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Abstract. AFLGo suggests Directed Greybox Fuzzing (DGF) which
thinks of reducing the reachability to target location as an optimization
problem and tries minimize the distance of the generated inputs to the
targets. However, the transition point between exploration phase and
the exploitation phase should be given by the user, and calculates fitness
based on the distance which can easily fall to a local optima despite using
SA. Thus, we introduce AFLGOpt, which uses Monte-Carlo decision tree
based on pheromone of each seed, which is a changeable variable that
prevents from the fuzzing to fall into local optima. The proposed model
proves to be at most eight times faster in finding valid crashes than the
original AFLGo, and fewer timeout results in overall procedure.

Keywords: Directed greybox fuzzing · Monte-Carlo decision tree · Ant
colony optimization

1 Introduction

Fuzzing is a software testing technique that automates testing a computer pro-
gram with unexpected or random data in purpose of finding the vulnerability.
Greybox fuzzing (GF) is thought as the state-of-the-art techniques in vulnera-
bility detection. It instruments through the program with a given seed input,
and new inputs that is generated by mutating previous inputs when they pro-
vide new interesting paths are added to the queue of the fuzzer. American Fuzzy
Lop (AFL)[2] is considered as one of the best GF techniques, and discovered nu-
merous significant vulnerabilities. However, fuzzing through undirected random
inputs can cause significant overhead, which results in delayed time of testing. A
directed fuzzer, unlike undirected fuzzers, spend the time mostly on finding spe-
cific target locations without wasting resources by running through unnecessary
program components.

As a result, AFLGo[1] suggested Directed Greybox Fuzzing (DGF) which
thinks of reducing the reachability to target location as an optimization prob-
lem and tries minimize the distance of the generated inputs to the targets. To
compute seed distance, AFLGo computes and the distance of each basic block to
the targets at compile-time. At runtime, AFLGo minimizes seed distance using
Simulated Annealing(SA) through power schedule, which is called the explo-
ration phase. A power schedule controls the energy of the seeds, and the energy
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determines the time spent fuzzing the seed, which is the exploitation phase. Sim-
ilar with all greybox fuzzing techniques, by aborting time-consuming analysis to
compile time, overhead at runtime is reduced.

However, the balance between exploration phase and the exploitation phase is
determined as input that should be given by the user, and it is not automated.
Also, ALFGo calculates fitness based on the distance to the target location,
which is a fixed location, and can easily fall to a local optima despite using SA.

Thus, we introduce AFLGOpt, which uses Monte-Carlo decision tree based
on pheromone of each seed, which is a changeable variable. We provide a new
perspective of the seed, where from the flat structured fuzzer’s queue of seeds, we
draw a Monte-Carlo tree structure. Each node represents a seed, and the edge
represents a parent-child relationship. We select a node from the seed queue
and generate mutant seeds based on the pheromone value of the seed. Based
on this graph representation, if the mutant discovers new coverage or proves
to be interesting, we update the pheromone level of the mutant as well as the
pheromone of its ancestors.

The strength of AFLGo is that it employs the knowledge of the distance
information. However, in the exploration phase, the knowledge is not used and
initially treats all seeds equally in order to avoid the local optima. However,
AFLGOpt utilizes the distance information from the start, and seeds are treated
differently based on the pheromone value, which is affected by the distance and
coverage. Fitness score of the seed is evaluated with distance score and the
pheromone level, which is not fixed, and more prone to avoiding local optima.
When there is a useless seed with high distance score, the pheromone will de-
crease, resulting in lower fitness score, and increasing the possibility to search
more various seeds. In addition, the AFLGOpt does not rely on explicit user
inputs for phase transition.

Our contributions are as the following:

– The integration of directed greybox fuzzing and monte-carlo decision tree
– Reducing the possibility of falling into the local optima by employing the

concept of pheromone
– The implementation of AFLGOpt which is publicily available at

https://github.com/goodtaeeun/FuzzFrame

2 Related Work

Undirected/Directed Greybox Fuzzing Undirected greybox fuzzing fuzzing
is one of the original state-of-the-arts in vulnerability detection. The method
determines a unique identifier for the path that is exercised by an input, with
almost negligible performance overhead. New inputs are generated by mutating
a provided seed input and added to the fuzzer’s queue if they exercise a new and
interesting path. [1] The leading implementation of undirected greybox fuzzing
is AFL[2]. AFL maintains a global map of tuples seen in previous executions.
When a mutated input produces an execution trace containing new tuples, the
corresponding input file is preserved and routed for additional processing later
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on. Inputs that do not trigger new local-scale state transitions in the execution
trace (i.e., produce no new tuples) are discarded, even if their overall control flow
sequence is unique. This approach allows for a very fine-grained and long-term
exploration of program state while not having to perform any computationally
intensive and fragile global comparisons of complex execution traces, and while
avoiding the scourge of path explosion.

Existing studies have added directed fuzzing to existing greybox fuzzers.
Applications of directed fuzzers include patch testing, crash reproduction, static
analysis report verification, and information flow detection. The current state-
of-the art implementation of directed greybox fuzzing is AFLGo [1], which adds
directedness to the existing greybox fuzzer implementation of AFL. AFLGo first
calculates the function level target distance using the function call graph. AFLGo
identifies the target functions in the call graph, and for each function, computes
the harmonic mean of the length in the shortest path to the target. Then, AFLGo
extracts the basic block level distance using the control flow graph. It first finds
the target basic block and assign its distance as 0. It then finds all the basic blocks
that calls functions, and assign their weights as some constant. The constant can
be tuned and does not need to be exact. Afterwards, it can compute harmonic
mean of the sum of the (length of the shortest path to any function calling basic
block) and the (tuned constant of the basic block).

The above procedures are pre-run on compile-time. At runtime, AFLGo fo-
cuses on finding the seed distance from the instrumented binary. It finds the
basic blocks that the seed traversed, and computes the seed distance, which
is calculated by dividing (aggregated pre-computed basic block level distance
values) with the (number of executed basic blocks).

Since greybox fuzzing is a mutation-based fuzzing, it is divided into two main
steps: selection and mutation. In selection, seeds that occur crashes, or which is
interesting will be selected. The term interesting denotes that a seed has found
a new path. Before mutation, AFLGo assigns energy to the seed, which is the
main idea of this AFLGo. Energy represents the number of new seeds that are
mutated from the seed. To calculate the energy that will be assigned, AFLGo
adopts simulated annealing in order to avoid falling into local minima. As it is
well known, simulated annealing will sometimes assign more energy to further
away seeds.

Ant Colony Optimization Ant colony optimization is a bio-inspired algo-
rithm that aims to balance exploration and exploitation without need of tuning
of hyperparameters from outside sources. It is mainly used for graph-related
problems (e.g. TSP). The simulated ants in the algorithm leave a pheromone
trail on explored edges; since there is no guarantee that the initial group ants
find the best path, the pheromone is set to evaporate by a set amount as time
passes.

We explain the general algorithm of ant colony optimization that is targeted
towards TSP. To initialize the graph, drop ants on random nodes on the graph.
Also, deposit a small amount of pheromone on all edges uniformly. Ants choose
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which edge to cross probabilistically, considering the length of the edge and the
amount of pheromone on the edge. When ants finish a tour, they retrace their
tour, depositing pheromone in an amount inversely proportional to the length of
the route. Before starting the next cycle of trips, the pheromone evaporates by
a set amount. Eventually, the ants are shown to converge on the shortest path.

Monte Carlo Decision Tree Monte Carlo Tree Search is a heuristic search
algorithm that is mainly used for traversal of game trees. In particular, it is
mainly used in combinatorially explosive board games such as Go[4], chess, and
shogi[5], and games with incomplete information such as poker.[6] Monte Carlo
Tree search focuses on expanding the search tree based on random sampling of
the search space.

The algorithm of Monte Carlo Tree search is as follows. Each round consists of
the following four steps: Selection, Expansion, Simulation, and Backpropagation.
Selection starts from the root of the search tree, and selects successive child nodes
until a leaf node is reached. The method of actually selecting the child nodes
differs on the specific version of Monte Carlo Tree Search. Expansion then creates
one or more child nodes from the leaf nodes, provided that the leaf node does
not immediately end the game. Simulation completes one random playout from
the node chosen in Expansion. Backpropagation uses the result of the Simulation
playout to update the information in the nodes in the path from the child node
to the root node.[7]

While the Monte Carlo method is not directly related to greybox fuzzers or
directed fuzzers, it is included in this section to provide a background our own
developed method, which bears some similarities to Monte Carlo Tree Search.

3 Implementation

The main idea of AFLGOpt is replacing simulated annealing part to another
model without external adjustment of hyperparameter. Since SA(Simulated An-
nealing) algorithm was applied to avoid falling into local minimum, new model
also focused on this part.

3.1 ACO Inspired Greybox Fuzzing

We adopted the concept of ‘pheromone’ from ACO(Ant Colony Optimization).
However, since our problem description is not suitable for vanilla ACO, some
modifications have been made. First, the concept corresponding to ‘ants’ and
‘path’ was decided. Mutants generated in each iteration can be thought of as
ants that give feedback(pheromone) to their parent seeds when they find an
interesting path(seed). And seeds with pheromone information can be considered
as a path to the final target. In order to find the input directed to the final
target, a chain of mutations occurred from the initial seed, and seeds in the
chain contributed to finding the target to some extent. Therefore, if a mutant
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(a) seeds structure in AFLGo (b) seeds structure in AFLGOpt

Fig. 1: Modified seeds structure

finds an interesting seed, it reinforces all the pheromones of its ancestor seeds,
which is why each seed functions as a path.

In addition, vanilla ACO continues to search until ant finds food, however,
ant of AFLGOpt has a fixed limit to search. Once a mutant seed is created, the
point at which it can be reached is determined, so it cannot proceed further.
But since we know the distance to the target, information about how far the ant
has reached can be delivered to the path(seeds) it has gone through. This can
be compared to the fact that each ant has a limit to the distance it can travel
due to its low physical strength, but the smell of target food is strong, so it can
convey how close it has reached.

Several pieces of information have been added to enable this implementa-
tion. First, pheromone, a value indicating how likely each seed is to generate an
interesting mutant, has been added to each seed. Second, a pointer indicating
which seed it has mutated from, that is a pointer of parent seed, was added.
This results the set of seeds, which was in the form of a linear queue, appear in
a tree-shaped structure as shown in the figure.

3.2 Pseudo-code implementation

The following algorithm shows the AFLGOpt algorithm with a slight modifica-
tion of the Greybox fuzzing algorithm. ASSIGNENERGY in line 3 of Algorithm1
was modified, and UPDATEPHEROMONE in line 12 of Algorithm1 was added.

Assign Energy Energy p is a variable that determines how many mutants will
be generated in this iteration, and the higher the probability that the mutation
will approach the target, the higher the value. That is, basically the closer the
distance to the target, the higher the energy. However, there is a high possibility
of being trapped in a local minima, so there is a need for a way to avoid it. In
Greybox Fuzzing, it is Simulated Annealing(Algorithm 2), and in AFLGOpt, it
is pheromone(Algorithm 3).
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Algorithm 1 AFLGOpt

1: repeat
2: s = CHOOSENEXT(S)
3: p = ASSIGNENERGY(s)
4: for i from 1 to p do
5: s′ = MUTATEINPUT(s)
6: if t′ crashes then
7: add s′ to Sx

8: else if ISINTERESTING(s′) then
9: add s to S
10: end if
11: end for
12: UPDATEPHEROMONE(s)
13: until timeout reached or abort-signal

Algorithm 2 ASSIGNENERGY in Directed Greybox Fuzzing

1: T = TEMPERATURE(currentT ime)
2: powerfactor = SIMULATEDANNEALING(T , s.distance)
3: energy = 100 * powerfactor
4: return energy

Algorithm 3 ASSIGNENERGY in AFLGOpt

1: perf score = s.pheromone/s.distance
2: energy = 100 * perf score
3: return energy
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Update Pheromone The value of Pheromone varies depending on how many
interesting mutants were generated from the seed. Since not only themselves
but also parents contributed to the creation of interesting mutants, pheromones
increase in part, but not as much as the seed that generated the mutation them-
selves. In addition, if no more interesting mutations occur in some branches,
pheromone evaporates so that their importance can be reduced.

Algorithm 4 UPDATEPHEROMONE

1: s.pheromone *= EV APORATION RATE
2: importance = s.numInteresting/avgNumInteresting
3: node = s
4: while node.parent is not NULL do
5: importance *= importance CONTRIBUTION RATE
6: if importance ¿ 1 then node.pheromone *= importance
7: end if
8: end while
9: if s.pheromone 1 then s.pheromone = 1
10: end if

Fig. 2: finding interesting seed will also increase parent seeds’ pheromone

3.3 Monte Carlo Tree Search

AFLGOpt was approached with the concept of pheromone at first, however,
it was confirmed that the final output of the model resembles MCTS rather
than ACO. The ’selection’ step of the MCTS may correspond to the ’Assign
Energy’ step of the AFLGOpt. One difference is that AFLGOpt, unlike MCTS
can be mutated even in branch nodes. Also, the ’expansion’ and ’simulation’
step of the MCTS may correspond to the ’mutation’ and ’Calculate Score’ step,
respectively. Finally, the ’backpropagation’ step of MCTS is almost consistent
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with the ’Update pheromone’ step of AFLGOpt, except that the contribution
decreases toward the parents. As a result, AFLGOpt got the idea from ACO’s
pheromone, but ultimately a model closer to MCTS was designed.

4 Evaluation

To evaluate the soundness of our approach, we conducted a comparison exper-
iment. We implemented our approach directly on top of the existing directed
greybox fuzzer, AFLGo and named our tool AFLGOpt. We tested these two
tools, AFLGo and AFLGOpt, on the perspective of crash reproduction. All the
implementation and the experiment settings are in our github repository[3].

4.1 Experiment Settings

To compare AFLGOpt to the baseline AFLGo, we choose the vulnerabilities in
Binutils that were used to evaluate AFLGo in its original paper. These vulnera-
bilities are identified by the CVE-IDs. We set a timeout of 6 hours . For AFLGo,
the exploration time was set to 6*7/8 hours, to be coherent with the ratio of
time budget and the exploration time as reported in AFLGo’s paper, which was
8 and 7 hours respectively. For AFLGOpt, 7 versions with different parameter
values were used to evaluate the impact of each parameter. We repeated the ex-
periment for 8 times. Experiment was run on a cpu server of 64 cores. Maximum
of 48 cores were used in parallel, each bound with a single docker instance.

We use the Time-to-Exposure to evaluate the fuzzing performance. Time-to-
Exposure (TTE) measures the time taken to generate a first input that triggers
the targeted bug. In order to determine which input triggers which bug, we
instrumented the target binary with ASAN options. If an ASAN log of two
crashing inputs are same, or delivers identical meaning, they are considered to
expose the same bug. Thus, if an input is related to an already existing POC
of a known bug, it is considered to expose the same bug. And the time taken
to generate the first of such inputs is recorded as the TTE. Since fuzzing has
innate randomness in its execution, we took the median, rather than the mean,
value of TTE out of 8 repetition results

From now on we will address the research questions that we wanted to answer
through this project.

4.2 RQ1

RQ1. How faster is AFLGOpt compared to its baseline, AFLGo?
As we can see in Table 1, all version of AFLGOpt generally performs better

than AFLGo. The best performance boost happens in the CVE-2016-4490, by
the original version of AFLGOpt, which is almost 8 times faster than AFLGo.
There is only one case where AFLGo outperforms AFLGOpt, CVE-2016-4492.
However, in this case, AFLGo resulted in two timeouts out of 8 repetitions, while
none of the versions of AFLGOpt resulted in timeout in this case. If we are to
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Table 1: Comparison of TTE for each bug with AFLGOpt and AFLGo

AFLGOpt
bug AFLGo A: initial pheromone(1.0) / B: parent decrease(0.8) / largest difference

C: evaporate rate(0.9) / D: minimal pheromone(0.1)
no change A to 0.8 B to 0.9 B to 0.95 C to 0.8 C to 0.95 D to 0.2

2016-4487 2535 583 476 617 707 316 602 493 391
2016-4489 6002 1043 877 1446 948 1562 1545 1782 905
2016-4490 1117 141 172 291 277 197 257 209 150
2016-4491 14905 4113 3625 4241 3489 3667 3669 3705 752
2016-4492 4834 3582 3620 4063 2707 5593 2226 2921 3367
2016-6131 T/O 7536 13402 10090 9695 9482 7070 7467 6332

choose a single version that performs good for all of the cases, it would be the
one where evaporation rate is set to 0.95, This version of AFLGOpt exposed the
targeted bugs four times faster than the AFLGo. We can also see that AFLGOpt
is more free from the threat of local minima, since it has much fewer timeout
results compared to AFLGo.

4.3 RQ2

RQ2. How sensitive is the performance of AFLGOpt to the parameter values?

In order to investigate the impacts of each parameter on the performance,
we made and tested the variants of AFLGOpt. As we can see in the results,
modifying any of the parameters do impact the performance, some positively,
some negatively. Thus, all parameter is relevant to the performance.

If the performance is unstable due to the parameters, it is a threat to our
validity, because we cannot ensure that it will work well on other target pro-
grams. However, only one version of AFLGOpt performed inferior to AFLGo
in only one bug case. In other cases, the worst performance of AFLGOpt was
still at least 3 times faster than the AFLGo. The implies that performance of
AFLGOpt does depend on parameter values, but any reasonable value would
result in better performance than AFLGo.

4.4 RQ3

RQ3. How many mutants are added to the seed?

In order to evaluate the directedness, we can measure the ration of entire
mutants versus the muatnats that actually discovered new coverage, in other
words, added to the queue. The ratio is given in the Table 2. As expected, all
versions of AFLGOpt generates more mutants that are meaningful, which means
that it is more directed than AFLGo.
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Table 2: Meaningful mutants ratio of AFLGo and AFLGOpt

AFLGOpt
bug AFLGo A: initial pheromone(1.0) / B: parent decrease(0.8) /

C: evaporate rate(0.9) / D: minimal pheromone(0.1)
no change A to 0.8 B to 0.9 B to 0.95 C to 0.8 C to 0.95 D to 0.2

2016-4487 0.0045 0.0086 0.0056 0.0053 0.0052 0.0052 0.0052 0.0055
2016-4489 0.0042 0.0050 0.0050 0.0052 0.0053 0.0048 0.0051 0.0070
2016-4490 0.0029 0.0033 0.0034 0.0035 0.0034 0.0067 0.0035 0.0034
2016-4491 0.0031 0.0034 0.0033 0.0035 0.0034 0.0035 0.0035 0.0035
2016-4492 0.0043 0.0054 0.0051 0.0053 0.0052 0.0050 0.0056 0.0050
2016-6131 0.0048 0.0053 0.0051 0.0050 0.0050 0.0051 0.0052 0.0055

5 Conclusion

In conclusion, We implemented AFLGOpt with the approach of improving the
search algorithm with pheromone concepts. AFLGOpt performs better than
AFLGo by four times. It is more free of local minima and is more directed
than AFLGo. Our evaluation may not be a solid evidence because we did not
test our approach on other programs. However, since we tested on different bug
targets, and ran multiple iterations, we have an evidence that this result may be
generalized.
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