
Intellectual Property
& Provenance

CS489

Shin Yoo

Open Source SW are
free to use.

Copyleft means you let
go of your copyright.

IP?

• Tangible things such as ideas, inventions, technologies,
artworks, music, and literature to which one can claim
ownership.

• Copyright, Patent, Trade Secret

Patent & Trade Secret
• Patent: you get an exclusive right to a technology at the

cost of making it public

• Trade Secret: you protect a hidden technology. Due to
secrecy, it is much harder to characterise formally.

• Extent of outside knowledge, extent of measures taken
by individuals to protect the secret, the value of the
information to the owner and the competitor, the cost
of development, the difficulty of duplicating the
information

Copyright

• Copyright protects expression: in general, any original
work that has a tangible form and is fixed in a medium is
protectable under copyright law (Kizza).

• First established as the right of an author in 1710 in Great
Britain.

• Right of the author is protected for a pre-defined duration,
after which the work goes into the public domain.

Expiration & Public Domain

• Berne Convention (1886): protects the copyright for 50
years after the death of the author

• US Copyright Law: was life + 50 years, and later extended
to life + 70 years

• Korea: was life + 50 years, and later extended to life + 70
years with Korea-USA FTA :)

• Public Domain: work in public domain are not protected
by copyright law and can be used by any member of the
public without permission

Eligibility
• US Copyright Office: originality, fixation, expression

• Originality: Facts cannot be copyrighted, known or
unknown, because it cannot be invented. Theories
cannot be copyrighted. Ideas are common property
and cannot be protected: ideas acquire originality
through expression.

• Fixation: we inherit this from Gutenberg (i.e., the thing
protected is printed and therefore fixed). There is
inherent tension between the concept of fixation and
digital contents.

License
• Copyright license is a form of contract (“permissions

agreement”) between the holder of the copyright and
someone who wants to use the protected work.

• Public copyright license: blanket license that grants
permissions to anyone in the general public. The holder can
decide to apply public copyright license.

User (Licensee) Right Berne CC0

0. free access, and freedom to use the work as you wish ("use" includes to run a program
or to execute a music score) Partial Yes

1. freedom to access the "source-code" and use it as you wish, for study or change it for
personal use. No Yes

2. freedom to redistribute copies No Yes

2.1 right to quote (freedom to redistribute copies of fragments)
 Yes (small amount) Yes (any amount)

3. freedom to distribute copies of your modified versions to others No Yes

CC

• American Non-profit Organisation, devoted to expanding
the range of creative works available for others to build
upon legally and to share (https://creativecommons.org/
faq/)

• Provides template licenses that people can easily adopt.
Templates have evolved over time.

https://creativecommons.org/faq/
https://creativecommons.org/faq/

CC Conditions
• Attribution (by): All CC licenses require that others who

use your work in any way must give you credit the way
you request, but not in a way that suggests you endorse
them or their use. If they want to use your work without
giving you credit or for endorsement purposes, they must
get your permission first.

• ShareAlike (sa): You let others copy, distribute, display,
perform, and modify your work, as long as they distribute
any modified work on the same terms. If they want to
distribute modified works under other terms, they must
get your permission first.

CC Conditions

• NonCommercial (nc): You let others copy, distribute,
display, perform, and (unless you have chosen
NoDerivatives) modify and use your work for any purpose
other than commercially unless they get your permission
first.

• NoDerivatives (nd): You let others copy, distribute, display
and perform only original copies of your work. If they want
to modify your work, they must get your permission first.

CC Licenses
• CC0

• Attribution (CC BY)

• Attribution ShareAlike (CC BY-SA)

• Attribution-NoDerives (CC BY-ND)

• Attribution-NoCommercial (CC BY-NC)

• Attribution-NoCommercial-ShareAlike (CC BY-NC-SA)

• Attribution-NoCommercial-NoDerives (CC BY-NC-ND)

CopyLeft
• The simplest way to make a program free software is to put it in the public

domain, uncopyrighted. This allows people to share the program and their
improvements, if they are so minded. But it also allows uncooperative
people to convert the program into proprietary software. They can make
changes, many or few, and distribute the result as a proprietary product.

• To copyleft a program, we first state that it is copyrighted; then we add
distribution terms, which are a legal instrument that gives everyone the
rights to use, modify, and redistribute the program's code, or any program
derived from it, but only if the distribution terms are unchanged. Thus, the
code and the freedoms become legally inseparable.

• Copyleft is a way of using the copyright on the program. It doesn't mean
abandoning the copyright; in fact, doing so would make copyleft
impossible. The “left” in “copyleft” is not a reference to the verb “to leave”
—only to the direction which is the mirror image of “right”.

https://www.gnu.org/copyleft/

https://www.gnu.org/copyleft/

Famous Open Source
Licences

License Linking Distribution Modification Sublicensing

GPL v3 Only GPL v3 Copylefted Copylefted Copylefted

GPL Lesser Under
Exceptions Copylefted Copylefted Copylefted

BSD Permissive Permissive Permissive Permissive

Apache License Permissive Permissive Permissive Permissive

MIT Permissive Permissive Permissive Permissive

Mozilla Public
License Permissive Copylefted Copylefted Copylefted

Beerware Permissive Permissive Permissive Permissive

Oracle vs. Google
• Java was developed by Sun Microsystems: it includes a

programming language, a VM, and a set of libraries that are
documented via APIs.

• Java was released in 1995 under Sun Community Source License

• Source code is freely available

• Commercial derivatives should be licensed by Sun

• Later, Sun changed various Java package license to GPL, with
exceptions for linking. This led to OpenJDK, an open source
implementation of Java SE, initially led by Sun.

Oracle vs. Google
• Android was founded in 2003, and purchased by Google in 2005.

Google wanted to license Java SE for its platform, but the
negotiation failed.

• Google claims Sun wanted a shared control over licensed part,
which would have made it difficult to open source Android system

• Oracle claims that Google wanted to fork Java and make it
incompatible with the remaining ecosystem.

• Since OpenJDK was not so mature at this point, Google decided to
implement Java SE libraries from the scratch, without any access to
Sun code. They did reuse part of Apache Harmony, another clean-
room reimplementation of Java done by Apache Foundation.

Oracle vs. Google
• Oracle finished acquisition of Sun in January 2010.

• In August 2010, Oracle sued Google for copyright and patent
infringement. Oracle asserted Google was aware that they
had developed Android without a Java license and copied its
APIs, creating the copyright violation.

• The court separated the case into three parts: copyright,
patent, and damage.

• On copyright case, Oracle alleged infringement of 37
separate APIs in Android that have derived from Apache
Harmony project (by now Google took over Harmony as well).

private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
 if (fromIndex > toIndex)
 throw new IllegalArgumentException("fromIndex(" + fromIndex +
 ") > toIndex(" + toIndex+")");
 if (fromIndex < 0)

 throw new ArrayIndexOutOfBoundsException(fromIndex);
 if (toIndex > arrayLen)

 throw new ArrayIndexOutOfBoundsException(toIndex);
}

Initial verdict from Judge Alsup, District Court of Northern California

“So long as the specific code used to implement a method is different, anyone is free
under the Copyright Act to write his or her own code to carry out exactly the same

function or specification of any methods used in the Java API. It does not matter that
the declaration or method header lines are identical."

https://www.theverge.com/2017/10/19/16503076/oracle-vs-google-judge-william-alsup-interview-waymo-uber

https://www.theverge.com/2017/10/19/16503076/oracle-vs-google-judge-william-alsup-interview-waymo-uber

Oracle vs. Google
• Oracle appealed to the federal court, which reversed the initial verdict.

• The court noted that Copyright Act provides protection to "original works of
authorship fixed in any tangible medium of expression" (p. 17). The
legislative history explains that literary works include "computer programs to
the extent that they incorporate authorship in the programmer's expression
of original ideas, as distinguished from the ideas themselves" (p. 18). To
qualify for copyright protection a work must be original. 17 U.S.C. § 102(a). The
court was therefore "first to assess whether the expression is original to the
programmer" (p. 24), something that Google had already conceded (p. 21). This
led the court to conclude "that the overall structure of Oracle's API
packages is creative, original, and resembles a taxonomy" (p. 14). It
therefore reversed the first instance's decision on the central issue, holding that
the "structure, sequence and organization" of an API is copyrightable.

• Remanded to district court to consider whether Googles’s usage was fair use.

Oracle vs. Google

• District Court again ruled in favour of Google. Oracle
appealed.

• The Appeals Court found that Google's use of API code
declarations had not met any of the four current criteria
for fair use, but was merely untransformed reuse.

• Google has appealed to the supreme court.

Oracle vs. Google
• New in 2021: Supreme Court ruled in favor of Google!

• “APIs serve as declaring code rather than implementation - it serves
organizational function”

• “Google only used 0.4% of total Java source code”

• "Google copied those lines not because of their creativity, their
beauty, or even (in a sense) because of their purpose. It copied them
because programmers had already learned to work with [Java SE],
and it would have been difficult … to attract programmers to …
Android … without them.”

• https://en.wikipedia.org/wiki/
Google_LLC_v._Oracle_America,_Inc.#Decision

https://en.wikipedia.org/wiki/Google_LLC_v._Oracle_America,_Inc.#Decision
https://en.wikipedia.org/wiki/Google_LLC_v._Oracle_America,_Inc.#Decision

Fair Use Criteria
• Fair use is a copyright principle based on the belief that the public

is entitled to freely use portions of copyrighted materials for
purposes of commentary and criticism.

• No clear decision process; has to be resolved in court. The judges
will consider the following points:

• Transformative Factor: have you added value?

• Nature of copyrighted work: is it factual, or fictional?

• The amount of copying: how much did you take?

• Effect of use on the market: did you harm the copyright holder?

Structure, Sequence, and
Organisation (SSO)

• A term used in the United States to define a basis for
comparing one software work to another in order to
determine if copying has occurred that infringes on
copyright, even when the second work is not a literal
copy of the first. (https://en.wikipedia.org/wiki/
Structure,_sequence_and_organization)

https://en.wikipedia.org/wiki/Structure,_sequence_and_organization
https://en.wikipedia.org/wiki/Structure,_sequence_and_organization
https://en.wikipedia.org/wiki/Structure,_sequence_and_organization

Code Provenance

• Provenance: n. the place of origin or earliest known
history of something

• In many cases, IP decisions boils down to where code
came from, at the lowest level.

• “Have A copied the code X from B?”

• Copied code are called code clones.

Clone Detection

• Clones have been studied for multiple reasons.

• Provenance in the legal context

• Plagiarism as a specific context of provenance, as well
as in the educational context

• Productivity as there are various views that clones
affect software development lifecycle

Types of Clones
• Type 1: exact copy without modifications (except for

whitespaces and comments)

• Type 2: syntactically identical copy, with variable names,
types, and/or function identifiers changed

• Type 3: copy with further modifications such as swapped
line order, etc

• Type 4: semantically identical computation but written in a
different logic

Comparison Methods
• Textual Comparison: simply compare line by line - brittle but also

language agnostic.

• Token Comparison: compare lines as sequences of tokens
(concrete values are abstracted)

• Metric Comparison: collect a set of metrics about code, and
compare the metric vectors instead of actual code

• Abstract Syntax Tree: partition AST subtrees by hash and use tree
matching algorithm

• Program Dependence Graph (PDG): use graph matching algorithm
to compare PDGs - approximative matching since it is NP-hard

Checking for License
Violation

• We will take the following paper as an example of how
lower level techniques are assembled to detect license
violation in projects:

• O. Mlouki, F. Khomh, and G. Antoniol. On the detection
of licenses violations in the Android ecosystem. In
2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 382–392, March 2016.

in order to identify the main licenses evolution patterns
followed by developers of mobile apps. Our goal is to
determine if overtime, developers tend to make their apps
more–or–less open for reuse. Results show that developers
often change the license of their mobile apps towards a
less restrictive license.

RQ3: How do mobile apps licenses violations evolve over-
time?

In RQ1, we observed that 85% of apps contain files with
potential licenses violations. In this research question, we
investigate license violations in more details and analyze
their evolution overtime. Out of the 857 studied apps,
we found 17 apps with clear license violations. These 17
apps have inconsistencies between their declared licenses
and the licenses of their files and–or the licenses of their
dependencies. We do not claim license violations for the
85% of apps that contain files with inconsistencies because
although these apps contain files that share code with
files licensed under a different (conflicting) license, it is
possible that the two apps copied the code from a third app
that released the code under a dual license, and the two
apps simply picked different licenses. For the 17 projects
that clearly violate license terms, 10 of them corrected
the issue after 19 releases in average. The remaining 7
projects still had a license violation at the time of this
study.

The remainder of this paper is organized as follows. Sec-
tion II presents the motivation behind our work. Section III
explains our methodology for license identification. Section IV
discusses our data collection and processing. Section V de-
scribes and discusses the results of our three research ques-
tions. Section VI presents threats to the validity of our study,
while Section VII summarizes related works. Section VIII
concludes the paper and outlines some avenues for future
works.

II. MOTIVATING EXAMPLES

The reuse of different pre-existent components to build a
new system may lead to licenses violations. In March 2011,
OpenLogic, a company that advocates for (and helps ensure)
the proper use of open source software ran their OSS Deep
Discovery license compliance scanner against 635 apps from
both the Android Market and the Apple App Store, and found
that 71% of the apps that were using open source code
failed to comply with the terms of the open source licenses.
The apps did not license their code properly. In the case of
Apache licenses, information about the notice/attribution of
the licenses were missing. For GPL licenses, developers of
the apps failed to provide information about how to access
the code. Although these developers were not pursued in court
for these infringements, penalties for licensing violations can
be severe. In August 2012, Samsung was found guilty of
violating Apple’s iPhone and iPad technologies licenses, and
condemned to pay to Apple a billion dollars in damages. In
march 2015, VMware was also sued by Christoph Hellwig, a

Linux developer and the nonprofit organisation SFC (Software
Freedom Conservancy) over an improper use of the Linux ker-
nel [3]. Christoph and SFC claimed that VMware violated the
terms of the copyright license of the Linux kernel. These few
examples highlight the importance of tracking and correcting
eventual licenses violations early on before the distribution of
a software system.

III. IDENTIFICATION OF LICENSES INFORMATION FROM
MOBILE APPS

!"#$%&'()*&+,
*)%&-+&+'

./0&-
1/2/3/+&

45.678.6
9/$+&$

./0&-
$&9"+)2"$:

;*"-&
'/-/*:+"$

<&9&-1&-%)&+,
*)%&-+&+

!"#$%&'=)*&+'9/)$+
>)2?''''*)%&-+&+

;;()-1&$

@"/

A)-B/

;*"-&'1/2/

<&9&-1&-%)&+
*)-B+

6)%&-+&')1&-2)=)&$

6)%&-+&'
1/2/'

'/-/*:+"$

*)%&-+&'1/2/C-1$")1
C99+

D$"E&%2+,
6)%&-+&+

!5FDG

!5FDH

!5FDI

Fig. 1: Identification of license information
Our goal in this paper is to identify licenses usages and

violations in the Android ecosystem. To achieve this goal, we
first need to identify license information from mobile apps.
License information can be found in source file as a license
statement or in a separate text document generally included
in the main directory of the project. Android apps also, as
any project, may use some external libraries. However, those
libraries are in the binary format, making it impossible to
retrieve their license information through a textual analysis. In
the following, we explain the steps of the approach followed
in this work to retrieve the license information of mobile apps.
Figure 1 summarizes the steps of this approach.

Step 1: Identification of license statements

A license statement is a textual information included in
the top of each source code file or in a separate textual
file often named (COPYING, LICENSE, README or POM)
stored under the main repository of the project. It includes
copyright information, such as the names of contributors to a
source code file, the copyright owner, warranty, and liability
statements. Multiple tools have been proposed in the literature
to extract license’s information from source code or license
files (e.g., README files): Ninka [6], FOSSology [7] and
OSLC1. Table I summarizes the reported performances of
these tools.

Among these three tools, we selected Ninka for our study,
since it is reported to have a high accuracy and performance.
To identify license information in files, Ninka splits statements
from source code or license files into textual sentences,
normalizes them, and matches them against known licences
tokens.

1 http://oslc.sourceforge.net/

383

• Ninka: license header extraction tool

• Joa: library identification tool

• CCFinder: clone detection tool (to detect files that are cloned 

under different licenses)

!"#$
%&'()'

$*+,(-./+0.&!)'

!"#$%&'
1.2'3)45*0)(6
0*3)+()(4

#&7)+
!&8&9&()

#&7)+
')%.(*8.':

-)%)+!)+3*)(6
0*3)+()(

1.2'3)4;*0)(4%&*'(
/*8<44440*3)+()(44

==5*+!)' >.&?*+,&

@*.0&8*.+(
!)8)38.'

4-&8&43.00)38*.+

$*3)+()(
3.+(8'&*+8(

())*+,&-.
/&%01-&%2*

-)8)38*.+

A+!'.*!4&%%($*3)+()4*!)+8*;*)'

B'.C)38(64
0*3)+()(4

Fig. 3: Overview of our approach to identify applications with license violation in an android market

RQ1: What are the most common licenses used in open source
mobile apps?

Motivation.
This research question is preliminary to the others and aims

to identify licenses that are frequently used by developers
of Android apps. The results of this research question will
provide insights about the preferences of mobile apps devel-
opers among the more than 70 open source licenses that are
available.
Approach.

To answer this research question, we perform our analysis
both at file and project levels following the approach described
in Section III. We extract the licenses information of a
project and its source files using the Ninka tool. We use the
JOA tool to identify the provenance of libraries used by the
android apps; tracing them to the Maven repository. Then, by
analysing their POM files, we obtain their license information.
To identify licenses inconsistencies at file level, we use the
CCFinderX clone detection tool.
Findings.

F-Droid provides licence information only for the latest
release of each app. When considering only this information,
we obtain that 35% of apps are licensed under GPLv3,
24% under Apachev2 and 12% under MIT License.
Figure 4 presents the licenses distribution of the final releases
of all the apps in our data sets.

When considering all the released versions of each app from
our data set, the picture is a bit different. We obtain that 37%
of releases are licensed under GPLv3, 8% under Apachev2
and 4% under MIT License. This difference is due to the
fact that many apps change their licenses overtime. Figure 5
presents the distribution of licenses for all the releases of all
the apps in our data set. We can observe that more than 3,250
apps releases out of 8,938 apps releases are unlicensed or their
license information is not declared in any of our analysed files
(described in Section III).

At the file level, GPL and Apache are still the most used
license; representing 47% and 12% of files respectively.

GPLv3 Apache2 MIT GPLv3+ GPLv2 GPLv2+ NewBSD GPL WTFPL AGPLv3+ (Other)

0
50

10
0

15
0

20
0

25
0

30
0

Fig. 4: Projects licenses when considering only the latest
release of each app

NONE GPLv3+ UNKNOWN Apachev2 GPLv2+ MITX11 spdxBSD2 (Other)

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fig. 5: Projects licenses when considering all the releases of
the apps

However, there are more files licensed under the BSD license
than the MIT license. Table IV summarizes results obtained
at the file level. Our set of apps contained in total 1,429,330
source code files (1,168,899 written in Java; 81,378 written
in C; and 138,396 C++ files). In Table IV the keywords

385

!"#$
%&'()'

$*+,(-./+0.&!)'

!"#$%&'
1.2'3)45*0)(6
0*3)+()(4

#&7)+
!&8&9&()

#&7)+
')%.(*8.':

-)%)+!)+3*)(6
0*3)+()(

1.2'3)4;*0)(4%&*'(
/*8<44440*3)+()(44

==5*+!)' >.&?*+,&

@*.0&8*.+(
!)8)38.'

4-&8&43.00)38*.+

$*3)+()(
3.+(8'&*+8(

())*+,&-.
/&%01-&%2*

-)8)38*.+

A+!'.*!4&%%($*3)+()4*!)+8*;*)'

B'.C)38(64
0*3)+()(4

Fig. 3: Overview of our approach to identify applications with license violation in an android market

RQ1: What are the most common licenses used in open source
mobile apps?

Motivation.
This research question is preliminary to the others and aims

to identify licenses that are frequently used by developers
of Android apps. The results of this research question will
provide insights about the preferences of mobile apps devel-
opers among the more than 70 open source licenses that are
available.
Approach.

To answer this research question, we perform our analysis
both at file and project levels following the approach described
in Section III. We extract the licenses information of a
project and its source files using the Ninka tool. We use the
JOA tool to identify the provenance of libraries used by the
android apps; tracing them to the Maven repository. Then, by
analysing their POM files, we obtain their license information.
To identify licenses inconsistencies at file level, we use the
CCFinderX clone detection tool.
Findings.

F-Droid provides licence information only for the latest
release of each app. When considering only this information,
we obtain that 35% of apps are licensed under GPLv3,
24% under Apachev2 and 12% under MIT License.
Figure 4 presents the licenses distribution of the final releases
of all the apps in our data sets.

When considering all the released versions of each app from
our data set, the picture is a bit different. We obtain that 37%
of releases are licensed under GPLv3, 8% under Apachev2
and 4% under MIT License. This difference is due to the
fact that many apps change their licenses overtime. Figure 5
presents the distribution of licenses for all the releases of all
the apps in our data set. We can observe that more than 3,250
apps releases out of 8,938 apps releases are unlicensed or their
license information is not declared in any of our analysed files
(described in Section III).

At the file level, GPL and Apache are still the most used
license; representing 47% and 12% of files respectively.

GPLv3 Apache2 MIT GPLv3+ GPLv2 GPLv2+ NewBSD GPL WTFPL AGPLv3+ (Other)

0
50

10
0

15
0

20
0

25
0

30
0

Fig. 4: Projects licenses when considering only the latest
release of each app

NONE GPLv3+ UNKNOWN Apachev2 GPLv2+ MITX11 spdxBSD2 (Other)

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

Fig. 5: Projects licenses when considering all the releases of
the apps

However, there are more files licensed under the BSD license
than the MIT license. Table IV summarizes results obtained
at the file level. Our set of apps contained in total 1,429,330
source code files (1,168,899 written in Java; 81,378 written
in C; and 138,396 C++ files). In Table IV the keywords

385

😎🍺

TABLE IV: Licenses detected at file level

License Version # Occurrence %

noVersion 32

v2 37 388

v2+ 395 198

v3 19 125

GPL

v3+ 201 171

45,68

Apache 2

v1.0 52

v1.1 6
Apache

v2 184 765

12,39

v2 84

v2.1 2 962

v2.1+ 7 634

v2+ 95

v3 2 097

LGPL

v3+ 3 284

1,13

3NoWaranty 2 279

BSD3 6 759

BSD4 168

spdxBSD2 2 281

spdxBSD3 3 655

BSD

spdxBSD4 130

1,07

oldwithoutSelland 5

oldwithoutSelland

NoDocumentationRequi
147

MITVariant 1

MITX11 11 965

X11BSDvar 4

MIT

X11noNotice 343

0,87

PublicDomain 2 957 0,21

artifex 136 0,01

BeerWareVer42 6 0

CDDLorGPLv2 475 0,03

CPLv1 20 0

DoWTFYWv2 48 0

EPLv1 13 0

FreeType 1 714 0,12

MPLv1 1 4 0

ZLIBref 137 0,01

SunSimpleLic 555 0,04

SimpleLicence1 18 0

orGPLv2+orLGPLv2.1+ 234 0,02

None 392 314 27,45

SeeFile 8 053 0,56

UNKNOWN 139 484 9,76

ERROR 930 0,07

Total number of source code files analysed 1 429 330

RQ2: How do mobile apps licenses evolve overtime?

Motivation.
Our first research question showed that developers often

change the license of their mobile apps after a few releases.

TABLE V: Inconsistencies found among the license state-
ments of the studied apps

Kind of disagreement #Files #Releases #Apps

GPLv2-Apachev2 54 335 1 067 70

GPL-OTHER 18 853 940 7 141 685

Others 18 284 150 - -

Apps with license inconsistency - - 731

TABLE VI: License inconsistencies by categories

Category Part of desagreement (%)

Inconsistent files from dif-
ferent domains

60,72

SystemApps 1,09

OfficeApps 14,69

InternetApps 16,62

ScienceAndEducationApps 3,65

ReadingApps 1,75

GamesApps 0,08

MultimediaApps 0,29

DevelopmentApps 0,09

NavigationApps 0,73

PhoneAndSMSApps 0,28

SecurityApps 0,01

In this research question, we analyse the evolution of licenses
overtime both at project and file levels, in order to understand
the main patterns of licenses evolution in the Android Ecosys-
tem.
Approach.

For each file in each app, we track the evolution history
of the file and build a genealogy. We identify files across
the releases using their absolute paths. To handled cases of
renaming, we apply clone detection to track files with similar
contents that were renamed. Next, using licenses information
collected in RQ1, we map licenses to the different versions
of each file and compute all licenses evolution patterns.
Finally, we build state transition models capturing the license
evolution patterns at file and project levels, respectively. For
each transition in our state-transition diagrams, we compute
the probability of the transition following Equation 1. To focus
our interest, we narrow the data analyzed to only entities
that experienced at least one change in their life-cycle. Thus,
to calculate the probability of a transition from License A
to License B, we calculate the occurrence of License A →
License B divided by the occurrence of License A in our
reduced data set.

OccurrenceOf(A→B) /OccurrenceOf(A) (1)

Findings.
1) License changes at the file level: Among the 857 apps

from our data set, 128 apps experienced a license change.

387

Distribution of Licenses Detected in Files

Violations

• Out of 857 Android apps from F-Droid,

• 17 apps showed clear license violation (in total of 229
releases)

• only 10 out of 17 apps eventually fixed the violation

• on average, it took an average of 19 releases to fix the
violation

Open Access

Open Access Initiative
• If research is funded by the public, the output should be

available for the general public without paywall

• European Union runs EU-wide research programme
called Horizon 2020 (over 100 billion Euros). Starting from
2021, all scholarly publications on the results from
research funded by public or private grants provided by
national, regional and international research councils and
funding bodies, must be published in Open Access
Journals, on Open Access Platforms, or made
immediately available through Open Access Repositories
without embargo.

https://avandeursen.com/2019/08/20/europes-open-access-plan-s-and-paper-publishing-in-software-engineering-research/

https://avandeursen.com/2019/08/20/europes-open-access-plan-s-and-paper-publishing-in-software-engineering-research/

https://twitter.com/JoshuaDFoster1/status/1188947163398787074

https://twitter.com/JoshuaDFoster1/status/1188947163398787074

https://osc.universityofcalifornia.edu/open-access-at-uc/publisher-negotiations/uc-and-elsevier/

https://osc.universityofcalifornia.edu/open-access-at-uc/publisher-negotiations/uc-and-elsevier/

https://www.editage.com/insights/norway-joins-the-ranks-of-germany-and-sweden-cancels-subscription-with-elsevier

https://www.editage.com/insights/norway-joins-the-ranks-of-germany-and-sweden-cancels-subscription-with-elsevier

Concluding Thoughts

• What was the license you applied to your last open
source project?

• Do you agree with GPL and free software movement?

• Would you support Sci-Hub as a researcher?

