
GETMic:
Grammatical Evolution based Test Case Generation for Microcontroller

Joohee Kim
School of Computing
joohee0@kaist.ac.kr

Nayoung Oh
School of Computing
nyoh@kaist.ac.kr

Darae Lee
School of Computing
2darae@kaist.ac.kr

Yunseok Jeong
School of Computing

wjddbstjr03
@kaist.ac.kr

Abstract

Microcontrollers like the Arduino or Raspberry
Pi Pico are the lifeblood of embedded systems.
Like any other programs, the programs loaded
on these microcontrollers can be made much
more robust with code coverage testing. How-
ever, testing for microcontrollers is complicated
by the fact that we have to consider not only the
software but also the hardware. Even if we run
the exact same code on a microcontroller, the
program behaves differently depending on how
the hardware is configured and how the hard-
ware interacts with the environment. To deal
with this kind of consideration, we first 1) built
a simple hardware simulator and 2) used gram-
matical evolution, a type of genetic algorithm,
to encode the interaction with the hardware. We
could successfully generate a sequence of inter-
actions to the simulator (i.e. a test case) which
maximizes the coverage of the target code, out-
performing the random generation in terms of
coverage and time-efficiency.1

1 Introduction

In the realm of embedded systems, microcon-
trollers such as the Arduino and Raspberry Pi Pico
play a pivotal role, serving as the foundation for
many applications. However, coverage testing,
which can greatly enhance the robustness of the
program, may be tricky for the microcontrollers.
Unlike regular software, these programs are depen-
dent on both the software and the hardware. Even
if we use the same code on a microcontroller, the
results can vary based on how the hardware is set
up and interacts with the environment. This kind of
characteristic brings a lot of complexity compared
to other general code coverage tests. Through the
project, we tried to implement the end-to-end test
case generator that takes target code and creates
test cases that maximize the coverage of that code.

1All codes available at https://github.com/darae-
lee/GETMic

Figure 1: Overall flow of GETMic

2 Background and Related Works

2.1 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary al-
gorithm, similar to a genetic algorithm (GA). It em-
ploys a Backus-Naur Form grammar definition in a
genotype-to-phenotype mapping process. GE dis-
tinguishes between the search and solution spaces,
enabling an unconstrained evolutionary search on
simple variable-length binary strings (O’Neill and
Ryan, 2001). Deiner and Frädrich use the grammar
definition for test case generation for Scratch which
requires user interaction similar to microcontrollers
(Deiner et al., 2020).

2.2 Microcontroller

A microcontroller is a computer on a single inte-
grated circuit that includes a low-power consuming
CPU, RAM, and some I/O ports (Hussain et al.,
2016). Usually, a microcontroller is programmable
with supporting language (Nguyen et al., 2018),
even controlling the I/O ports directly. Arduino and
RasberryPi Pico series are popular open-source mi-
crocontrollers, widely used for education and pro-
totyping. A microcontroller even supports the dy-
namic language, Python. MicroPython is a Python
library supporting diverse open-source microcon-
trollers including ESP32 for Arduino nano series



Figure 2: Overall System of GETMic

and RP2 for RasberryPi Pico (mic).

2.3 Testcase generation for microcontrollers

Research deals with test case generation for micro-
controllers, including embedded systems with the
microcontroller. Hossain et al. study interaction
model generation in embedded systems, consider-
ing the dependency between interactions such as
shard variable or physically coupled sensing (Hos-
sain and Lee, 2019). The research focuses on the
source code level interaction model, but it cannot
capture circuit-level dependency which does not ap-
pear in the code. Therefore, we propose simulation
as an alternative to interaction models. In the spe-
cific context of code coverage, Saha et al. develop
code coverage checking systems for embedded sys-
tems considering the hardware limitations such as
memory bound (Saha et al., 2021). However, Saha
et al. do not deal with user interaction sequence
as an input which is human-level input to control
the microcontroller. Our approach is close to the
work of Padmanabhan (Padmanabhan, 2022). Pad-
manabhan converts the circuit board into an event
sequence graph to generate test cases. As Padman-
abhan focuses on programming instruction for all
‘circuit coverage’, the approach cannot work for
user-generated codes and corresponding circuits.
Therefore, we propose our work GETMic which
considers codes and circuits together to propose
one sequence of user interactions for real-world
testing.

3 Approach

GETMic consists of a simulator for simulating a
circuit and user interaction, and a test case gener-
ation system using the simulator as shown in the
figure 2.

3.1 Simulator

As existing simulators are developed to simulate cir-
cuits or debug the microcontroller code, the simu-
lators are not fast enough to automatically simulate
user interactions, and log the results. We design
our simulator as a wrapper class of ‘machine’ in
the MicroPython library. The simulator consists
of two parts: a circuit part and a user interaction
interface part.

3.1.1 Circuit
First, the circuit part simulates the electricity flow
with the user-generated configuration of electrical
components. The user can choose what and how
many components to add to the circuit including
a board, and how to connect them. Currently, we
only support connection of the main signal port and
one of voltage and ground pin. When the user adds
interactable components, the corresponding user
interaction grammar is generated and added to the
interaction candidates. The detailed explanation
about the grammar is in the section 3.2.1.

The circuit supports three operations: read, write,
and update. First, read returns the current state
of the board pin. As reading does not change the
state of other components, it simply returns without
update.

Second, the write can occur due to two reasons.



<test case> ::= <interaction> | <test case> <interaction>
<interaction> ::= <digital interaction> | <analog sensor interaction>

<digital interaction> ::= set <digital sensor> to 0 | set <digital sensor> to 1
<digital sensor> ::= button

<analog sensor interaction> ::= set <analog sensor> to <value>
<analog sensor> ::= temperature sensor | potentiometer | photoresistor

<value> ::= <digit> <digit> <digit> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 3: GETMic Grammar

First, when a direct write request to the port occurs,
a write operation happens to the port in the board.
Second, when a user interaction request arrives,
the user interaction can invoke a write request to
the component with corresponding values. The
detailed explanation about the mapping is in the
section 3.2.1. Regardless of the source or write
operation, it will proceed to update operation.

The circuit updates the corresponding state of
the component. Then, the total circuit states are
updated by calculating the new voltage state of
each port, starting from each starting point of the
electricity flow.

3.1.2 User Interaction Interface
The user interaction interface redirects the interac-
tion requests to the circuit. As a user interaction
happens regardless of circuit states or updates, we
generate a separate thread for the user interaction
interface. The interaction interface keeps reading
the initially given interaction sequence, sends a
write request to the circuit part, and waits for a
while mimicking the human action delay. In ad-
dition, the interface supports converting machine-
readable requests into human-readable actions, so
that a user can follow the generated user interaction
sequence.

3.2 Test case generation

Test case generation was performed using a GE.
GE consists of representation, recombination, and
fitness function.

3.2.1 Representation using Grammar
The representation encodes the test case as the chro-
mosome. In the genotype-to-phenotype mapping
process, the grammar defined for microcontrollers
(see Figure 3) is employed, and the mapping is
processed by the simulator of GETMic.

The genotype is represented as a list of tuples,
each containing two integers (codons). The length

of the genotype corresponds to the length of the
user interaction to be generated by GE. Each tuple
represents the target component for the interaction
and the action to be performed.

genotype = [(x0, y0), .., (xn, yn)]

x, y ∈ integer [0, 2048]

The mapping of genotype to phenotype depends
on the types and numbers of components set up
in the simulator board. The first genotype, by de-
fault, does nothing. Given the first codon x and n
interactable components, the target component is
determined as follows:

target component = xmod (n+ 1)

Similarly, given the second codon y and m ac-
tions, the action for the target component is deter-
mined as follows:

action = ymodm

Consider the following example genotype gener-
ated for Button.py.

[(231, 375), (347, 1478), (692, 1262)]

In the subject code Button.py, there is a single
digital component (button at pin 2), to which 1 is
mapped. Note that in every case, 0 is reserved for
doing nothing. The possible actions for the button
are press and unpress, to which each 0, 1 is mapped.
The decoding of a test case looks as follows:

231mod 2 = 1 → BTN at pin2

375mod 2 = 1 → unpress

347mod 2 = 1 → BTN at pin2

1478mod 2 = 0 → press

692mod 2 = 0 → do nothing



Therefore the phenotype of the generated test
case is mapped as follows:

[unpressBTN at pin2, pressBTN at pin2,

do nothing]

The decoding of analog components is done dif-
ferently since analog components receive input val-
ues. For clarity, let’s consider the genotype gener-
ated for IfStatementConditional.py:

[(1577, 1722), (165, 1060), (1990, 1658)]

In the code IfStatementConditional.py, there
is a single analog component (Potentiometer sensor
at pin 0). The maximum value that the Potentiome-
ter sensor can receive is configured to 1024; thus
the modulus is 1024. The decoding of a test case
looks as follows:

1577mod 2 = 1 → Potentiometer at pin 0

1722mod 1024 = 698 → set value 698

...

The phenotype of the generated test case is mapped
as follows:

[set value 698Potentiometer at pin 0,

set value 36Potentiometer at pin 0,

do nothing]

3.2.2 Recombination
Crossover and mutation were used as recombina-
tion. In crossover, the two chromosomes are mixed
by randomly selecting the split index. Mutation
occurs for each element of the chromosome list,
which converts each element into a random interac-
tion. Recombination occurs with a fixed probabil-
ity.

3.2.3 Fitness function
General GA-based test case generation calculates
fitness for each target branch and finds a test case
that optimizes it. Therefore, optimization code
must be executed once for each branch. However,
in the case of GETMic, since the microcontroller
loop code runs infinitely, one chromosome should
cover all branches at once. Therefore, the fitness
function is designed as follows.

Fitness =

∑
i

max((approachLeveli + branchDistancei), 0)

Each run of the loop code updates the local fit-
ness(= approach level + branch distance) of each
branch to the minimum value. The fitness of the
chromosome is the sum of local fitness for each
branch. The minimum value of local fitness was
set to 0 by the max operator so that local fitness
was not affected by each other. It is optimized to
minimize the fitness value, and if fitness is 0, it
means that it is a 100% coverage test case in which
all branches are covered.

4 Experimental Setup

4.1 Subjects
We set the target microcontroller as Arduino nano
series. Table 2 lists the subject Arduino codes se-
lected for generating test cases. The computation
of lines of code and the count of branches is de-
rived from the segments of code corresponding to
the loop body in each Arduino code.

Within each subject code, various interaction
components—including a button (digital), poten-
tiometer sensor(analog), and temperature sensor
(analog)-are utilized. Users interact with these
components during the Arduino execution process.
Button.py (featuring simple button in-

put), IfStatementConditional.py (simple
analog input), StateChangeDetection.py
(state changes through a button push counter),
SwitchCase.py (analog input with multiple
branches) , LoveOMeter.py (analog input with
multiple branches), SegmentDisplay.py (ascend-
ing or descending counter based on the state
of a button) are obtained from Arduino built-in
examples.

To test on test cases with multiple in-
teractable components, WarmButton.py (but-
ton component added to LoveOMeter.py) and
ComplexButton.py (three buttons) are made by
the authors.

Subjects Lines of
Code

No. of
Branches

Input Types
and No.

Button.py 7 2 digital 1
IfStatementConditional.py 8 2 analog 1
StateChangeDetection.py 17 5 digital 1

SegmentDisplay.py 14 4 digital 1
SwitchCase.py 11 4 analog 1

ComplexButton.py 27 8 digital 3
LoveOMeter.py 30 4 analog 1
WarmButton.py 33 8 digital 1, analog 1

Table 1: Subject Arduino Codes



Target Code
Avg. Branch
Coverage(%) No. reach to 100% Avg. Trials Avg. Execution

time(sec)
GE RG GE RG GE RG GE RG

Button.py 100.0 100.0 10 10 10.0 1.9 0.08 0.18
IfStatementConditional.py 100.0 100.0 10 10 10.0 1.5 0.12 0.16
StateChangeDetection.py 100.0 100.0 10 10 18.0 6.8 0.19 0.56

SegmentDisplay.py 100.0 100.0 10 10 12.0 6.8 0.23 0.74
SwitchCase.py 100.0 97.5 10 9 70.0 147.6 0.59 12.92

ComplexButton.py 98.8 91.3 9 3 381.0 824.8 6.83 110.85
LoveOMeter.py 97.5 80.0 9 2 486.0 848.4 9.13 110.04
WarmButton.py 95.0 83.3 7 0 709.0 1000.0 13.25 131.71

Table 2: Comparison of grammatical evolution (GE) and random generation (RG)

4.2 Implementation and Configuration

The GE and simulator are executed using Python
run time version 3.11.5. In the GE, the population
size is set to 10. Fitter parents are selected with
a size of 0.2 relative to the population size. The
stopping criterion is determined by either a fixed
run of 100 generations or reaching zero fitness. The
crossover rate is configured at 0.9, and the mutation
rate is set to 0.1.

The length of user interaction, representing
the interaction generated per test case, is dy-
namically configured based on the complexity
of the target codes. Specific configuration of
user interaction length is detailed in Table A.
Notably, LoveOMeter.py, WarmButton.py, and
ComplexButton.py have been configured to gen-
erate 10-12 user interactions per test case. This
adjustment is made to accommodate the intricate
branch conditions and the substantial number of
branches present in these particular code segments.

4.3 Evaluation

The test case generation was iterated 10 times with
a different random seed number to account for its
stochastic nature. To evaluate the performance of
the implemented GE, we established a baseline us-
ing randomly generated test cases configured with
the same user interaction length as employed by
the GE. Coverage.py version 7.3.2 is used to mea-
sure the coverage of generated test cases. Coverage
measurement is exclusively done on the loop body,
which is the main section of the Arduino code of
interest in testing. In addition, computational ex-
pense is evaluated by measuring the execution time.

5 Result and Analysis

5.1 Result

Table 2 shows the test case generation result of our
GE engine and random generation (RG). For all
the cases, our GE performed better than random
generation in terms of both coverage and the exe-
cution time. GE ensured branch coverage higher
than 95% for every case while random generation
showed the 80% range for some of the cases. Also,
GE has reached 21 more 100% coverage than ran-
dom generation out of 80 runs.

5.2 Analysis

5.2.1 Digital vs. Analog
We can observe that as the target code becomes
more complex, GE completely outperforms ran-
dom generation. Here, the complexity is mostly
dominated by the types and the number of com-
ponents included, especially the types. This is be-
cause when analog components are added, they
extremely broaden the search space compared to
digital ones. If a target code uses multiple analog
components, GE engine will become incomparable
to random generation.

5.2.2 Execution time
From a perspective of execution time, GE approach
was observed to be 1.3x to 24.8x faster than random
generation. This can be attributed to two factors.

One is that the GE engine itself is more efficient
at finding solutions as we can observe from the
average number of trials required to find the solu-
tion. Except for the first 4 targets in Table 2, which
are simple enough for them to be solved within
around 1 generation, GE took 0.46x to 0.71x less
trial than random generation. These results are



actually rather understated. If we use a larger bud-
get or no limit at all, the difference between them
will be more extreme, and therefore the difference
in execution time will be very large(especially for
WarmButton.py).

However, even in the case where random genera-
tion has fewer trials, we can see that the execution
time is actually smaller in GE. This is due to the
second factor related to how we find the solution.
In GE, we find the best solution using the fitness
function and calculate the coverage only once for
that best solution. On the other hand, in a random
generation, coverage is calculated for every single
trial. Since fitness calculation is a much cheaper op-
eration than coverage calculation, GE is inevitably
faster than random generation. These two factors
combine to make GE dominate random generation
in terms of execution time.

6 Conclusion

We found difficulties in test case generation for
microcontrollers which is the need for hardware
consideration and the representation of the test case.
To tackle these challenges, we employed two strate-
gies respectively: a simulator and grammatical evo-
lution. Combining two approaches, we were able
to successfully define user interactions, simulate
the execution of a real microcontroller program,
and discover test cases that maximize branch cover-
age through a genetic algorithm. The comparison
with random generation confirmed the superiority
of the GE approach in terms of both coverage per-
formance and time efficiency.

References
Micropython.

Adina Deiner, Christoph Frädrich, Gordon Fraser,
Sophia Geserer, and Niklas Zantner. 2020. Search-
based testing for scratch programs. In Search-Based
Software Engineering: 12th International Sympo-
sium, SSBSE 2020, Bari, Italy, October 7–8, 2020,
Proceedings 12, pages 58–72. Springer.

Muhammad Iqbal Hossain and Woo Jin Lee. 2019. In-
tegration testing based on indirect interaction for em-
bedded system. International Journal of Reconfig-
urable and Embedded Systems, 8(2):86.

Altaf Hussain, Muhammad Hammad, Kamran Hafeez,
and Tabinda Zainab. 2016. Programming a micro-
controller. International Journal of Computer Appli-
cations, 155(5):21–26.

Trieu Nguyen, Sune Zoëga Andreasen, Anders Wolff,
and Dang Duong Bang. 2018. From lab on a chip
to point of care devices: The role of open source
microcontrollers. Micromachines, 9(8):403.

M. O’Neill and C. Ryan. 2001. Grammatical evolution.
IEEE Transactions on Evolutionary Computation,
5(4):349–358.

Mani Padmanabhan. 2022. Test case generation for
arduino programming instructions using functional
block diagrams. Trends in Sciences, 19(8):3472–
3472.

Anirban Saha, Raju Udava, Mallikarjun Bidari, Ma-
hadeva Prasad, Venkata Raju, and Tushar Vrind.
2021. Trafic—a systematic low overhead code cov-
erage tool for embedded systems. In 2021 IEEE
International Conference on Electronics, Comput-
ing and Communication Technologies (CONECCT),
pages 1–6. IEEE.

https://micropython.org/
https://doi.org/10.1109/4235.942529


A Appendix

Target Code Interaction
Length Best Test case

Button.py 3 press BTN at pin2, press BTN at pin2, None do_nothing

IfStatementConditional.py 3
set_value_698 Potentiometer sensor at pin0,
set_value_36 Potentiometer sensor at pin0,
None do_nothing

StateChangeDetection.py 3 press BTN at pin2, unpress BTN at pin2, None do_nothing
SegmentDisplay.py 3 press BTN at pin13, unpress BTN at pin13, None do_nothing

SwitchCase.py 3
set_value_308 Photoresistor sensor at pin0,
set_value_412 Photoresistor sensor at pin0,
set_value_754 Photoresistor sensor at pin0

ComplexButton.py 10

press BTN at pin12, press BTN at pin10,
unpress BTN at pin12, press BTN at pin11,
press BTN at pin11, press BTN at pin12,
None do_nothing, unpress BTN at pin10,
unpress BTN at pin12, unpress BTN at pin11

LoveOMeter.py 12

set_value_653 Temperature sensor at pin0,
None do_nothing,
set_value_153 Temperature sensor at pin0,
set_value_654 Temperature sensor at pin0,
None do_nothing,
set_value_775 Temperature sensor at pin0,
set_value_509 Temperature sensor at pin0,
set_value_149 Temperature sensor at pin0,
set_value_657 Temperature sensor at pin0,
set_value_690 Temperature sensor at pin0,
set_value_154 Temperature sensor at pin0,
set_value_312 Temperature sensor at pin0

WarmButton.py 12

unpress BTN at pin1,
press BTN at pin1,
set_value_418 Temperature sensor at pin0,
set_value_154 Temperature sensor at pin0,
None do_nothing,
press BTN at pin1,
press BTN at pin1,
set_value_149 Temperature sensor at pin0,
unpress BTN at pin1,
set_value_180 Temperature sensor at pin0,
set_value_987 Temperature sensor at pin0,
None do_nothing

Table 3: GETMic-generated test case for each target code


