
2020 FALL CS454 FINAL PROJECT REPORT 1

SWAY for Decision Space of Permutations
with Case Study on Test Case Prioritisation

Junghyun Lee, Chani Jung, Yoo Hwa Park, and Dongmin Lee

Abstract—The abstract goes here.

Index Terms—TCP, SWAY, Permutation metric, Permutohedron, Siemens programs.

F

1 INTRODUCTION

SOFTWARE engineers are faced with more and more prob-
lems with the growth of the software industry. Among

many software engineering tasks, one of the most important
problems is the test case prioritisation (TCP). Simply speak-
ing, the goal of TCP is to find some optimal ordering of the
test cases such that “early fault detection ” is maximized.
For this to happen, test cases that are more beneficial should
be ordered to come before the ones that are less beneficial,
so that fault detection occurs at an early stage of testing.

There were many attempts to solve TCP in prior studies,
the most notable ones being greedy and search-based al-
gorithms. However, in this paper, TCP is addressed with
SWAY, a baseline optimizer for SBSE problems. As this
problem is addressed with a baseline optimizer, the goal of
this paper is to prove that SWAY can produce comparable
results to the other state-of-the-art techniques, especially the
search-based methods.

In this paper, SWAY and TCP are introduced to estab-
lish the background knowledge needed as a basis for our
study. Also, a brief overview of the existing algorithms and
their limitations are discussed. Then, our formulation of
the method for applying SWAY to TCP is shown in detail,
including embedding of the search space and adjustment of
BETTER function. Finally, experiment design and results are
shown, with thorough evaluation of the results.

The contributions of this work is as follows:

1) We present a novel embedding scheme for software
engineering problem whose decision space is that of
permutations, and show that SWAY can be directly used
without any significant modifications.

2) To show that our algorithm performs competitively
(and sometimes even better), SWAY is applied to Test
Case Prioritisation. It is compared with additional
greedy algorithm, which was recommended to be used
in [1] due to its high performance.

3) Contrary to the promising performance of SWAY for
TCP, by comparing the results with a completely ran-

• All authors contributed equally to this work

• Corresponding authors: Junghyun Lee, jh lee00@kaist.ac.kr; Chani Jung,
1016chani@kaist.ac.kr; Yoo Hwa Park, 16ypark@kaist.ac.kr; Dongmin
Lee, theresaldm@kaist.ac.kr

Manuscript received December 21, 2020.

dom algorithm, we find that the Siemens programs are
not very suitable to be used as benchmarks.

2 BACKGROUND

2.1 SWAY

SWAY [2] is an alternative to multi-objective evolutionary
algorithms(MOEA), used mainly for problems with con-
flicting objectives. SWAY recursively clusters possible can-
didates in the decision space until it is left with the superior
cluster. In short, SWAY is about generating large population
of candidates, clustering them and picking a representative
from each cluster, evaluating only the representatives, and
discarding any candidates that are embedded close to the
poorly performing one. This results only O(logN) compu-
tation of the objective functions, which is very desirable for
cases when the computation of objectives is expensive.

A baseline optimizer is an optimizer that is simple, widely
and publicly available, fast, offer comparable performance
to the SOTA methods, and inexpensive in terms of resource
usage. (Such guidelines are due to [3]) It is beneficial to have
a baseline optimizer for an optimization problem because it
provides a floor performance values to it. This helps the
developers to rule the optimizers with lower performance
out. As argued in [2], SWAY satisfies all such criteria i.e.
SWAY is a baseline optimizer for multi-objective search-
based software engineering problems. Thus, SWAY can
serve as a quick standard for comparing preliminary results,
and can also serve as a guideline for the subsequent trials.

2.2 TCP

Let us first recall the rigorous definition of TCP [4]:

Definition 2.1. Test Case Prioritisation (TCP)
Input: T, a test suite, PT, the set of permutations of T, and f,

a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT)

(T ′′ 6= T ′) [f(T ′) ≥ f(T ′′)].

There are two main approaches to TCP: coverage-based
and diversity-based [5]. Coverage-based TCP makes use
of coverage information of each test case to produce an
ordering, while diversity-based TCP makes use of how
diverse each of the test cases are in order to select the most

2020 FALL CS454 FINAL PROJECT REPORT 2

diverse subset of the test cases. In this work, we focus on
the coverage-based approach

3 EXISTING APPROACHES FOR TCP

3.1 Additional Greedy Algorithms

Additional greedy algorithm is widely utilized for TCP. It
starts from an empty solution, and then for each iteration,
the test case which gives the maximal coverage gain to the
partial solution is added.

However, due to the structure of selecting locally optimal
solution at each iteration, additional greedy algorithm does
not always produce the optimal solution for TCP. There
exist the cases that the algorithm falls into sub-optimal local
minima, which is shown using a small toy example in [1].
In the example, we can see that starting with the maximally
covering test case does not always achieve the earliest full
coverage of the program.

3.2 Search-Based Algorithms

There are also search-based methods to solve TCP. The most
frequently used are 2-Optimal, Hill Climbing, and Genetic
Algorithm. Refer to [1] on how the required operations (e.g.
fitness function for genetic algorithm) are chosen. However,
these approaches have expensive time cost because they
require large number of evaluations of the candidates to
reach to the solution. They also have threats to fall into local
minima, but not as much since these aren’t deterministic like
greedy algorithm.

3.3 What do we compare against?

According to [1], there is no significant difference in
performance between search-based and greedy algorithm.
Therefore, we chose additional greedy algorithm, which is
cheaper to implement and execute, as the one to compare
the performance of our algorithm with.

4 SWAY FOR TCP

4.1 Background

Let T = {t1, . . . , tn} be the set of all test cases. Recall that
SWAY clusters the candidates through their decisions rather
than objectives. Thus in order to apply SWAY to TCP, one
needs to model TCP as a modeling problem of converting
decisions d into objective scores o i.e.

o = TCP (d)

Noting that any such objective scores can be obtained
by executing the whole test suite in the given order, it is
natural to think of d as the ordering of T , which will be
rigorously handled by using permutation as described in
the next section.

4.2 Mathematical preliminaries

This section provides a brief overview of the necessary
mathematical concepts. Let us start with a basic definition:

Definition 4.1. A permutation of [n] := {1, 2, . . . , n} is a
bijection from [n] to itself. Denote Sn as the set of all possible
permutations of [n].1 Espeically, let i = (1, . . . , n) ∈ Sn be the
identity permutation.

Permutation is one of the most fundamental combinato-
rial objects of immense range of practical applications, from
computational biology to software engineering. In our prob-
lem, assuming that we have n different test cases to order,
it can be observed that each permutation of [n] corresponds
to a unique ordering of the given test suite, giving us a direct
problem-specific interpretation.

SWAY depends on the assumption that there exists a
close association between the decision and objective spaces.
In our case, since we are considering coverage-based TCP, it
is desirable to have the following relation: if two test suites
are “close” to each other, then their “degree” of coverage
should be similar.

This motivates the need to compare two permutations
i.e. compute their “distance”. Unlike Rp, which has a natural
metric endowed from its p-norm (lp-metric), there isn’t
a ”natural” way of computing the distance between two
permutations.

Let us first introduce some concepts [6]:

Definition 4.2. Given a connected2 graph G = (V,E), its path
metric is a metric on V , defined as the length(# of edges) of a
shortest path connecting two given vertices x and y from V .

Definition 4.3. Given a finite set X and a finite set O of unary
editing operations on X , the editing metric on X is the path
metric of the graph G(X,O) whose vertices are X and whose
edge set is {{x, y} | ∃o ∈ O y = o(x)}.

If X = Sn, then it is also called permutation metric.

(Metric is a distance function from X×X to R≥0 satisfy-
ing three axioms. Refer to [7] for a more detailed discussion
on the topic.)

4.3 Intuition

Unlike continuous space, in which one needs to move in
a continuous manner to go from one point to another, our
space Sn is discrete. The most natural way of moving from
one permutation to another is by switching two elements,
formalized by the following notion:

Definition 4.4. π = (π1, . . . , πn) ∈ Sn is called a transposi-
tion if it switches two elements, only i.e. it is a cycle of length 2
i.e. there exists some i 6= j ∈ [n] such that πi = j, πj = i and
πk = k for all k ∈ [n] \ {i, j}.

One should observe, however, that our problem is heav-
ily dependent on the relative ordering of the test cases.
For example, let π = (1 2 3 4). Both π′ = (1 3 2 4) and
π′′ = (4 2 3 1) differ by a single transposition from π, but

1. Note that Sn and usual function composition operation is precisely
the symmetric group of order n.

2. A graph G = (V,E) is connected if for every x, y ∈ V , there exists
a path from x to y

2020 FALL CS454 FINAL PROJECT REPORT 3

in terms of the “degree” of early coverage, they may differ
significantly. In particular, it is most likely that π and π′ have
similar “degree” of early coverage, while the opposite for π
and π′′. Thus we resort ourselves to the following special
type of transposition:

Definition 4.5. π = (π1, . . . , πn) ∈ Sn is called a swap if it
is a transposition that switches two adjacent elements i.e. there
exists some i ∈ [n] such that πi = i + 1, πi+1 = i and πk = k
for all k ∈ [n] \ {i, i+ 1}.

Again, the reason for using this is because we are in-
terested more in seeing how “local” ”locality” (EXAMPLE:
general transposition may change the objective a lot since
the objective is dependent on the relative ordering of the
elements i.e. as the distance between two switched test cases
increase, the change in relative orderings of the elements
becomes more severe)

Since our main goal is to somehow cluster Sn, based
on the previous discussion, it is natural to consider the
following permutation metric:

Definition 4.6. The swap distance (also known as Kendall τ
distance in statistical ranking theory) of π, π′ ∈ Sn, denoted as
dK(π, π′), is the editing metric on Sn with O being the set of all
possible swaps i.e. it is the minimum number of swaps required to
go from π to π′.

(Verifying that the above-defined swap distance is in-
deed a metric is left to the readers as a simple exercise)

Lastly, the following lemma provides a very intuitive
way of computing the swap distance:

Lemma 4.1. Given π, π′ ∈ Sn, dK(π, π′) is precisely the
number of relative inversions between them i.e. number of pairs
(i, j), 1 ≤ i < j ≤ n with (πi − πj)(π′i − π′j) < 0.

Now our goal is to find an appropriate embedding
scheme that preserves the following property: two permu-
tations are close together if they differ by small number of swaps,
and vice versa. The next two sections show two different such
embeddings, along with short mathematical justifications.

4.4 Embedding Scheme

4.4.1 Overview

Let us recall some concepts from combinatorics and poly-
tope theory:

Definition 4.7. For fixed n, the permutahedron, denoted
as Πn−1, is defined as the convex hull of the set S =
{(π(1), . . . , π(n)) | π ∈ Sn}.

Permutahedron, first introduced in [8], has been a subject
of intensive study in the field of not only combinatorics, but
also in other fields such as bandit optimization [9], . We
shall look at two important properties of Πn−1 and their
implications in our current problem. Refer to [10], [11] for
the full proofs and more detailed discussions on related
topics.

Lemma 4.2. Πn−1 is a simple polytope of dimension n− 1, with
n! vertices given as S.

This shows that directly embedding S onto Rn.

Lemma 4.3. Πn−1 is a geometric realization of weak Bruhat
order on Sn i.e. two vertices of Πn−1 are adjacent iff they differ
by a swap.

Above lemma has the important implication that such
simple and intuitive geometric realization(embedding) of Sn onto
Rn−1 (with the usual Euclidean metric) has a very mathemati-
cally desirable structure. In other words, this motivates for us
to directly use continuous SWAY [2]!

4.4.2 Mathematical Justification
However, it is not clear at first of how the l2-norm of two
permutations is related to their swap distance. It may be that
even though two permutations are far apart in Rn−1 in l2-
distance, they may be similar in swap distance or vice versa.
In this subsection, we provide a mathematical justification
that such case is not possible, in general.

To see this, we need some concepts from statistical
ranking theory:

Definition 4.8. Spearman ρ distance of π, π′ ∈ Sn, denoted
as dS(π, π′), is precisely the Euclidean distance between π and
π′, considering them as vectors (vertices of Πn−1 in Rn)

Definition 4.9. Daniels-Guilbaud semi-metric3 (abbreviated
as DG-distance) of π, π′ ∈ Sn, denoted as dG(π, π′), is defined
as the number of triples (i, j, k), 1 ≤ i < j < k ≤ n such that
(πi, πj , πk) is not a cyclic shift of (π′i, π

′
j , π
′
k).

Definition 4.10. π, π′ ∈ Sn are said to have a circular agree-
ment on {x, y, z} ⊂ [n] if (πx, πy, πz) can be obtained via a
circular permutation of (π′x, π

′
y, π
′
z).

The following results from [12] provide a key theoretical
characterization of our approach4:

Theorem 4.4 (Monjardet, 1998).

d2S(π, π′) = ndK(π, π′)− dG(π, π′) ∀π, π′ ∈ Sn

Lemma 4.5 (Monjardet, 1998).

dG(π, π′) + aG(π, π′) =

(
n

3

)
Here, aG(π, π′) is defined as the number of triplets

{x, y, z} ∈ [n] such that π and π′ have a circular agreement
on. (Basically, it can be thought of as a “dual” to dG)

Writing it in another way,

d2S(π, π′) = ndK(π, π′) + aG(π, π′)−
(
n

3

)
One can thus say that π, π′ are far apart in Rn if

1) dK(π, π′) is large i.e. they differ by a lot of swaps.
2) aG(π, π′) is large i.e. they are quite mixed up.

Based on these mathematically rigorous results, we ar-
gue that our embedding, up to some level of distortion,

3. Semi-metric is a generalized metric that doesn’t satisfy the triangle
inequality.

4. In our final presentation video, we claimed that there was an
elegant statistical characterization of dG(·, ·) and deferred the proof to
here. However, after a careful scrutinization, we realized that there was
a significant flaw in the proof, thus forcing us to remove the “result”.
Still, we provide an equally elegant theoretical explanation for our
embedding, although only based on existing results.

2020 FALL CS454 FINAL PROJECT REPORT 4

(a) schedule, APSD (b) schedule, APFD

(c) schedule2, APSD (d) schedule2, APFD

Fig. 1: Comparison of APSD, APFD over three algorithms for schedule, schedule2. (Beware of the scale! For instance, (c)
and (d) have significantly different scales for the y-axis!)

accurately model the swap distance of two permutations,
and thus it is okay to use the continuous version of SPLIT
for our problem.

4.5 Initial population
For small n, using all of Sn is not so much of a problem.
However, it becomes a big problem when n is big, especially
in many of the industrial cases. Using all of Sn for initializa-
tion requires n! points, multiplied by the space complexity
required for used embedding scheme.

Thus we propose generating 2k random permutations
from Sn. Such sampling is done using Fisher-Yates shuffle,
which outputs uniformly distributed permutations [](CITA-
TION). We use Python’s RANDOM.SHUFFLE function, which
makes use of the Fisher-Yates algorithm.

4.6 BETTER function
Using the already-known execution information of each test
case, we’ve used APSD [4] as our BETTER function, given as

APSD(T) = 1− TS1 + · · ·+ TSm

nm
+

1

2n
(1)

where TSi is the index of the first test case that covers
statement i, n is the number of test cases in the test suite, and
m is the number of statements in the program. Such choice
is natural since our current approach is coverage-based, and

APSD is the most widely used function for measuring the
early coverage percentage.

5 EXPERIMENTS

5.1 Benchmarks
Software-artifact Infrastructure Repository (SIR) [13] is an
infrastructure, created to support controlled experimenta-
tion with testing techniques. It is home to many software-
related artifacts that support rigorous controlled experimen-
tation with program analysis and software testing tech-
niques.

We consider 6 Siemens programs, introduced by the
Siemens Corporate Research for a study of the fault de-
tection capabilities of control-flow and data-flow coverage
criteria [14]. Those programs were developed to study the
fault detection of the code. This programs perform a variety
of tasks (also referred to as programs): schedule, schedule2,
printtokens, printtokens2, tcas, totinfo. For each programs,
it contains large pool of test cases.

Below is a brief description of each program:
1) schedule, schedule2: priority schedulers.
2) printtokens, printtokens2: lexical analysers
3) tcas: an aircraft collision avoidance system.
4) totinfo: computes statistics of given input data.

Refer to [14] for a detailed explanation on how the
programs were seeded with faults, and how the test suites

2020 FALL CS454 FINAL PROJECT REPORT 5

(a) printtokens, APSD (b) printtokens, APFD

(c) printtokens2, APSD (d) printtokens2, APFD

Fig. 2: Comparison of APSD, APFD over three algorithms for printtokens, printtokens2.

were made. For our experiment, we considered the 1000
test suites in the folder tesplans-bigcov; those of which are
suspected to have large sizes with full coverage.

5.2 Research Questions
To explore our approach of applying SWAY to TCP, we
organize our exploration around the following research
questions (RQ):

1) (RQ1) How well SWAY performs compared to the state-
of-the-art method for TCP?

2) (RQ2) How sensitive is SWAY to the initial population?
(which is practically the only hyperparameter)

As mentioned in Section 3, we only consider additional
greedy algorithm as our competitor since it is simple to
implement, and it shows comparable performance with
the other search-based algorithms. In addition, for sanity
check, we’ve also considered random algorithm, which just
outputs a random permutation. For each program, a boxplot
of APSD and APFD is plotted for each algorithm, where all
1000 test suites were considered.

5.3 Performance Measures
We had used two metrics for the performance measure of
SWAY and the compared existing methods.

The first metric is Average Percentage of Statement De-
tection(APSD). It measures how early the test suite can cover

the whole statements of the given program. Since SWAY
took coverage-based approach for TCP, we measured and
compared APSD for the results of each method to see if
SWAY had worked properly as it was expected. Its formula
is given in Eq. 1.

The second metric we had used is Average Percentage of
Fault Detection(APFD), which is a widely used performance
metric for TCP problems. It measures how early the test
suite can detect the faults of the whole program, which
accords with the goal of TCP. APFD is given as

APFD(T) = 1− TF1 + · · ·+ TFm

nm
+

1

2n

where TFi is the index of the first test case that detects
fault i, n is the number of test cases in the test suite, and m
is the number of faults in the program.

6 RESULTS

All our codes are available in our Github repository5.

6.1 RQ1: How well does our approach perform?
Figures 1, 2, 3 show the resulting box-plots of all the pro-
grams considered. Green triangle is the mean of the metric
considered. For simplicity, additional greedy algorithm is
labeled as “greedy”.

5. https://github.com/Dongmin1215/CS454 Team5

https://github.com/Dongmin1215/CS454_Team5

2020 FALL CS454 FINAL PROJECT REPORT 6

(a) tcas, APSD (b) tcas, APFD

(c) totinfo, APSD (d) totinfo, APFD

Fig. 3: Comparison of APSD, APFD over three algorithms for tcas, totinfo.

(a) APSD (b) APFD

Fig. 4: Effect of hyperparameters(initial population) on APSD and APFD, for tcas.

2020 FALL CS454 FINAL PROJECT REPORT 7

As for APSD, all three algorithms considered did not
show a significant difference among all the programs con-
sidered. Although there are some programs in which SWAY
was outperformed by the additional greedy algorithm, it can
be seen that SWAY performs comparably with the additional
greedy algorithm. Note that in general, observing the num-
ber of outliers and the location of quartiles, it can be claimed
that SWAY has less variance than random and additional
greedy algorithm, showing that SWAY-based approach is
more robust to different test suites. Similar trend is observed
for APFD, although not as clear as APSD since we’re directly
optimizing over APSD.

As an additional observation, note that there are some
programs in which a uniformly randomly chosen permu-
tation performs comparably with both additional greedy
algorithm and SWAY (e.g. schedule). We suspect that this is
due to the excessively simple structure of the faults seeded
in the programs, and thus the difference between different
test cases orderings is very subtle.

6.2 RQ2: Sensitivity of hyperparameters

For the sake of simple exposition, we did this experiment
with the tcas program, only. However, we suspect that
similar results will show up for other Siemens programs. We
considered the initial population of {128, 256, 512, 1024}.
As one can observe in Figure 4, the results do not show
a big difference. This is a rather surprising, yet desirable,
result since it implies that our algorithm is very robust
to the initial population (despite the intuition that more
initial population leads to larger searches and thus better
performance). However, since this is only for the Siemens
programs, future research should explore whether this holds
for other (more complex) programs, such as space [15].

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel way of applying SWAY,
a baseline optimizer for multi-objective software engineer-
ing problems, to TCP (and possibly other problems whose
decision space is the space of permutations). Specifically,
we adopted the embedding of the permutations into the
Euclidean space, and set the BETTER function as APSD
which let the algorithm take coverage-based approach of
TCP. We provide rigorous contextual evidence from well-
established fields such as combinatorics, polytope theory,
and statistical ranking theory to show that our embedding
scheme is suitable for the framework of SWAY.

In RQ1, we verified our algorithm by comparing it
with random permutations and the widely used additional
greedy algorithm, for the Siemens programs. Both in terms
of APSD and APFD, SWAY performed comparably with
additional greedy algorithm. For some programs, SWAY is
more robust in terms of different test suites. In RQ2, we ob-
served that initial population size didn’t have much impact
on the performance of SWAY for tcas program, although
we suspect that this would be the case for other programs
as well. Additionally, we observe that random permutation
is at par with additional greedy algorithm and SWAY for
some of the Siemens programs, hinting that they might not
be suitable for future research on test case prioritisation.

One immediate direction for extending this work is to
try another embedding, as described in Appendix A. This
embedding exactly preserves the swap distance between
two permutations, without any distortion, but at the cost
of higher computational complexity. Due to time constraint,
we couldn’t implement this strategy, and so it would be
interesting to see if this strategy is effective.

Another is to consider some variants of TCP:
1) Since SWAY was proposed as an alternative to multi-

objective problem, it would be interesting to use the
same embedding for more complex variants of TCP
such as time-constrained prioritisation [16], [17].

2) Here, we’ve only considered the approach of consid-
ering the permutation as the decision space i.e. each
embedded point is a distinct test suite. It would be
interesting to see if it is possible (and if it is maybe
better) to embed each test case as a point. This idea
may be lead to a new algorithm when considering a
diversity-based approach to TCP.

3) TCP considered here is called white-box execution-based
prioritisation) [18] because we assumed that we have
access to the source code of the SUT, and that we could
execute the test cases. It would be interesting to see
how to apply SWAY in the opposite situation, often
called black-box static prioritisation. [18], [19], [20] tackled
this problem by using string embedding, of which the
future algorithm may be benefited from.

Although our work is only about TCP, it is straightfor-
ward to try applying our algorithm to other SBSE problems
with decision space of permutations. Some examples are:
• Traveling salesman problem(TSP)
• Permutation flow shop scheduling problem
• Quadratic assignment
• Linear ordering

ACKNOWLEDGMENTS

The authors would like to thank Prof. Shin Yoo and Seung-
min Lee of COINSE Lab (KAIST) for their insightful advices
and guidances.

REFERENCES

[1] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on Software
Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[2] J. Chen, V. Nair, R. Krishna, and T. Menzies, ““Sampling” as a
Baseline Optimizer for Search-Based Software Engineering,” IEEE
Transactions on Software Engineering, vol. 45, no. 6, pp. 597–614,
2019.

[3] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A Baseline
Model for Software Effort Estimation,” vol. 24, no. 3, 2015.
[Online]. Available: https://doi.org/10.1145/2738037

[4] G. Rothermel, R. J. Untch, and C. Chu, “Prioritizing test cases
for regression testing,” vol. 27, no. 10, 2001. [Online]. Available:
https://doi.org/10.1109/32.962562

[5] D. Mondal, H. Hemmati, and S. Durocher, “Exploring test suite
diversification and code coverage in multi-objective test case selec-
tion,” in 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), 2015, pp. 1–10.

[6] M. M. Deza and E. Deza, Encyclopedia of Distances, 4th ed.
Springer-Verlag Berlin Heidelberg, 2018.

[7] W. Rudin, Principles of Mathematical Analysis, 3rd ed. McGraw-
Hill, 1976.

https://doi.org/10.1145/2738037
https://doi.org/10.1109/32.962562

2020 FALL CS454 FINAL PROJECT REPORT 8

[8] P. H. Schoute, “Analytic treatment of the polytopes regularly
derived from the regular polytopes,” Verhandelingen der Koninklijke
Akademie van Wetenschappen Te Amsterdam, vol. 11, no. 3, pp. 370–
381, 1911.

[9] N. Ailon, K. Hatano, and E. Takimoto, “Bandit online optimization
over the permutahedron,” in Algorithmic Learning Theory, P. Auer,
A. Clark, T. Zeugmann, and S. Zilles, Eds. Cham: Springer
International Publishing, 2014, pp. 215–229.

[10] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathe-
matics. Springer-Verlag New York, 2007, vol. 152.

[11] R. P. Stanley, Enumerative Combinatorics: Volume 1, 2nd ed., ser.
Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 2012, vol. 49.

[12] B. Monjardet, “On the comparison of the spearman and kendall
metrics between linear orders,” Discrete Mathematics, vol. 192,
no. 1, pp. 281 – 292, 1998.

[13] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Software Engineering,
vol. 10, no. 4, p. 405–435, Oct. 2005. [Online]. Available:
https://doi.org/10.1007/s10664-005-3861-2

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
on the effectiveness of dataflow- and control-flow-based test ad-
equacy criteria,” in Proceedings of 16th International Conference on
Software Engineering, 1994, pp. 191–200.

[15] F. I. Vokolos and P. G. Frankl, “Empirical evaluation of the textual
differencing regression testing technique,” in Proceedings. Inter-
national Conference on Software Maintenance (Cat. No. 98CB36272),
1998, pp. 44–53.

[16] Jung-Min Kim and A. Porter, “A history-based test prioritization
technique for regression testing in resource constrained environ-
ments,” in Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002, 2002, pp. 119–129.

[17] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of
time constraints on test case prioritization: A series of controlled
experiments,” IEEE Transactions on Software Engineering, vol. 36,
no. 5, pp. 593–617, 2010.

[18] S. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empirical Software
Engineering, vol. 19, 02 2014.

[19] Y. Ledru, A. Petrenko, and S. Boroday, “Using string distances
for test case prioritisation,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’09. USA: IEEE Computer Society, 2009, p. 510–514. [Online].
Available: https://doi.org/10.1109/ASE.2009.23

[20] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritising
test cases with string distances,” Automated Software Engineering,
vol. 19, pp. 65–95, 03 2012.

[21] S. M. Moser and P.-N. Chen, A Students Guide to Coding and
Information Theory. Cambridge University Press, 2012.

[22] G. Cormode, “Sequence distance embedding,” Ph.D. dissertation,
University of Warwick, 1 2003.

APPENDIX A
ANOTHER EMBEDDING

Let us recall an important concept from coding theory [21]:

Definition A.1. Given any two vectors(codewords) x =
(x1, . . . , xn) and y = (y1, . . . , yn), the Hamming distance
between x, y, denoted as dH(x, y), is defined as

dH(x, y) :=
n∑

i=1

[
xi

?
= yi

]
where

[
xi

?
= yi

]
is the indicator function of whether xi is

equal to yi.
(The definition naturally extends for two equal-sized matrices

by considering their vectorizations.)

One can immediately see that if x, y ∈ {0, 1}n, then
dH(x, y) can be rewritten as

∑n
i=1 |xi − yi| i.e. the Jaccard

distance between x and y.

The following lemma from [22] is the key theoretical
basis for this embedding:

Lemma A.1.

∀π, π′ ∈ Sn dK(π, π′) = dH (S(π), S(π′))

where [S(π)]ij := [i < j ∧ π−1(i) < π−1(j)] and [·] is the
indicator function for the given logical predicate.

The significance of above lemma is that such binary
embedding scheme gives a distortion-free embedding of Sn onto
{0, 1}n with Hamming distance as the endowed metric6 i.e. we
can directly use binary SWAY as proposed in [2]! Moreover,
note that in our binary case, the Hamming distance is equiv-
alent to the Jaccard distance, providing further justification
for the direct application of binary SWAY.

Lastly, noting that for all π ∈ Sn, S(π) is anti-symmetric
(if (i, j)-th component is 1, then (j, i)-th component is 0
and (i, i)-th component is 0), we can reduce the space
complexity from n2 to n(n−1)

2 .
Note that in exchange for preserving the pairwise swap

distances, the space complexity (and thus the expected
computational complexity) is rather high. It takes O(N0n

2)
space complexity with O(N0n) time complexity for em-
bedding each permutation, where N0 is the size of the
initial population. Our embedding scheme as mentioned in
Section 4.4 takesO(N0n) space complexity withO(N0) time
complexity for embedding each permutation, but at the cost
of some distortion introduced. Thus there is a clear trade-
off between the two embedding schemes, and it would be
interesting to see if such trade-off extends to performance of
the algorithm.

6. This space is known as the Hamming space in coding theory.

https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1109/ASE.2009.23

	Introduction
	Background
	SWAY
	TCP

	Existing Approaches for TCP
	Additional Greedy Algorithms
	Search-Based Algorithms
	What do we compare against?

	SWAY for TCP
	Background
	Mathematical preliminaries
	Intuition
	Embedding Scheme
	Overview
	Mathematical Justification

	Initial population
	Better function

	Experiments
	Benchmarks
	Research Questions
	Performance Measures

	Results
	RQ1: How well does our approach perform?
	RQ2: Sensitivity of hyperparameters

	Conclusions and Future Work
	References
	Appendix A: Another Embedding

