
that accidental complexity is there because it’s so convenient. At every level
from the hardware architecture to the syscall interface to the I/O framework we use,
we take on complexity, much of which could be eliminated if we could sit down
and re-write all of the systems and their interfaces today, but it’s too
inconvenient to re-invent the universe to reduce complexity and we get
benefits from economies of scale, so we live with what we have.

For those reasons and more, in practice, the solution to poor performance
caused by “excess” complexity is often to add more complexity. In particular,
the gains we’ve seen that get us back to the quickness of the quickest machines
from thirty to forty years ago have come not from listening to exhortations to reduce
complexity, but from piling on more complexity.

http://wiki.c2.com/?AccidentalComplexity

Power Consumption

• To a software engineer, energy consumption is a lot like
speed / latency

• We normally do not really think about it until it becomes
a problem

• We are not trained properly to think about it

• We expect better hardware to make the problem go
away (and hardware does get better… but until when?)

What do programmers know
about SW energy consumption?
• A survey of 122 developers

• Only 22 (18%) considers energy consumption when
developing software

• Only 12 (10%) have measured power consumption

• Respondents agreed more about cause of energy
consumption in mobile devices

• But none identified advertisement as a power sink

• Only 19 (16%) identified network as a cause
C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What do programmers know about software energy consumption? IEEE Software, 33(3):83–89, May 2016.

How do you measure
power consumption?

X: too noisy, hard to control programmatically, etc etc

In fact, measuring power consumption remained difficult for long time…

Intel RAPL (Running
Average Power Limit)

• Starting from Sandy Bridge,
Intel has implemented RAPL,
a hardware-based SOC power
consumption monitoring that
can be read from a special
register.

• Linux perf supports it.

jRAPL

http://kliu20.github.io/jRAPL/

http://kliu20.github.io/jRAPL/

K. Liu, G. Pinto, and Y. D. Liu. Data-oriented characterization of application-level energy optimization. In A. Egyed and I. Schaefer, editors, Fundamental
Approaches to Software Engineering, pages 316–331, Berlin, Heidelberg, 2015.

2 Kenan Liu, Gustavo Pinto, and Yu David Liu

often lies with the details [3,20], and the guidelines are often anecdotal or incorrect [19].
Should we pessimistically accept that the optimization space of application-level energy
management as unchartable waters, or is there wisdom we can generalize and share with
application developers in their energy-aware software development?

This paper is aimed at exploring this important yet largely uncharted optimization
space. Even though the energy impact of arbitrary developer decisions — e.g., using en-
cryptions when the battery level is high and no security otherwise — is impossible to
generalize and quantify, we believe a sub-category of such design decisions — those re-
lated to data — have interesting and generalizable correlations with energy consumption.
With Big Data applications on the rise, we believe the data-oriented perspective on study-
ing application-level energy management may in addition have the forward-looking appeal
on future energy-aware software development. In particular, we attempt to answer the
following research questions:

RQ1 How does the choice of application-level features impact energy consumption?
RQ2 How does application-level energy management interact with hardware-level energy

management?

For RQ1, we consciously look into features “middle-of-the-road” in granularity: they
are coarser-grained than instructions [26] or bytecode [12,17] to help retain the high-level
intentions of application developers, yet at the same time finer-grained than software
architectures or frameworks to facilitate reliable quantification. Specifically, we study the
impact of energy consumption over di↵erent choices of:

– data access pattern: For a large amount of data, does the pattern of access (sequential
vs. random, read vs. write) impact energy consumption?

– data organization and representation: For di↵erent representations of the same data
(unboxed vs. boxed data, primitive arrays vs. array lists) have impact on energy con-
sumption?

– data precision: Do precision levels (short, integer, floating points, double, long) of data
have significant impact on energy consumption?

– data I/O strategies : For I/O-intensive applications, do di↵erent choices of bu↵ering
and di↵erent levels of data intensity have impact on energy consumption?

To answer RQ2, we are aimed at connecting application-level energy management
and its lower-level counterparts. It is our belief that energy consumption is the combined
e↵ect of interactions through application software, system software, and hardware; the best
energy management strategy should be the harmonious coordination of all layers of the
compute stack. Concretely, we reinvestigate the aforementioned data-oriented application
features in the context of Dynamic Voltage and Frequency Scaling [13] (DVFS), arguably
the most classic hardware-based energy management strategy. For instance, when the
CPU operational frequency reduces from 2.6Ghz to 1.2Ghz, does it have proportional and
identical impact on energy/performance of two programs, one with sequential access and
the other with random access (or one with double precision and the other with integer
precision)? The answer to this question explores the expanded optimization space where
“software meets hardware, ” over a frontier where software engineering research joins forces
with hardware architecture research.

The paper makes the following contributions:

– It performs the first empirical study that systematically characterizes the optimization
space of application-level energy management, from the fresh perspective of focusing on
data. The energy optimization space is explored through multiple dimensions, ranging

Data Access Pattern

320 K. Liu, G. Pinto, and Y.D. Liu

For the JVM, the parallel garbage collector is used, and just-in-time (JIT)
compilation is enabled to be realistic with real-world Java applications. The ini-
tial heap size and maximum heap size are set to be 1GB and 16GB respectively.
We run each benchmark 6 times within the same JVM; this is implemented by a
top-level 6-iteration loop over each benchmark. The reported data is the average
of the last 4 runs. We chose to report the last 4 runs because JIT execution
tends to stabilize in the later runs [17]. If the standard deviation of such 4 runs
is greater than 5%, we executed the benchmark again until results stabilize. All
experiments were performed with no other load on the OS. Unless explicitly
specified in the paper, the default ondemand governor of Linux is used for OS
power management. Turbo Boost feature is disabled.

3 Application-Level Energy Management

This section explores the optimization space of application-level energy manage-
ment through five data-oriented characterizations.

3.1 Data Access Patterns

We first examine how energy consumption differs under sequential and random
access. By access, we consider both read and write operations. The read micro-
benchmark traverses a large int array (of size N=50,000,000) and retrieves the
value at each position, while the write counterpart micro-benchmark assigns in-
teger 1 to each position. To construct a fair comparison between sequential and
random access, we resort to an “index array” preloaded with index numbers:
numbers from 1 to N in that order for sequential access, and a random permuta-
tion of numbers between 1 and N for random access. Thanks to the index array,
the program logic is identical for sequential and random access. The reported
results do not consider index array preloading.

The figure on the right
shows1 the benchmarking re-
sults, with bars for energy
data and lines for power data.
We do not explicitly show
the execution time, which by
physics, can be derived as the
division of energy and power.
There are 10 bars for each
figure, the first five of which
(with prefix W) indicate write access, and the remaining five (with prefix R) indi-
cate read access. In each group, suffix 1 represents 100% randomness in access, 2
for 25% randomness, 3 for 1% randomness, and 4 for 0.1% randomness, and 5 for
0% randomness, i.e., sequential access. The level of randomness is controlled by

1 Throughout the paper, all bar charts follow the same legends as those in this figure.

Reading/writing 50,000,000 integers from an array.
Cache locality really works.

Counterintuitively, writing is not more expensive.

Data Representation

320 K. Liu, G. Pinto, and Y.D. Liu

For the JVM, the parallel garbage collector is used, and just-in-time (JIT)
compilation is enabled to be realistic with real-world Java applications. The ini-
tial heap size and maximum heap size are set to be 1GB and 16GB respectively.
We run each benchmark 6 times within the same JVM; this is implemented by a
top-level 6-iteration loop over each benchmark. The reported data is the average
of the last 4 runs. We chose to report the last 4 runs because JIT execution
tends to stabilize in the later runs [17]. If the standard deviation of such 4 runs
is greater than 5%, we executed the benchmark again until results stabilize. All
experiments were performed with no other load on the OS. Unless explicitly
specified in the paper, the default ondemand governor of Linux is used for OS
power management. Turbo Boost feature is disabled.

3 Application-Level Energy Management

This section explores the optimization space of application-level energy manage-
ment through five data-oriented characterizations.

3.1 Data Access Patterns

We first examine how energy consumption differs under sequential and random
access. By access, we consider both read and write operations. The read micro-
benchmark traverses a large int array (of size N=50,000,000) and retrieves the
value at each position, while the write counterpart micro-benchmark assigns in-
teger 1 to each position. To construct a fair comparison between sequential and
random access, we resort to an “index array” preloaded with index numbers:
numbers from 1 to N in that order for sequential access, and a random permuta-
tion of numbers between 1 and N for random access. Thanks to the index array,
the program logic is identical for sequential and random access. The reported
results do not consider index array preloading.

The figure on the right
shows1 the benchmarking re-
sults, with bars for energy
data and lines for power data.
We do not explicitly show
the execution time, which by
physics, can be derived as the
division of energy and power.
There are 10 bars for each
figure, the first five of which
(with prefix W) indicate write access, and the remaining five (with prefix R) indi-
cate read access. In each group, suffix 1 represents 100% randomness in access, 2
for 25% randomness, 3 for 1% randomness, and 4 for 0.1% randomness, and 5 for
0% randomness, i.e., sequential access. The level of randomness is controlled by

1 Throughout the paper, all bar charts follow the same legends as those in this figure.

Data-Oriented Characterization of Application-Level Energy Optimization 321

index range: e.g., we imitate 1% random access by allowing random permutation
within each N × 1% interval of the array.

The data reveals the significant impact of access randomness on energy con-
sumption. The more random data access is, the more energy is consumed. This
is consistent with hardware behaviors due to cache locality. Further observe that
read vs. write accesses make little difference on energy consumption. The conven-
tional folklore is that writes are often more expensive than reads, but this effect,
if any, appears to be small on energy consumption. In fact, in one combination
R3 vs. W3, the opposite is true.

3.2 Data Representation Strategies

Let us now investigate the impact of different data representation strategies on
energy consumption. First, we look into the difference between representing a
sequence of integers as a primitive array and as an ArrayList. We construct a
similar experiment as one described in Section 3.1, by traversing an ArrayList
of Integer’s of a large size (N = 50,000,000). We mimic “read” through the
List.get(int i) method, and “write” through the List.set(int i, Object o)
method.

The results of the ArrayList
implementation are shown the
figure on the right, where
SEQ/RAN/R/W labels denote se-
quential, 100% random, read,
and write access, respectively.
Compared with Section 3.1,
energy consumption is much
higher: the RAN-R configuration
with primitive array represen-
tation consumes around 670J, whereas its counterpart result here is around
1550J. This does not come as a surprise. ArrayList uses boxed data (of Integer
type) whereas our primitive array implementation uses unboxed data (of int
type). Furthermore, the getter/setter required by ArrayList are method invo-
cations, more expensive than primitive array read/write.

This experiment motivated us to answer a more general question related to
object-oriented languages: when we say an object is accessed, which representa-
tion of the object is being accessed: a reference to it, a value it holds, or the type
it has? Do they have the same effect on energy consumption? We construct the
next experiments, in three groups:

– Reference Query (RQ): accesses the reference of an Integer object;

– Type Query (TQ): accesses the type held by an Integer object;

– Value Query (VQ): accesses the value that an Integer object holds;

int[]

ArrayList<Integer>

Abstract data types are
significantly more expensive.

Types of Query322 K. Liu, G. Pinto, and Y.D. Liu

The result on the right is
divided into three groups as
above. In each group, postfix
1 denotes 100% random access,
2 denotes 25% random access,
and 3 denotes sequential access.
For the TQ experiment, our
benchmark applies instanceof
operator to the object. To avoid
source-level compiler optimiza-
tion performed by modern Java compilers such as transforming expression x
instanceof Integer to a no-op if x is only assigned to hold an Integer ob-
ject, our micro-benchmark assigns objects of different types to reference x, and
the instanceof operator cannot be optimized away through standard points-
to analysis.

RQ and TQ are both more efficient than VQ. According to the runtime se-
mantics of object-oriented programs, RQ only entails a stack access, whereas VQ
includes access to the heap, a much more expensive operation.

Less obvious is the case of TQ. On one hand, the type of an object is stored
as object metadata, whose access also requires heap access. As a result, TQ is
more expensive than RQ. On the other hand, all objects of the same type share
the same metadata representing the type, and repeated queries of the same type
yield high cache hits. As a result, TQ is cheaper than VQ.

3.3 Data Organization

In the next experiment, we consider two programs in Figure 1 and Figure 2.
Functionally equivalent, the first object-centric program accesses a large array
(of size N=50,000,000) of objects with 5 fields, and the second attribute-centric
program accesses 5 primitive arrays.

As shown here, the object-
centric data grouping consumes
about 2.62x energy. The re-
sults here may reveal a trade-
off between programming
productivity and energy effi-
ciency. Object-oriented encap-
sulation is known to have many
benefits, such as modularity, in-
formation hiding, and maintain-
ability. That being said, it does pay a toll on energy consumption, likely due to
garbage collection. Another plausible cause is that there is no guarantee that
objects in the array are allocated in contiguous space on the heap. As a result,
even though Fig. 1 may be cache-friendly for retrieving the 5 fields for the same
object, it may incur more cache misses when the entire array is traversed.

Reference Query (RQ) accesses stack, whereas the Value Query (VQ)
accesses the heap (much slower).

Type Query (TQ) access object metadata on the heap, but instances
of the same type shares the same metadata, so caching kicks in.

1: 100% random access, 2: 25% random access, 3: sequential access

Data Organisation
Data-Oriented Characterization of Application-Level Energy Optimization 323

class Grouped {
int a, b, c, d, e = ...;

}
class Main {
Grouped[] group = ...;
void calc() {
for (int i = 0; i < N; i++) {
group[i].e = group[i].a * group[i].b * group[i].c * group[i].d;

}}}

Fig. 1. Object-Centric Data Grouping

class Main {
int[] a = ..; int[] b = ..; int[] c = ..; int[] d = ..; int[] e = ..;
void calc() {
for (int i = 0; i < N; i++) {
e[i] = a[i] * b[i] * c[i] * d[i];

}}}

Fig. 2. Attribute-Centric Data Grouping

3.4 Data Precision Choices

We next analyze the impact of data precision choices on energy consumption.
Our micro-benchmark performs the multiplication of two 1000 × 1000 matri-
ces. For our experiments, we vary the matrix element type, declared with the
short, int, float, double, and long types respectively for each variation of the
benchmark. In our environment, short/int/float/double/long data types are
16/32/32/64/64 bits respectively. To set a fair comparison, we pre-fill matrices
with double values through random number generation. All other variations
of the benchmark pre-fill their matrix data through data conversion from the
double matrix. In other words, all experiments operate on matrices of com-
parable values, only with different precisions. Our reported results exclude the
pre-filling/converting stage above.

Our experiments show that
energy consumption grows with
the number of bits (a) among
the non-floating point data
types, as reflected by the rela-
tive standings between short,
int, and long. (b) among float-
ing point data types, as seen in
the relative standings between
float and double. Both are
consistent with architecture-level comparisons, where instructions operating on
more bytes/words are more expensive.

It is however unreliable to use the number of bits to cross-compare between
non-floating point types and floating point types. Programs with floating point

Data Organisation

322 K. Liu, G. Pinto, and Y.D. Liu

The result on the right is
divided into three groups as
above. In each group, postfix
1 denotes 100% random access,
2 denotes 25% random access,
and 3 denotes sequential access.
For the TQ experiment, our
benchmark applies instanceof
operator to the object. To avoid
source-level compiler optimiza-
tion performed by modern Java compilers such as transforming expression x
instanceof Integer to a no-op if x is only assigned to hold an Integer ob-
ject, our micro-benchmark assigns objects of different types to reference x, and
the instanceof operator cannot be optimized away through standard points-
to analysis.

RQ and TQ are both more efficient than VQ. According to the runtime se-
mantics of object-oriented programs, RQ only entails a stack access, whereas VQ
includes access to the heap, a much more expensive operation.

Less obvious is the case of TQ. On one hand, the type of an object is stored
as object metadata, whose access also requires heap access. As a result, TQ is
more expensive than RQ. On the other hand, all objects of the same type share
the same metadata representing the type, and repeated queries of the same type
yield high cache hits. As a result, TQ is cheaper than VQ.

3.3 Data Organization

In the next experiment, we consider two programs in Figure 1 and Figure 2.
Functionally equivalent, the first object-centric program accesses a large array
(of size N=50,000,000) of objects with 5 fields, and the second attribute-centric
program accesses 5 primitive arrays.

As shown here, the object-
centric data grouping consumes
about 2.62x energy. The re-
sults here may reveal a trade-
off between programming
productivity and energy effi-
ciency. Object-oriented encap-
sulation is known to have many
benefits, such as modularity, in-
formation hiding, and maintain-
ability. That being said, it does pay a toll on energy consumption, likely due to
garbage collection. Another plausible cause is that there is no guarantee that
objects in the array are allocated in contiguous space on the heap. As a result,
even though Fig. 1 may be cache-friendly for retrieving the 5 fields for the same
object, it may incur more cache misses when the entire array is traversed.

Recall Dan Luu: what are
we buying with the extra

power consumption here?

Convenience in programming: the high level abstraction of OO

Java I/O

G. Rocha, F. Castor, and G. Pinto. Comprehending energy behaviors of java i/o apis. In 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–12, Sep. 2019.

TABLE I: Characteristics of the studied Java I/O APIs.

Class Acronym Method instrumented Extends from Available from # in OSS projects

BufferedWriter BW void write(String str) java.io.Writer JDK 1.1 4,705
FileWriter FW void write(String str) java.io.Writer JDK 1.1 3,353
StringWriter SW void write(String str) java.io.Writer JDK 1.1 2,026
PrintWriter PW void write(String str) java.io.Writer JDK 1.1 10,501
CharArrayWriter CAW void write(String str) java.io.Writer JDK 1.1 572
BufferedReader BR int read() java.io.Reader JDK 1.1 12,441
LineNumberReader LNR int read() java.io.Reader JDK 1.1 897
CharArrayReader CAR int read() java.io.Reader JDK 1.1 187
PushbackReader PBR int read() java.io.Reader JDK 1.1 779
FileReader FR int read() java.io.Reader JDK 1.1 1,695
StringReader SR int read() java.io.Reader JDK 1.1 536
FileOutputStream FOS void write(byte[] b) java.io.OutputStream JDK 1.0 3,541
ByteArrayOutputStream BAOS void write(byte[] b) java.io.OutputStream JDK 1.0 6,946
BufferedOutputStream BOS void write(byte[] b) java.io.OutputStream JDK 1.0 1,753
PrintStream PST void print(String str) java.io.OutputStream JDK 1.0 8,424
FileInputStream FIS int read() java.io.InputStream JDK 1.0 2,823
BufferedInputStream BIS int read() java.io.InputStream JDK 1.0 1,832
PushbackInputStream PBIS int read() java.io.InputStream JDK 1.0 688
ByteArrayInputStream BAIS int read() java.io.InputStream JDK 1.0 1,532

For each one of the studied Java I/O APIs, we implemented
the following task: each Java I/O API that implements input
operations reads a 20Mb HTML file. Similarly, the classes that
implement output operations write into disk 20Mb of data in
an HTML file.

2) Optimized Benchmarks: In addition to the micro-
benchmarks, we also studied three benchmarks from the
Computer Language Benchmark Game1. Although small (they
have about 200 lines of code), the optimized benchmarks are
intrinsically different from the micro-benchmarks due to at
least two important reasons: (1) they perform sophisticated
programming tasks and (2) they are designed by experts to be
optimized for performance. As a consequence, these bench-
marks have been employed in several optimization studies tar-
geting programming languages [18] and virtual machines [1].
Among the benchmarks available at the Computer Language
Benchmark Game repository, only three of them perform I/O
operations. They are:

FASTA:
2 This benchmark groups DNA, RNA, or proteins

structures. This benchmark uses the method write(byte[] b)
from the OutputStream class to write sequences of characters
such as “GGGATACCGTACA” in the output stream. This
benchmark performs only output operations and has 329 lines
of code.

K-NUCLEOTIDE:
3 This benchmark takes a DNA sequence,

and counts the occurrences and their frequencies of nucleotide
patterns. It receives as input the FASTA output. It uses the
method String readLine() from the BufferedReader class
to read the output file generated by the FASTA benchmark.
This benchmark performs only input operations and has 205
lines of code.

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/
2https://benchmarksgame-team.pages.debian.net/benchmarksgame/

program/fasta-java-5.html
3https://benchmarksgame-team.pages.debian.net/benchmarksgame/

program/knucleotide-java-1.html

REVERSE-COMPLEMENT:
4 It reads the output of the FASTA

benchmark and creates the reverse complement of each se-
quence, that is a new DNA sequence that connects with the
old one. In parallel, it saves the reverse complements in
text files. It reads the FASTA output using the method int
read(byte b[], int off, int len) from the InputStream
class. To write the output, it uses the method void write(byte
b[], int off, int len) from the OutputStream class. This
benchmark performs input and output operations and has 292
lines of code.

3) Macro-Benchmarks: Finally, we also explored macro-
benchmarks. These benchmarks are real, working software
systems. We chose five macro-benchmarks: three of them from
the DaCapo benchmarks suite [3], and two of them from
open-source repositories. The DaCapo macro-benchmarks are
the following: XALAN, FOP, and BATIK. The open source
projects are the following: COMMONS-IO and PGJDBC. The
DaCapo benchmarks have multiple workload configurations
available, e.g., small, medium, and large. These workloads
vary in terms of the input size. For the other benchmarks,
we created the workloads ourselves. More details about the
macro-benchmarks is provided next.

XALAN:
5 This is an XSLT processor that translates XML

documents into HTML files, or other types of documents. The
benchmark processes 17 XML files, which are small and have
a maximum size of 40 KB. The benchmark was built to use
different workloads; The workloads used were: small (repeats
the process 10 times; for a total 170 XML files processed;
on average, the output file has 320 KB), default (repeats the
process 100 times; for a total 1,700 XML files processed; on
average, the output file has 3.1 MB), and large (repeats the
process 1,000 times; 17,000 XML files processed. On average,
each output file has 30 MB). This benchmark has 171,908 lines

4https://benchmarksgame-team.pages.debian.net/benchmarksgame/
program/revcomp-java-8.html

5https://xml.apache.org/xalan-j/

Java I/O
(a) Input (b) Output

Fig. 1: Energy consumption behavior of Java I/O APIs. Energy data is presented in a logarithmic scale. For the figure
on the left, PBIS stands for PushbackInputStream, FIS stands for FileInputStream, RAF stands for RadomAccessFile,
SCN stands for Scanner, PBR stands for PushbackReader, FR stands for FileReader, LNR stands for LineNumberReader,
BR stands for BufferedReader, CAR stands for CharArrayReader, BIS stands for BufferedInputStream, BAIS stands
for ByteArrayInputStream, SR stands for StringReader, RFAL stands for Files.readAllLines, BRFL stands for
Files.newBufferedReader, and RFL stands for Files.lines. For the figure on the right, FW stands for FileWriter, PST
stands for PrintStream, BW stands for BufferedWriter, PW stands for PrintWriter, FOS stands for FileOutputStream,
BOS stands for BufferedOutputStream, SW stands for StringWriter, CAW stands for CharArrayWriter, BAOS stands for
ByteArrayOutputStream.

be read again. However, before reading the bytes, this Java
I/O API also checks whether the stream is still open using
the ensureOpen() method. This repetitive operation has the
potential to be the source of this high energy consumption.

Interestingly, according to our query made at BOA [10],
FileInputStream is heavily used in open source projects
(2,823 OSS projects employ this Java I/O API). On the
other hand, the Files micro-benchmark, which could act
as a potential replacement for FileInputStream, is the
one with the least energy consumption, when performing
with its lines method (1,86 joules). Similar energy con-
sumption was found when performing with other meth-
ods such as Files.newBufferedReader (1,90 joules) and
Files.readAllLines (1,97 joules). In general, classes that
exhibited greater energy consumption did so because their
memory usage was more intensive (and therefore consumed
more energy) than the other classes. In addition, meth-
ods from the Files class, which is part of the java.nio
package, regularly consumed less energy than counterparts
from the java.io package. Files.newBufferedReader and
Files.readAllLines can be partially justified due to the fact
that the latter uses the former in its implementation, adding
to it additional behavior, such as including the read lines in
a List<String> object. Furthermore, a careful reader would
observe that the method Files.newBufferedReader shares
a similar name to the class BufferedReader, although its
energy behavior is slightly different. To better understand these
differences, we studied the source code of these classes. We
believe this happens because the Files.newBufferedReader
method uses a different InputStream object provided by

the java.nio.file.FileSystemProvider class. On the other
hand, the BufferedReader class, specifically for this micro-
benchmark, uses the java.io.FileReader as an instance of
the InputStream class.

Java I/O APIs that perform output operations. Regard-
ing the Java I/O APIs that perform output operations, the
FileWriter class was the most inefficient one (1,55 joules
consumed), followed by PrintStream (1,30 joules), and
PrintWriter (1,29 joules). This behavior is particularly due to
the way FileWriter, in particular, writes chars to file. Before
writing the chars, they pass through an encoding process.
The encode could change depending on the chosen charset.
The code snippet presented in Figure 2 describes the use of
the encoder object inside the implWrite() method (which is
called by the write() method).

void implWrite(char[] v1, int v2, int v3) {
// instance the character buffer in ’v4’
while(v4.hasRemaining()) {

// perform the character encode
v5 = encoder.encode(v4, bb, false);
// write data

} }

Fig. 2: A code snippet of the StreamEncoder class, used by
the FileWriter class.

The PrintStream and the PrintWriter, on the other
hand, work as wrappers of the BufferedWriter class, adding
to it additional features such as efficient writing of sin-

Display Energy Optimisation
for OLED Displays

D. Li, A. H. Tran, and W. G. J. Halfond. Making web applications more energy efficient for oled smartphones. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 527–538, 2014. ACM.

ment, the server was a Core i7@2.8GHz desktop with 8GB
of RAM running Linux kernel 3.8 and Tomcat 6. The smart-
phone was a Samsung Galaxy II running Android 4.0 and
connected to the server via wireless. To calculate the over-
head, we compared the average time of the Loading and
Rendering phase. We used the time for this phase as it
represents the time that users need to wait before they can
see the contents of the web application. We measured this
time on the server and client side over ten executions of the
experiment for RQ2.

The results of this experiment are shown in Figure 4.
The results show that, on average, the transformed versions
take 2.4% more time than the original. However, as can be
seen in the figure, sometimes the transformed application
is faster. Even for applications where we only transformed
CSS files, we saw similar di↵erences. We investigated this
further by checking the results across di↵erent executions.
Our results indicated that average loading time for all ver-
sions was about 7 seconds and even the same version of an
application would routinely vary by up to 1.2 seconds with
a standard deviation of about 5.6%. From this data we con-
cluded that variations in the wireless signal were likely dom-
inating any variation introduced by our modification over-
head. To eliminate interference from the wireless, we also
measured execution time just on the server side. On av-
erage the server side increase was 34ms, which represented
about a 22% increase. However, the actual distribution was
bi-modal with an average of a 75% increase for apps whose
code was modified as opposed to almost 0% for those with
only template changes. This result is fairly intuitive, as any
modification to a template based web application did not re-
quire much additional runtime overhead and in cases where
runtime transformations were required, there were relatively
few of these operations.

Figure 5: Comparison in questionnaires

7.6 RQ4: User Acceptance
To address the fourth research question, we conducted

an end-user survey in which users were asked to compare
and rate the appearance of the original and transformed
web applications. The survey group was 20 M.S. and Ph.D.
students at the University of Southern California who were
enrolled in the third author’s graduate level testing and anal-
ysis class. The students were asked to complete an anony-
mous online survey on their own time and no incentives were

Table 2: Subject Application Information

Attractiveness Readability

Name Ori Trans Ori Trans Preference(%)

Bookstore 6.5 4.2 7.6 5.9 24

Portal 6.9 5.3 7.5 5.6 18

JavaLibrary 6.7 6.9 7.0 6.4 29

ClassRoom 6.8 6.4 7.2 7.1 59

Roller 7.0 6.5 6.9 5.5 24

Scarab 7.4 5.4 6.9 6.5 18

jForum 7.0 5.4 7.0 5.4 12

 0%

 20%

 40%

 60%

 80%

 100%

Bookstore Portal ClassRoom JavaLibrary Scarab Roller jForum

General Use
Battery Low
Battery Critical
Never

Figure 6: The Acceptance rate of transformed web appli-
cation

provided to the students to complete the survey. No back-
ground on the research project was given to the students and
no connection of the work to the third author was suggested.
The survey presented users with a series of before/after

screenshots of the seven subject applications. An example
for the Bookstore application is shown in Figure 5. For each
image, the survey group was asked to rate the attractiveness
and readability of each version on a scale of 1 to 10, with 10
being the highest. The users were then asked which version
they would prefer to use. Finally, the last question asked if
the black background version could save them X% energy, at
what battery level would they choose to use it. For each app,
X was replaced by the energy savings of the Display phase.
The available responses were “Always–regardless of battery
level,” “Most of the time,” “Only when the battery level is
low,”“Only when the battery level is critical,” and “Never.”
The wording of the questions and forms are available via the
project web page [20].
We received 17 responses to the survey. The results are

shown in Table 2 and Figure 6. In Table 2, the columns
Attractiveness and Readability report the related scores of
both the original version and transformed version. The sub-
columns Ori and Trans represent the original and trans-
formed version receptively. The column Preference reports
the percentage of users who prefer the transformed web ap-
plication over the original one. The In Figure 6, we report
when users would choose to use the transformed web appli-
cation. For space reasons, we merged the option “Always–
regardless of battery level,” and “Most of the time” into
“General Use.” The bars show the di↵erent time points.
The y-axis is the percentage of users who would switch to
the transformed version at each time point.
For attractiveness, the original app received an average

score of 6.9 and the transformed app a score of 5.7, an av-
erage decrease of about 17%. This indicates that gener-
ally the users thought the color scheme of the original apps
were more visually appealing than the transformed version,
but only by a relatively small di↵erence. In fact, for one

535

OLED displays consume more
power when displaying
brighter colours: this research
automatically changes web
application’s colour scheme
for low energy consumption.

It can reduce display energy
consumption by up to 40%

There are areas of SW technology
that are increasingly burning more

fuel. Guess what they are…?

Deep Learning

GPU is a power hog.

https://arxiv.org/abs/1906.02243

https://arxiv.org/abs/1906.02243

ar
X

iv
:1

90
6.

02
24

3v
1

 [c
s.C

L]
 5

 Ju
n

20
19

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

Model Hardware Power (W) Hours kWh·PUE CO2e Cloud compute cost

Transformerbase P100x8 1415.78 12 27 26 $41–$140
Transformerbig P100x8 1515.43 84 201 192 $289–$981
ELMo P100x3 517.66 336 275 262 $433–$1472
BERTbase V100x64 12,041.51 79 1507 1438 $3751–$12,571
BERTbase TPUv2x16 — 96 — — $2074–$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973–$3,201,722
NAS TPUv2x1 — 32,623 — — $44,055–$146,848
GPT-2 TPUv3x32 — 168 — — $12,902–$43,008

Table 3: Estimated cost of training a model in terms of CO2 emissions (lbs) and cloud compute cost (USD).7 Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

4 Experimental results

4.1 Cost of training

Table 3 lists CO2 emissions and estimated cost of
training the models described in §2.1. Of note is
that TPUs are more cost-efficient than GPUs on
workloads that make sense for that hardware (e.g.
BERT). We also see that models emit substan-
tial carbon emissions; training BERT on GPU is
roughly equivalent to a trans-American flight. So
et al. (2019) report that NAS achieves a new state-
of-the-art BLEU score of 29.7 for English to Ger-
man machine translation, an increase of just 0.1
BLEU at the cost of at least $150k in on-demand
compute time and non-trivial carbon emissions.

4.2 Cost of development: Case study

To quantify the computational requirements of
R&D for a new model we study the logs of
all training required to develop Linguistically-
Informed Self-Attention (Strubell et al., 2018), a
multi-task model that performs part-of-speech tag-
ging, labeled dependency parsing, predicate detec-
tion and semantic role labeling. This model makes
for an interesting case study as a representative
NLP pipeline and as a Best Long Paper at EMNLP.

Model training associated with the project
spanned a period of 172 days (approx. 6 months).
During that time 123 small hyperparameter grid
searches were performed, resulting in 4789 jobs
in total. Jobs varied in length ranging from a min-
imum of 3 minutes, indicating a crash, to a maxi-
mum of 9 days, with an average job length of 52
hours. All training was done on a combination of
NVIDIA Titan X (72%) and M40 (28%) GPUs.8

The sum GPU time required for the project
totaled 9998 days (27 years). This averages to

8We approximate cloud compute cost using P100 pricing.

Estimated cost (USD)
Models Hours Cloud compute Electricity

1 120 $52–$175 $5
24 2880 $1238–$4205 $118
4789 239,942 $103k–$350k $9870

Table 4: Estimated cost in terms of cloud compute and
electricity for training: (1) a single model (2) a single
tune and (3) all models trained during R&D.

about 60 GPUs running constantly throughout the
6 month duration of the project. Table 4 lists upper
and lower bounds of the estimated cost in terms
of Google Cloud compute and raw electricity re-
quired to develop and deploy this model.9 We see
that while training a single model is relatively in-
expensive, the cost of tuning a model for a new
dataset, which we estimate here to require 24 jobs,
or performing the full R&D required to develop
this model, quickly becomes extremely expensive.

5 Conclusions

Authors should report training time and

sensitivity to hyperparameters.

Our experiments suggest that it would be benefi-
cial to directly compare different models to per-
form a cost-benefit (accuracy) analysis. To ad-
dress this, when proposing a model that is meant
to be re-trained for downstream use, such as re-
training on a new domain or fine-tuning on a new
task, authors should report training time and com-
putational resources required, as well as model
sensitivity to hyperparameters. This will enable
direct comparison across models, allowing subse-
quent consumers of these models to accurately as-
sess whether the required computational resources

9Based on average U.S cost of electricity of $0.12/kWh.

Model Hardware Power (W) Hours kWh·PUE CO2e Cloud compute cost

Transformerbase P100x8 1415.78 12 27 26 $41–$140
Transformerbig P100x8 1515.43 84 201 192 $289–$981
ELMo P100x3 517.66 336 275 262 $433–$1472
BERTbase V100x64 12,041.51 79 1507 1438 $3751–$12,571
BERTbase TPUv2x16 — 96 — — $2074–$6912
NAS P100x8 1515.43 274,120 656,347 626,155 $942,973–$3,201,722
NAS TPUv2x1 — 32,623 — — $44,055–$146,848
GPT-2 TPUv3x32 — 168 — — $12,902–$43,008

Table 3: Estimated cost of training a model in terms of CO2 emissions (lbs) and cloud compute cost (USD).7 Power
and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

4 Experimental results

4.1 Cost of training

Table 3 lists CO2 emissions and estimated cost of
training the models described in §2.1. Of note is
that TPUs are more cost-efficient than GPUs on
workloads that make sense for that hardware (e.g.
BERT). We also see that models emit substan-
tial carbon emissions; training BERT on GPU is
roughly equivalent to a trans-American flight. So
et al. (2019) report that NAS achieves a new state-
of-the-art BLEU score of 29.7 for English to Ger-
man machine translation, an increase of just 0.1
BLEU at the cost of at least $150k in on-demand
compute time and non-trivial carbon emissions.

4.2 Cost of development: Case study

To quantify the computational requirements of
R&D for a new model we study the logs of
all training required to develop Linguistically-
Informed Self-Attention (Strubell et al., 2018), a
multi-task model that performs part-of-speech tag-
ging, labeled dependency parsing, predicate detec-
tion and semantic role labeling. This model makes
for an interesting case study as a representative
NLP pipeline and as a Best Long Paper at EMNLP.

Model training associated with the project
spanned a period of 172 days (approx. 6 months).
During that time 123 small hyperparameter grid
searches were performed, resulting in 4789 jobs
in total. Jobs varied in length ranging from a min-
imum of 3 minutes, indicating a crash, to a maxi-
mum of 9 days, with an average job length of 52
hours. All training was done on a combination of
NVIDIA Titan X (72%) and M40 (28%) GPUs.8

The sum GPU time required for the project
totaled 9998 days (27 years). This averages to

8We approximate cloud compute cost using P100 pricing.

Estimated cost (USD)
Models Hours Cloud compute Electricity

1 120 $52–$175 $5
24 2880 $1238–$4205 $118
4789 239,942 $103k–$350k $9870

Table 4: Estimated cost in terms of cloud compute and
electricity for training: (1) a single model (2) a single
tune and (3) all models trained during R&D.

about 60 GPUs running constantly throughout the
6 month duration of the project. Table 4 lists upper
and lower bounds of the estimated cost in terms
of Google Cloud compute and raw electricity re-
quired to develop and deploy this model.9 We see
that while training a single model is relatively in-
expensive, the cost of tuning a model for a new
dataset, which we estimate here to require 24 jobs,
or performing the full R&D required to develop
this model, quickly becomes extremely expensive.

5 Conclusions

Authors should report training time and

sensitivity to hyperparameters.

Our experiments suggest that it would be benefi-
cial to directly compare different models to per-
form a cost-benefit (accuracy) analysis. To ad-
dress this, when proposing a model that is meant
to be re-trained for downstream use, such as re-
training on a new domain or fine-tuning on a new
task, authors should report training time and com-
putational resources required, as well as model
sensitivity to hyperparameters. This will enable
direct comparison across models, allowing subse-
quent consumers of these models to accurately as-
sess whether the required computational resources

9Based on average U.S cost of electricity of $0.12/kWh.

Estimated cost of running all experiments for the paper:

 E. Strubell, P. Verga, D. Andor, D. Weiss, and A. McCallum. Linguistically-informed self-attention for semantic role labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 5027–5038, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational

Linguistics.

Cryptocurrency 🤯

Cryptocurrency 101

• Transactions on decentralised cryptocurrency are
recorded on blockchain

• Blockchain is simply distributed chain of key-value
storage: each “block” contains the cryptographic hash
of the previous block

• You cannot modify a block in the middle without
changing the consensus of the entire chain:
decentralised transparency!

Proof-of-Work
• Some computation that is reasonably difficult to do, but easy to verify: this is

often used to prevent denial-of-service

• Hashcash PoW for spam prevention

• Sender generates a random number and adds this to the message header

• Sender computes 160 bit SHA1 of the header until the first 20 bits are all
zero: there are 2120 such hash values out of 2160

• Receiver just needs to compute the SHA1 of the header

• All major cryptocurrencies use the Proof-of-Work scheme to verify the
generation of new block: when you add a new block, you get a portion of the
fees from the transactions recorded in the block. The difficulty of the PoW is
controlled so that a new block can be generated at a desired interval.

https://www.nature.com/articles/s41558-018-0321-8

https://www.nature.com/articles/s41558-018-0321-8

From 1860 to 2014, humanity emitted ~584.4 GtC from fossil fuel
combustion, industry processes and land-use change, which has been
mirrored by ~0.9 °C of global warming (green line in Fig. 1a). Temperature
projections from 42 Earth system models (ESMs) developed for the recent
Coupled Model Intercomparison Project Phase 5 (CMIP5) under four alternative
emission scenarios show that an additional 231.4 to 744.8 GtC would push
global warming across the 2°C threshold. Reducing emissions to keep
warming below 2°C is already regarded as a very difficult challenge given the
increasing human population and consumption1 as well as a lack of political
will. Then came Bitcoin.

Compiling data on the electricity consumption of the various computing systems
used for Bitcoin verification at present and the emissions from electricity
production in the countries of the companies that performed such computing,
we estimated that in 2017, Bitcoin usage emitted 69 MtC.

https://www.nature.com/articles/s41558-018-0321-8#Fig1

https://digiconomist.net/bitcoin-energy-consumption

https://digiconomist.net/bitcoin-energy-consumption

https://digiconomist.net/bitcoin-electronic-waste-monitor/

https://digiconomist.net/bitcoin-electronic-waste-monitor/

Proof-of-Stake
• In PoW, whoever first solves (pays) the hashcash for the next

block wins the block

• In Proof-of-Stake scheme, the next block is assigned to an
order based on various “stake”:

• Ethereum 2.0 proposal: anyone who wants to become a
validator makes a deposit of stake - then one of the
validators is randomly chosen to generate the next valid
block on the chain

• This has been discussed for a number of years, but
Ethereum is yet to move onto PoS scheme.

Existential Threats?
• To me personally, the environmental concerns are the

most painful to think about; they pose the most direct
dilemma to us engineers and scientists.

• Whatever we do is likely to add complexity to the
system.

• Yet the complexity itself may be the source of all this
problems.

• Should we just disappear? Is giving up the only logical
conclusion? Or should we still believe in technology?

Concluding Thoughts

• Do you believe in “appropriate technology”? Are we
spoiled by too much convenience?

• Are you prepared to give up any of the technological
convenience for the environment? As a developer, not a
consumer?

