
CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 1

K-DAsFault: Kaistian-Designed Automatically Testing
Self-Driving Cars with Search-Based Procedural
Content Generation
JAEMIN CHO1, GEON KIM2, JAEUK KIM3, JIIN KIM4, AND SEUNGHEE HAN5

120160633, School of Computing, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Korea
220170057, School of Computing, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Korea
320170150 , School of Electrical Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Korea
420170168 , School of Electrical Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Korea
520170719, School of Electrical Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Korea
*Team Number: 21
*Project corresponds to Option 2 (Replicating and/or Improving Literature)

Autonomous driving industry has become one of the most valuable industries. In this area, finding possible acci-
dent of autonomous vehicle has become important issue. However, testing in real traffic is not only dangerous but
also expensive. So, the virtual test method is emerging as a good alternative. AsFault is the system which combined
Procedural Content Generation (PCG) and Genetic Algorithm (GA) to test lane-keeping functionality of self-driving
car. In our project, we replicated the AsFault by implementing our own PCG and GA to automatically generate and
evolve various road maps. Then, we evaluated our system using MATLAB Simulink autonomous driving toolbox.
In addition, we proposed K-DAsFault to introduce novel methods on search operator and similarity test. Our evalu-
ation showed K-DAsFault can produce effective road map which not only make more Out of Bound Episodes (OBE)
but also cause more vision error of lane-keeping functionality of Simulink simulation than randomly generated
road map.
Our team’s work (including codes, presentation slides, and video) is available at link below:

https://github.com/shhan1755/CS454-Final-Project

1. INTRODUCTION

Nowadays, with advances in AI technique, the autonomous
driving industry has become one of the most valuable indus-
tries. A number of auto and software companies, including
Tesla, Waymo and Google, are making significant investments
in autonomous vehicle research. The most important part of
autonomous vehicle is safety. So, to make completely safe
autonomous driving system, finding possible accident of au-
tonomous vehicle has become important issue. The most intu-
itive way to find fault of self-driving cars is to test them in real
traffic. However, real traffic testing method has some drawbacks.
At first, real traffic testing is dangerous. Incomplete self-driving
system can cause some terrible accidents. And, it is expensive
and time consuming. To find defects in self-driving cars, hun-
dreds or thousands of tests are needed. Driving on the actual
road requires a great deal of time to carry out the process. There-
fore, virtual test, test using computer simulation, can be a good
alternative. Nevertheless, finding the way to create a lot of suit-
able test scenarios is difficult problem. To solve this drawback of
virtual test, Alessio, Marc, and Gordon proposed AsFault.

AsFault is automated system that tests lane-keeping function-
ality of self-driving car. They focused on testing lane-keeping

system and merged Procedural Content Generation (PCG) and
Genetic Algorithm (GA) so that they proposed new system to
automatically create random road map and evolve road map
to expose problems in self-driving software. In our project, our
main objective is to replicate AsFault to make the system which
test the lane-keeping functionality of autonomous vehicles.

Thus, we implemented testing road map generator using
PCG and search-based road evolving system using GA. Through
the implemented system, we wanted to automatically generate
virtual road maps which effectively expose faults in lane-keeping
system of autonomous vehicle. Then, to evaluate our system,
we applied MATLAB Simulink autonomous driving tool box
and checked out of bound episodes (OBE) in each simulation.
Moreover, in this paper, we proposed K-DAsFault which is im-
proved version of AsFault to introduce novel methods on search
operator and similarity test.

2. SYSTEM IMPLEMENTATION

In this part, we described implementation of our system. Main
objective of our project is to generate effective test data to im-
prove the lane keeping system of self-driving car. In other words,
what we want is to generate the pragmatically synthesized road

https://github.com/shhan1755/CS454-Final-Project


CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 2

network which induce failure of lane keeping system in self-
driving cars. To achieve our purpose, we introduced two main
functionalities to our system, Procedural content generation
(PCG) and Genetic algorithm (GA). In this part, we explained
PCG first, then described GA.

A. Procedural Content Generation
Procedural content generation (PCG) is a technique mainly used
in the game industry. It means creation of game content automat-
ically using algorithms. In our project, we decided to utilize the
procedural content generation for spawning initial road network
populations. In section A, we explained the way how we create
the initial random road network using PCG. Then, in section B,
we explained our validation method to check whether generated
road and road network is valid or not.

A.1. Road network Generation

In this project, we generate random road network using PCG
technique. Road network generation process is an incremental
process from road segments to road networks. In this section,
we firstly explained definition of a road. Then, we described
detailed road network generation process step by step.

Road Definition

The smallest unit of road network is road segment. If multiple
road segments are gathered, they become a road, then if multiple
roads are accumulated, a single road network is formed. Figure 1
show examples of road segment. In our project, we represented
each road segment as five different poly-lines. Back line is start
line of road segment which is expressed as magenta line. Front
line is end line of segment expressed as orange line. Left edge,
center line, and right edge are internal lines which connect the
back line and front line of road segment, they are expressed as
red, blue, and green line, respectively. In this project, we defined
two types of road segment. Straight road segment is segment
to generate short straight road. It has three properties, width,
length and the number of points in internal line (figure.1.a).
Arc road segment is segment to generate short curved road.
Properties of arc road segment are radius of curvature, rotation
angle, the number of points in internal line (figure.1.b).

Figure. 1. Road segment example.
(a) and (b) are example of road segment which are defined by
multiple poly-lines. Magenta and orange line is back line and
front line of road segment. And red, blue and green lines are
left edge, center line and right edge respectively. (a) Example
of straight road segment. (b) Example of arc road segment.

As mentioned already, a single road is collection of road seg-
ment and a road network is collection. Figure 2 shows examples

of a single road and road network. Left figure shows randomly
generated single road using our PCG code (figure.2.a). Right
figure shows randomly generated road network which has 3
different roads on same map (figure.2.b).

Figure. 2. Road and road network examples.
(a) Example of a random single road. (b) Example of random
road network that consists of 3 different roads.

Road Segmentation Generation

In our project, we have two road segment types, straight road
segment and arc road segment. Each road segment type is gen-
erated grammatically in a different way. At first, straight road
segment is created using CreateStraightRoadSegment function
which has three inputs, back line, length, orient. Back line is
start line of new road segment defined as numpy array. Length
means length of straight road segment. Orient is direction to
grow road segment. Generation process is shown on left side
of figure 3. First step is to construct start line by applying back
line (figure.3.a). Next is to get orthogonal vector to back line.
Direction of vector is determined by orient. Then, construct end
line of segment by adding orthogonal vector to start line (fig-
ure.3.b) Third step is to calculate internal points of left edge,
center line, and right edge. Each internal point is far away at
the same interval (figure.3.c). Finally, connect internal points to
form left edge, center line, and right edge (figure.3.d).

Figure. 3. Road segment generation.
Straight road segment (a) Construct back line (start line of
segment) using input back line. (b) Construct front line (end
line of segment) which is input length away from back line. (c)
Calculate the internal points by dividing the input length by
a specific interval. (d) Connect each internal point to form left
edge, center line, right edge.
Arc road segment (e) Construct back line (start line of seg-
ment) using input back line. (f) Calculate the center of rotation,
(g) Construct front line (end line of segment) by applying rota-
tional matrix to back line. (h) Construct left edge, center line,
and right edge whose internal points has same intervals.



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 3

Arc road segment is created using CreateArcRoadSegment
function which also has three inputs, back line, radius, and an-
gle. Back line is same as input of straight road segment. Radius
is radius of curvature and angle is rotation angle. The positive
angle value causes the road segment to rotate counterclockwise
and negative value cause to rotate clockwise. Generation process
is shown on right side of figure 3. First step is to construct the
start line of road segment by using back line (figure.3.e). Next
step is to obtain rotational matrix to rotate back line. First of all,
get center of rotation by adding radius to center of back line.
Then, obtain a rotation matrix that rotates back line by an an-
gle (figure.3.f). Then, construct front line by multiply rotational
matrix to back line (figure.3.g). In the end, construct left edge,
center line, and right edge through new rotational matrix whose
rotation angle is divided by specific interval (figure.3.h).

Single Road Generation

A single road is collection of multiple road segments. So, overall
single road generation process is repetition of road segment
creation with some validation checks. This functionality is run
by CreateRandomRoad whose process is shown on figure 4. a, b,
c. First step is to generate a short straight road segment on either
the x-axis or y-axis. Position to be generated is randomly chosen
(figure.4.a). Afterward, grow the road by creating random road
segment Repeatedly (figure.4.b). Back line of newly created road
segment will be front line of previous segment to generate gap-
less road. In this process, we check validity of growing road.
Detailed validation method is explained in Section B. When the
growing road reached one boundary of the map, single road
generation process is done (figure.4.c).

Figure. 4. Road and Road network generation.
(a) Construct a short straight road segment on either the x-axis
or the y-axis. (b) Grow the generating road by creating random
road segments. (c) Road generation process is completed when
the road reached one boundary of the map. (d) Example of
generated road network.

Road network Generation

A road network is collection of multiple roads. Therefore, to gen-
erate random road network, create some random roads and just
add them. Similar to single road generation process, road net-
work process has validation check step. The validation method
was described in Section B. Example of random road network is

shown on figure.4.d.

A.2. Map Validation Method

The procedural content generation should produce only roads
and road networks on which autonomous vehicles can drive.
Therefore, validation process is required after generating road
and road network. Validation is performed on single road and
road network respectively.

Single Road Validation

In order for a single road to be valid, two conditions must be
satisfied. First, the two endpoints of the road must cross the
map boundary. This condition is always satisfied because the
segment is made repeatedly until it reaches the boundary of map.
Second, self-intersection should not exist. Self-intersection is a
point where two segments constituting a road cross each other.
Figure 5 shows an example of road that includes self-intersection.
In single road validation, it finds and removes self-intersection
in a road.

Figure. 5. Self-intersection.
Figure shows an example of self-intersection.

To understand how to check self-intersection, it is necessary
to know how to find the cross-point of line segments. The cross-
point of two line segments can be found by using the coordinates
of both endpoints of the two line segments. Figure 6 shows two
line segments with its two endpoints f , p + r and q, q + s, respec-
tively. p, q, r, s, t, u have the following relationship, equation 1
and equation 2.

Figure. 6. Cross point of two vector.
If there are t and u between 0 to 1, the two vectors have cross
point. The cross point can be represented as p + tr or q + us.

(p + tr)× s = (q + us)× s (1)

(p + tr)× r = (q + us)× r (2)



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 4

Using equation 1 and equation 2, t and u can be found.

t =
(q − p)× s
(r × s)

(3)

u =
(p − q)× r
(s × r)

(4)

If t and u exist between 0 and 1, the two line segments have an
cross-point. The coordinate of the cross-point can be expressed
as p + tr or q + us. A road can be checked whether it has self-
intersection by using the method of finding the cross-point of
two line segments. Each road segment should not have inter-
sections with other road segments in the same road. To check
whether segments s and t have an intersection, the cross-points
of the left and right edges of s and the left and right edges of t
must be checked. Figure 7 shows 4 types of cross-points.

Figure. 7. Types of cross-point.
(a) Left-left cross-point. (b) Left-right cross-point. (c) Right-left
cross-point. (d) Right-right cross-point.

There are left-left, left-right, right-left, and right-right pairs.
For a total of 4 pairs of lines, the existence of cross-point must be
checked. If any of the 4 pairs have cross-point, it is considered
as an invalid road.

Road Network Validation

There are two conditions for validating the road network. First,
all roads must have only valid intersections. Second, all roads
must have at least one intersection. Invalid intersection that can
occur in a road network is partial overlap. Partial overlap means
that the roads do not completely intersect, but partially overlap.

As shown in figure 8, a valid intersection makes three cross-
points on the left, center, and right lines, each. Therefore, in
a valid road network, three lines of all roads have the same
number of intersections, and the number is always multiple of 3.
Figure 9 shows road networks with partial overlap.

In road a in figure.9.a, only the right line has two cross-points
and the other two roads have no cross-point. Therefore, this road
network has partial overlap and is invalid. In the case of road
c in figure.9.b, the left line has 2 cross-points, the center line
has 4 cross-points, and the right line has 6 cross-points. Since

Figure. 8. Example of valid intersection.
Figure shows an example of valid intersection.

Figure. 9. Example of partial overlap.
(a) Road a has 2 cross-points on right-line, but others has no
cross-point. (b) Road c has 2, 4 and 6 cross-points on left, cen-
ter and right line each. As the numbers of cross points on each
lines are different, they are invalid road networks.

the number of intersections of each line is different, this road
network is also an invalid road network.

After checking existence of partial overlap, it should be
checked whether all roads have at least one intersection. If a
road does not intersect with another road, the vehicle cannot
move on that road from other road. Therefore, a road without an
intersection becomes meaningless in a road network. If a road
does not have partial overlap and the number of intersections
of each line of the road is all 0, then this road does not have an
intersection, and a road network with such a road becomes an
invalid road network. Figure 10 is an example of invalid road
network and valid road network.

Figure. 10. Example of Road Networks.
(a) Invalid road network. (b) Valid road network.

B. GA
Generated road networks are used as genes for genetic algo-
rithm. However, because they were difficult to handle freely,



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 5

road networks consisting of poly lines changed its data struc-
tures. And define crossover and mutation methods for evolution.
Furthermore, we have attempted to improve our algorithm by
going beyond publishing existing papers.

B.1. GA Flow

Within our work, we applied genetic algorithm to generate test
suites. We iterate 40 times with 25 populations. To evolve the
generation, we used tournament selection among 5 populations
to select parent for crossover operation. As a crossover operator,
we used join crossover for the single road generation and used
both of it with half probability for multi road generation. After
the crossover, we mutate the child with mutation operator and
insert to the child population. We generate child population until
its size became equal to the entire population size. Among them,
only best 90% of child population would survive within the next
generation. For the remaining 10%, we used elitism so that 10%
of best parent would survive within the next generation. We
tested our work among small map and large map which are
defined as (200, 200) map and (400, 400) map. Each of map is
tested with both single road and multi road generation for 3
times.

B.2. Fitness Calculation

The evolving purpose of GA is to find the road population which
is difficult for ego-car to go, and it includes the road in which has
many OBEs occur. However, the number of OBEs is not suitable
for use as a fitness value because there is a high probability that
there are multiple roads with the same value. Therefore, we used
bounded lateral deviation for the fitness value, which means
the distance between the center of the road and the ego-vehicle.
Figure 11 shows which values are used as fitness values.

Figure. 11. Fitness value calculation.
The lateral deviation is used to calculate the fitness value, and
OBE occurs when the lateral deviation becomes larger than the
half road width as shown in the figure above.

As shown in figure 11, the longest value among the distances
between the center of the road and the car is used as the fitness
value, and when this value is greater than half the width of
the road, OBE has occurred. However, if the simulation fails,
unusually high values can occur and these values can hinder the
evolution of efficient GA. Therefore, we used the value of the
lateral deviation bounded from a certain value. In order to get
better evolving efficiency on GA, we bounded the lateral value
at a larger value than half road width. As mentioned above,

calculated fitness values using the above method are sent to the
GA program and used for population evolution.

B.3. Search Operator

Road networks are new data structures that we created for test
case generation of simulation of self-driving cars. So, to create
the next generation of population using this structure, we need
a new crossover and mutation method that fits this structure.
So, we evolved road networks through various methods, such
as mutate them in certain areas or cutting and connecting two
different road networks.

Join Crossover

Join crossover is a method for creating a new road network by
combining two road networks appropriately. Join crossover cut
the roads in two road networks around a randomly assigned
segment. Then connect the parts of the road that cut from two
road to create a new road. If this road is not reached the map
boundary, we created random road segment from the end of
the road until it is intersected with map boundaries. Operate
this method for every randomly selected roads from each road
network (figure 12).

Figure. 12. Join Crossover operator.
(a), (b) Example of road networks. (c) Join crossover result of
(a) and (b). Blue part of (a) and green part of (b) are connected,
and red part of (a) and pink part of (b) are connected in (c).

Merge Crossover

Merge crossover is a method of creating a new road network by
randomly selecting two or three roads from two road networks
without any variation on the road itself in the road networks
(figure 13).

Figure. 13. Merge Crossover operator.
(a),(b) Example of road networks. (c) Merge crossover result of
(a) and (b).

Mutation

Mutation is a method of applying variations to the generated
road networks to give them diversity. Randomly set one of all
road segments of the road network and eliminate all segments
that lead to the beginning of that selected segment. Then created
a new road segment based on the cut section (figure 14).

B.4. Similarity Test

If there are too many similar road networks in the population,
the probability of local optimization increases for the road net-
work that is evolved through genetic algorithm. Therefore, we



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 6

Figure. 14. Mutation operator.
(a) Example of road networks. (b) Result of mutation of (a).
Blue part of (a) is changed to red part.

defined the differences between road networks and wanted to
reduce similar road networks within a generation by comparing
similarity with all offspring of current population.

It is difficult to compare similarity with the data structure
of the road network. Therefore, we compare similarity by ex-
pressing all road segments of the road network in the form of
a histogram. Histogram was classified based on the radius of
curvature of the road segment. And the sign(+ or -) of the radius
of curvature was determined by the direction of curvature. In
the case of a straight line segment, the radius of curvature was
set to zero to distinguish it from the arc road segment because
the radius of curvature does not exist in this case. And each
segment’s weight was set to the segment’s length. The following
road network is expressed in histogram as follows (figure 15).

Figure. 15. Calculate similarity of two road networks.
(a), (b) Example of how to describe each road networks to
histograms.

Then, we defined the difference as a RMS(Root Mean Square)
of two histogram values of each road network(equation 5). h1
and h2 is a histogram of two road networks.

Di f f erence = RMS(h1, h2) (5)

The closer the difference is to zero, the more similar the two
road networks are, and the larger the value, the more different
the two road networks are. When a new generation of road
networks was created, the similarity with all road networks of
existing population was measured and added to population
only if it exceeded the threshold. The size of the threshold was
empirically chosen.

B.5. Improvement of Our Project

Beyond replicating the paper, we tried to develop the poor parts
and limitations that exist in the paper and apply them to our

system. We applied the improved method in the search operator
and similarity check part.

The original crossover operator is done with the entity of map.
Even though the fitness is evaluated with its actual path, the
original crossover operators do not count on this fact within its
operation. Within this context, we proposed logically improved
crossover operator that is done with the entity of path. Also,
we designed the crossover operator based on 2 main features.
We assumed that the traits of the map, which is fitness, come
from 2 things which are the geometrical shape of road itself and
their intersection. These perspectives are also reflected to each
of the crossover to prove that we actually enhanced their logical
meaning.

Improved Join Crossover

The improved join crossover is done with the randomly selected
join point from its path. Figure 16 shows the procedure of the
join crossover. The red line within figure.16.a and figure.16.b
shows the selected path of the map. Using this information, the
join crossover operator selects the join point within road that
including the path. These selected roads are displayed as blue
line (figure.16.a) and green line (figure.16.b) so that we can verify
that child road (figure.16.c) is consisted of only blue line and
green line. We suggest that this operator logically enhance the
meaning of the original join crossover operator. Considering
the purpose of the crossover, its main purpose lies on that to
combine the dominant trait. In our work, the dominant trait
definitely lies on its actual path in the map. Therefore, if we
randomly select the road from the the parent map selected for
the crossover, we can not say that we actually crossover the
dominant trait and preserve it to next generation. Within this
context, by selecting the join point from its actual road, we can
ensure that its dominant trait would be preserved to the next
generation. To be more specific, we can ensure the preservation
of the dominant traits that lies on the road’s geometrical shape
itself. (which is our first perspective as we described above)
With this crossover, we logically improved the meaning of join
crossover to accelerate the convergence of fitness by combing
preserved road’s geometrical shape.

Figure. 16. Improved join crossover operator.
(a), (b) Example of road networks. (c) Improved join crossover
result of (a) and (b).

Improved Merge Crossover

The improved merge crossover is done with the randomly se-
lected road that including path. Figure 17 shows the procedure
of the merge crossover. The red line within figure.17.a and fig-
ure.17.b shows the selected path of the map. Using this path, the
merge crossover operator selects the road to be crossovered that
including the path. These selected roads are displayed as blue
line (figure.17.a) and green line (figure.17.b) so that we can verify
that child road (figure.17.c) is consisted of only blue line and
green line. Similar to join crossover, it also logically improves
merge crossover. The only different thing is that the preserved



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 7

dominant traits would be enlarged to the intersection of the road
not just by road itself. Compared to join crossover, the merge
crossover would preserve the geometrical shape of the road.
Therefore, it would try to enhance the fitness by creating new
intersection with the set of “proved to be generate intersection
with great fitness” roads. (which is our second perspective as
we described above) With this crossover, we logically improved
the meaning of merge crossover to accelerate the convergence of
fitness by generating intersection with proved set of roads.

Figure. 17. Improved merge crossover operator.
(a), (b) Example of road networks. (c) Improved merge
crossover result of (a) and (b).

Improved Similarity Crossover

Existing method for similarity test has two problem. First,
straight line road segment affects to difference between two
road networks a lot. Because when we made a road network, we
randomly select whether it is an arc or a straight line. And the
odds are half each. Therefore, the proportion of the straight line
segment in the histogram accounts for half of the total (figure 18,
center of a histogram is a straight line segment). Therefore, this
scale should be matched similarly to other segments. Second,
original method didn’t describe the variance of road segments.
So then, it cannot noticed that there is a big difference between
these road networks (figure 19).

Figure. 18. Difference between original similarity test and
improved similarity test.
(a) Difference of improved similarity test (b) Difference of
original similarity test.

Therefore, We reduced the weight of the straight line segment
to one-quarter so that the total is similar to the other segments
around it. And we also describe the variance of road segment as
a histogram. In addition to the road segments that we describe in
the existing similarity test, we explained the changes of radius of
curvature in the current road segment and the next road segment.
Weight of them is a average value of length of current and next
road segments. As a result, we can recognize this difference.
Then, improved similarity test method is operated through this
process (figure 19).

Figure. 19. Similarity Calculation.
Example calculation of two road networks with improved
similarity method.

3. EVALUATION

To evaluate our model, we measured the fitness value, cumula-
tive OBEs, vision errors, and map generation time by running
the ego-car on the map we generated through the waypoint
using Matlab Simulink simulator. The details are written below.

A. Evaluation Method
To evaluate the generated map with simulation, we need to
generate the path to be evaluated. This path called waypoint
would be transferred to the Matlab simulator so that fitness
is evaluated with simulation. Within this context, to generate
waypoint we convert map to the graph and find out the path.

A.1. Waypoint Generation

Below box is the procedure to generate the waypoint.

1. Converting Road to Graph
2. Finding Path
3. Waypoint Generation

Converting Road to Graph

To generate waypoint, we first convert the map to the graph.
Each End point of road and the intersection of the node would
be node with the priority in the below box.

Converting Road to Graph (Priority)
1. Each end of the road would be End Node.
2. There would be only one intersection within one segment.
3. Find intersection starting from the road 0 so that earliest road
would be prioritized.

Figure 20 shows the graph that applied the priority 1
above priority 3. Even though there exists intersection between
green road and blue road around End Node 3, it would not
set its intersection as Node since there is already End Node 3
within same segment. Figure 21 shows the graph that applied
priority 2 above priority 3. Even though there exists intersection
between green road and blue road around Node 4, it would not
set its intersection as Node since there is already Node 3 and
Node 4 within the same segment. Figure 22 shows the graph
that no duplicated priority is applied.

We devised this priorities to minimize the overhead of finding
out the actual graph. Its implementation is done with 5 for loops
to test over all the possible intersection test. To minimize cost,
we skip the meaningless computation with the priority that we



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 8

Figure. 20. Example graph 1.
Example graph that priority 1 has been applied as the highest
priority.

Figure. 21. Example graph 2.
Example graph that priority 2 has been applied as the highest
priority.

devised. All the nodes that figured out would be recorded with
each roads. After finding out the node, we traverse over the
roads to find out the edge. Using the fact that edge directly
connect each nodes, we connect each nodes within the road
to find out the edge while computing its length. The length
here is defined as the number of segment between each nodes.
Figure 23 shows the example of the graph and table 1 shows the
corresponding edge table of the map.

Finding Path

Using the Graph, we find out the path that is the sequence of
the nodes. We find the path with the conditions in the below box.

Finding Path (Condition)
1. Find the path that both start node and end node is End Node.
2. The path should not pass the same Node more than once.
3. For efficiency, find the longest path among 3 randomly found
path (Long in terms of number of segment).

Starting from the randomly chosen start node, we try to
find out the path that end with the end node. We find out path
by selecting edge from that node with equal probability. Also,
since finding out all the path is quite complex and meaningless
in terms of efficiency, we find out 3 paths and choose the best

Figure. 22. Example graph 3.
Example graph that priority 3 has been applied as the highest
priority.

Figure. 23. Example graph.
Example graph corresponding to edge table in table 1

path among them. Figure 24 shows the example of the path
with corresponding map. We can verify that path figure.24.a is
shown as black line within the map figure.24.b.

Waypoint Generation

Using the path, we generate actually waypoint that simulator
can follow. Since the path we generate is the sequence of Node,
we connect each node to generate waypoint with the condition
in the below box.

Waypoint: The path that simulator would follow
1. The center line of the segment between each node would be
path.
2. The segment that including Node would be divided to 2 parts
and connected.

We can generate waypoint using the edge between node.
Here, since the edge is consists of sequence of segment as we
described, we sequentially connect segment center line between
nodes. For the segment that including the node, we divide each
segment as 2 part so that it connected as part 1 of segment 1 ->
node -> part 2 of segment 2. The Figure 25 shows the example
of generated waypoint. The roads within the map is shown as
black line while its path waypoint is shown as red line.



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 9

Table 1. Edge table of figure 23.

Node1 0 1 1 1 1 2 2 2 3 3 3

Node2 1 0 2 4 7 1 3 9 2 4 8

Distance 3 3 7 8 4 7 5 30 5 2 11

Node1 4 4 4 4 6 7 8 9

Node2 3 5 6 1 4 1 3 2

Distance 2 1 9 8 9 4 11 30

Figure. 24. Finding path.
(a) Path example. (b) Path within the map.

A.2. Communication Method

As mentioned earlier, in order to proceed with the simulation,
the information of the population to be evaluated including the
road network and way point from GA must be transferred to
Simulink, and additional communication is required for the syn-
chronization of the two programs. First, a .csv file format was
used to transfer the information of the population generated by
GA from the GA program to Simulink. GA program creates a
csv file in the designated path, write information into the file,
and sends a signal to Simulink and the name of the file. Then,
Simulink reads the file with received filename to get the informa-
tion. Depending on the size of the road network or the number
of roads included, the number of coordinates to be transmitted
is not constant and can be very large, so we thought it is safer to
share information via a file rather than using a specific commu-
nication protocol. In addition, by using this method, there is an
advantage that we can leave all the simulation data because it is
saved on the path.

For the synchronization of the two programs, TCP/IP com-
munication was used. TCP/IP communication is a packet based
communication protocol. For this communication, both pro-
grams open a socket at run time and establish a communication
environment. The process of sending the file name and signal
from the aforementioned GA program to Simulink is performed
through TCP/IP communication, and after the simulation is
completed, the process of sending whether the simulation was
successful along with the fitness value calculated from the sim-
ulation result from Simulink to the GA program is also done
through TCP/IP communication. After sending the simulation
related signal to Simulink, the GA program waits in a stopped
state, and after receiving the fitness value from Simulink, it con-
tinues to evolve again using the value. A description of total
process is shown in figure 26.

A.3. Simulink

In order to evaluate the road network, the process of making
the ego-car to move according to the previously created simu-

Figure. 25. Waypoint generation example.
Example of generated waypoint of graph.

Figure. 26. Communication Protocol.
The entire communication protocol between the GA program
and Simulink proceeds in the order shown in the figure above.

lation information (road network, navigation path) using the
control of the autonomous driving system and checking the
number of OBEs must be conducted. This requires a simulation
program that can calculate the position of the ego-car and simu-
late the driving of the ego-car over time. In this paper, we used
Simulink as a simulation program. Simulink is a graphical sim-
ulation program based on MATLAB, a programming language
that provides a numerical computing environment. Simulink is
widely used in the researching area because it is easily accessible
and provides a variety of examples are provided officially. The
Simulink simulator used in this paper is designed to receive
the coordinates of the center line of each road existing in the
road network and navigation path (way point) information and
conduct a simulation based on the information. This is the road
network information that is needed to be evaluated in the GA
process.

First, in order to conduct simulation efficiently in Simulink,
we translated the road network into good form to simulate. Good
form of road map for Simulink is as follow. First, the start point
of simulation path should be origin point. Then, the simulation
path should start in the positive direction of the x-axis. Therefore,
this conversion process is performed by applying rotational ma-
trix and translation matrix and it is shown on figure 27. At first,
we obtain translation vector which move start point of simula-



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 10

tion path to origin point (figure.27.a, b). By applying the vector
to all points in road network, we can obtain center started road
network (figure.27.c). Then, obtaining rotational matrix which
transform the simulation path to start in the positive x-axis di-
rection and applying it to all internal points in the road network,
we can convert Simulink format road network. (figure.27.d)

Figure. 27. Road network conversion process.
(a) Original road network. Red line is simulation path. (b)
Translation vector to move start point of path to origin point.
(c) Converted road network applied translation. (d) Simulink
format road network.

Next, Simulink creates a virtual road map using the con-
verted center line information, puts the ego-car at the start point,
and allows it to drive along the way point. Figure 28 shows
the behavioral mechanism of the designed Simulink simulator,
and figure 29 shows an example of the total simulation process.
For the Simulink design shown in figure 28, the Lane Keeping
Assist with Lane Detection Example provided on the MATLAB
homepage was referenced: https://kr.mathworks.com/help/mpc/ug/
lane-keeping-assist-with-lane-detection.html.

Figure. 28. Simulink simulator mechanism design.
The simulation proceeds according to the mechanism de-
signed in the figure.

As you can see in figure 29, depending on the option provided
by the user in the driving process, it can drive based on perfect
knowledge of the road, or drive using lane keeping functional-
ity using vision information. The vision sensor of the simulator
provides road data that the ego-car can recognize through the

Figure. 29. Simulation process example.
(a) Visualized converted road map in Simulink. (b) Visual-
ized simulation process in Simulink. Left is bird’s eye scope
and right is 3D-view. (c) Visualized result of simulation in
Simulink.

camera within a given viewing angle based on the road informa-
tion, and the simulator performs control based on this data. After
the simulation is over, the fitness value is passed back to the GA
program, which was waiting for the fitness value, and then the
population in the GA process can continue to evolve through
this value. After the simulation was completed, the information
delivered to Simulink, the appearance of the created road net-
work, and the path the ego-car moved during the simulation
process were saved as files and pictures so that the simulation
process can be reproduced later if necessary. For communication,
the previously mentioned communication protocol was used,
and the calculation of the fitness value was specified later.

B. System Evaluation
In our paper, we tested random in small map and K-DAsFault
in both small and large map. We tested them with the GA flow
above with additional similarity criteria. K-DAsFault filter simi-
lar test cases when their difference is less than 0.04. We tested
each of them 3 times. With the result, we can analyze our K-
DAsFault within 3 perspectives which are their validity with
random, map size and number of roads as variables.

B.1. Fitness Evaluation

Figure 30 shows the fitness result over 40 generation. To validate
our K-DAsFault, we compared fitness with the random in table
2.

Table 2. Compare result of K-DAsFault to random (Fitness
value).

K-DAsFault Compared to random

Small Single 1.34 times

Small Large 1.37 times

Multi Large 1.26 times

From table 2, we can verify that our K-DAsFault actually
generate better fitness valued map compared to the randomly
generated test suites. In other word, we can verify that our GA
works great to generate tests suites better than random.

Comparing the Large Single road result with Large Multi
road result, we can find out the relation between result and num-
ber of roads. In entire generation we observed, single road has

https://kr.mathworks.com/help/mpc/ug/lane-keeping-assist-with-lane-detection.html
https://kr.mathworks.com/help/mpc/ug/lane-keeping-assist-with-lane-detection.html


CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 11

Figure. 30. Fitness value measurement result.
The graph shows the average fitness values of each road map
on 1, 5, 10, 20, 40 generation.

better fitness than multi road. Comparing the Small Single road
result with Large Single, we can find out the relation between
result and map size. We can verify that large map has better
fitness than small map on average.

B.2. Cumulative OBE Evaluation

Figure 31 shows the fitness result over 40 generation. Compared
to fitness value which is actually for GA, cumulative OBEs are
more practical value that we should evaluate. To validate our
K-DAsFault, we compared the number of cumulative OBEs with
the random in table 3.

Figure. 31. Cumulative OBE measurement result.
The graph shows the average number of cumulative OBEs of
each road map on 1, 5, 10, 20, 40 generation.

From table 3, we can verify that our K-DAsFault actually gen-
erate the maps that have more cumulative OBEs than random.
In other word, we can verify that our K-DAsFault successfully
expose more cumulative OBEs compared to random.

Table 3. Compare result of K-DAsFault to random (Cumula-
tive OBE).

K-DAsFault Compared to random

Small Single 2.75 times

Small Large 1.46 times

Multi Large 2.15 times

Comparing the Large Single road result with Large Multi
road result, we can find out the relation between result and
number of roads. In entire generation we observed, multi road
has more cumulative OBEs than single road. Comparing the
Small Single road result with Large Single, we can find out the
relation between result and map size. We can verify that small
map has more cumulative OBEs than large map on average.

B.3. Vision Error Evaluation

Figure 32 shows the the number of vision error occurred over
40 generation. The vision error is occurred mainly because the
ego car totally fails to track the road. Vision error case is too
out of bound to regard as the case that having maximum fitness.
Therefore, we count this one as vision error which is not included
in fitness value. But, since this case is also the case that ego car
out of the road, we suggest that this error could be another
metric to evaluate the result.

Figure. 32. Cumulative OBE measurement result.
The graph shows the average number of vision errors of each
road map on 1, 5, 10, 20, 40 generation.

Table 4. Compare result of K-DAsFault to random (Vision
Error).

K-DAsFault Compared to random

Small Single 1.38 times

Small Large 2.55 times

Multi Large 2.12 times



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 12

From table 4, we can verify that our K-DAsFault actually gen-
erate the maps that have more vision error than random. This
value as an another metric, we can verify that our K-DAsFault
successfully expose more problems to ego car compared to ran-
dom.

Comparing the Large Single road result with Large Multi
road result, we can find out the relation between result and
number of roads. In entire generation we observed, single road
has more vision errors than multi road.Comparing the Small
Single road result with Large Single, we can find out the relation
between result and map size. In entire generation we observed,
we can verify that large map has more vision errors than small
map.

B.4. Time Evaluation

Figure 33 shows the time result over 40 generation. We measured
time for generating the maps for each cases using K-DAsFault.

Figure. 33. Time measurement result.
The graph shows the average generation time of each road
map on 1, 5, 10, 20, 40 generation.

From the result that comparing Small Single with Large Sin-
gle and Small Multi with Large Multi, we can verify that large
map takes longer time to generate than small map. From the
result comparing Small Single with Small Multi and Large Single
with Large Multi, we can verify that multi roads take more time
to generate than single road.

4. DISCUSSION

To conclude, the overall tendencies of each result was almost
uniform so that we can validate that K-DAsFault successfully
expose problems to its map. However, there is some interesting
point to be discussed. Even though fitness value and OBEs are
somewhat related metrics, we can find out that their result is
reversed for each cases. This tendency with map size is summa-
rized in table 5.

In table 5, the entry shows that their result with inequality
that have relation of 1>2. Within same context, table 6 summarize
the tendency with number of roads.

As we described above, from table 5 and table 6, we can fig-
ure out that their result of fitness and OBEs are reversed even
though their closely relative metrics. And, this is the reason why

Table 5. Map size test result.

Result 1 2

Fitness Large Small

OBEs Small Large

Vision Error Large Small

Table 6. Number of roads test result.

Result 1 2

Fitness Single Multi

OBEs Multi Single

Vision Error Single Multi

we introduced vision errors as a new metrics. Within the pro-
cedure of evaluating OBEs, actually it is quite ambiguous to
definitely define its range. To be more specific, it would be quite
hard to be fair for evaluating their numbers. Even though going
out of the road for 10m is much more dangerous than going
out for 5m, the number of OBEs are counted as if they are same
one. Furthermore, for the case that the amount of car went out
goes infinite, it would be much harder to evaluate. Therefore, for
this case, we introduced new metrics that called vision error to
evaluate with more fairness. Within this context, we can explain
that the reason why the results are reversed. Even though large
map has better fitness compared to small map, it has lower num-
ber of cumulative OBEs. However, large map has more vision
errors compared to small map. Here, we suggest that we should
compare their tendency with considering both of cumulative
OBEs and vision errors not just OBEs. Some of having infinite
error cases that are omitted for counting cumulative OBEs are
counted as vision errors. Therefore, now we can explain the re-
versed tendency with these new metrics. We can do same thing
for number of roads. From the time result, we can say that larger
the map and more the number of roads, it takes more time to
generate the map. This is obvious result that generating bigger
map needs more segments of roads to be generated. Also, having
multi roads takes more time to generate roads and increase the
probability of having bad intersection. This one would be more
critical so that we can verify that generating Small Multi map
takes longer time that Large Single map.

5. CONCLUSION

In this project, we replicated proposed system for generating
test case of lane keeping functionality, which is AsFault. The
objective of our project is to generate test data with more OBEs
and better fitness value compared to random generation. In this
project, we improved the original AsFault and proposed new
system, K-DAsFault, with our own PCG and GA to automati-
cally generate and evolve road maps. K-DAsFault has improved
road generator in terms of efficiency and logically improved
search operator and similarity test method. For evaluation, we
used graphical simulation program based on MATLAB Simulink,
which has vision based lane keeping system. Using this simu-
lator, ego-car drives along the virtual road observing driving
path and lateral deviation during simulation. On evaluation, we
tested random in small map and K-DAsFault in small and large



CS454 K-DAsFault: Kaistian-Designed Automatically Testing Self-Driving Cars with Search-Based Procedural Content Generation (Team 21) 13

map. We evaluated the simulation results using 4 metrics: fitness,
cumulative OBE, vision error and time. K-DAsFault was 1.32
times better than random on fitness, 2.12 times on cumulative
OBE and 2.02 times on vision error on average. Our evaluation
showed that K-DAsFault can effectively generate test suits and
successfully expose faults in lane keeping functionality.

6. REFERENCE

1. Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019.
Automatically testing self-driving cars with search-based
procedural content generation. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA).


	Introduction
	System Implementation
	Procedural Content Generation
	Road network Generation
	Map Validation Method

	GA
	GA Flow
	Fitness Calculation
	Search Operator
	Similarity Test
	Improvement of Our Project


	Evaluation
	Evaluation Method
	Waypoint Generation
	Communication Method
	Simulink

	System Evaluation
	Fitness Evaluation
	Cumulative OBE Evaluation
	Vision Error Evaluation
	Time Evaluation


	Discussion
	Conclusion
	Reference

