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Large Language Models for SE

• Mainly Transformer-based DNNs that are trained to be an auto-regressive 
language model, i.e., given a sequence of tokens, it repeatedly tries to predict 
the next token.


• The biggest hype in SE research right now with an explosive growth, because:


• They seem to get the semantics of the code 


• Emergent behavior leading to very attractive properties such as in-context 
learning, Chain-of-Thoughts, or PAL


• Low technical barrier compared to tailored analysis and techniques



Further Guides

• Large Language Models for Software Engineering: Survey and Open 
Problems (https://arxiv.org/abs/2310.03533)


• Large Language Models for Software Engineering: A Systematic Literature 
Review (https://arxiv.org/abs/2308.10620)


• Software Testing with Large Language Model: Survey, Landscape, and Vision 
(https://arxiv.org/abs/2307.07221)

https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2307.07221


• Above certain size, LLMs change 
their behavior in interesting ways


• The point of change in slope is 
referred to as “breaks”

Emergent Behavior

Caballero et al., https://arxiv.org/abs/2210.14891

https://arxiv.org/abs/2210.14891


In-context Learning

• Previously, getting a model for a specific task involved either dedicated model 
+ training, or at least general pre-trained model + fine-tuning


• Above certain size, LLMs show the ability to perform in-context learning, i.e., 
they learn as part of their context (i.e., preceding tokens), leading to prompt 
engineering:


• Few-shot learning: the context explains the problem, and gives a few 
examples of question-answer. LLMs can now answer an un-seen question.


• Zero-shot learning: the context explains the problem as well as how it can 
be solved. LLMs can now answer an un-seen problem.



Few-shot Bug Reproduction
Kang et al., ICSE 2023

aspects: some classify the sentences of a report into categories
like observed or expected behavior [19], while others only
reproduce crashes (crash reproduction) [6], [20]. We observe
that solving this problem requires good understanding of both
natural and programming language, not to mention capabilities
to perform deduction. For example, the bug report in Table II
does not explicitly specify any code, but a fluent user in
English and Java would be capable of deducing that when
both arguments are NaN, the ‘equals’ methods in ‘MathUtils’
should return false.

One promising solution is to harness the capabilities of pre-
trained Large Language Models (LLMs). LLMs are generally
Transformer-based neural networks [13] trained with the lan-
guage modeling objective, i.e. predicting the next token based
on preceding context. One of their main novelties is that they
can perform tasks without training: simply by ‘asking’ the
LLM to perform a task via a textual prompt, the LLM is often
capable of actually performing the task [11]. Thus, one point
of curiosity is how many bugs LLMs can reproduce given
a report. On the other hand, of practical importance is to be
able to know when we should believe and use the LLM results,
as noted in the introduction. To this end, we focus on finding
heuristics indicative of high precision, and minimize the hassle
that a developer would have to deal with when using LIBRO.

III. APPROACH
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Fig. 1: Overview of LIBRO

An overview diagram of our approach is presented in
Figure 1. Given a bug report, LIBRO first constructs a prompt
to query an LLM (Figure 1:(A)). Using this prompt, an initial
set of test candidates are generated by querying the LLM
multiple times (Figure 1:(B)). Then, LIBRO processes the tests
to make them executable in the target program (Figure 1:(C)).
LIBRO subsequently identifies and curates tests that are likely
to be bug reproducing, and if so, ranks them to minimize
developer inspection effort (Figure 1:(D)). The rest of this
section explains each stage in more detail using the running
example provided in Table II.

A. Prompt Engineering

LLMs are, at the core, large autocomplete neural networks:
prior work have found that different ways of ‘asking’ the LLM
to solve a problem will lead to significantly varying levels of
performance [21]. Finding the best query to accomplish the
given task is known as prompt engineering [22].

To make an LLM to generate a test method from a given
bug report, we construct a Markdown document, which is to be
used in the prompt, from the bug report: consider the example
in Listing 1, which is a Markdown document constructed from
the bug report shown in Table II. LIBRO adds a few distinctive
parts to the Markdown document: the command “Provide a
self-contained example that reproduces this issue”, the start
of a block of code in Markdown, (i.e., ���), and finally the
partial code snippet public void test whose role is to induce
the LLM to write a test method.

TABLE II: Example bug report (Defects4J Math-63).

Issue No. MATH-3701

Title NaN in “equals” methods

Description

In “MathUtils”, some “equals” methods will return true if
both argument are NaN. Unless I’m mistaken, this contradicts
the IEEE standard.
If nobody objects, I’m going to make the changes.

Listing 1: Example prompt without examples.
1 # NaN in "equals" methods

2 ## Description

3 In "MathUtils", some "equals" methods will return true if both argument

are NaN.

4 Unless I�m mistaken, this contradicts the IEEE standard.

5 If nobody objects, I�m going to make the changes.

6

7 ## Reproduction

8 >Provide a self-contained example that reproduces this issue.

9 ���
10 public void test

We evaluate a range of variations of this basic prompt.
Brown et al. [11] report that LLMs benefit from question-
answer examples provided in the prompt. In our case, this
means providing examples of bug reports (questions) and the
corresponding bug reproducing tests (answers). With this in
mind, we experiment with a varying number of examples,
to see whether adding more examples, and whether having
examples from within the same project or from other projects,
significantly influences performance.

As there is no real restriction to the prompt format, we
also experiment with providing stack traces for crash bugs
(to simulate situations where a stack trace was provided),
or providing constructors of the class where the fault is
located (to simulate situations where the location of the bug
is reported).

Our specific template format makes it highly unlikely that
prompts we generate exist verbatim within the LLM training
data. Further, most reports in practice are only connected to
the bug-revealing test via a chain of references. As such, our
format partly mitigates data leakage concerns, among other
steps taken to limit this threat described later in the manuscript.

B. Querying an LLM
Using the generated prompt, LIBRO queries the LLM to

predict the tokens that would follow the prompt. Due to the

1https://issues.apache.org/jira/browse/MATH-370
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been made public - that is, they have only been made
available via an API, without any sharing of source code
or neural network weights. This makes consistent research
using LLMs difficult, as LLMs accessed through an API can
see significant behavior change in a short period of time,
as Chen et al. [18] identify. Indeed, earlier this year, the
API to the code-davinci-002 model was discontinued [19],
making previous papers that utilized the model (including
our previous work [10]) difficult to reproduce. In reaction
to the secrecy and potential centralization threatening the
open spirit of research, multiple open-source LLMs have
been suggested [20], [12]. Unlike the widely-used OpenAI
models, which require a per-usage fee for their API use and
which are not available in all countries, the LLMs that we
use are generally free for use in research in all countries,
and can be operated without cost provided that one has the
necessary computational resources. As a result, while much
research is using OpenAI models such as ChatGPT [19],
we believe that it would benefit the software engineering
community to evaluate open-source LLMs under the same
task as closed-source LLMs and compare their performance,
to showcase their viability and promote their widespread
use in research.

3 APPROACH

Fig. 1: Overview of LIBRO

Figure 1 presents a schematic of our approach, LIBRO.
In step (A), a bug report is used to construct a ’prompt’
which conditions an LLM to generate a bug-reproducing
test corresponding to the content of the bug report. This
prompt is used in step (B), where an LLM generates mul-
tiple candidate bug-reproducing tests based on the prompt.
However, showing all such results to a developer would
be overwhelming, so tests are executed. First, in step (C),
generated tests are injected into the existing test suite so that
they can be executed; then, in step (D), execution results are
used to filter out and rank generated tests so that developers
only need to inspect the most promising generated tests.
In the remainder of this section, we describe each step in
greater detail using the example provided in Table 2.

3.1 Prompt Engineering
LLMs are, at the core, large autocomplete neural networks:
prior work has found that different ways of ‘asking’ the
LLM to solve a problem will lead to significantly varying
levels of performance [21]. Finding the best query to accom-
plish the given task is known as prompt engineering [22].

To make an LLM generate a test method from a given
bug report, we construct a Markdown document from the

report, which is used as the prompt. For example, consider
the example in Listing 1, which is a Markdown document
constructed from the bug report shown in Table 2. LIBRO
adds a few distinctive parts to the Markdown document:
the command “Provide a self-contained example that repro-
duces this issue”, the start of a block of code in Markdown,
(i.e., ���), and finally the partial code snippet public void

test which induces the LLM to write a test method.

TABLE 2: Example bug report (Defects4J Math-63).

Issue No. MATH-3701

Title NaN in “equals” methods

Description

In “MathUtils”, some “equals” methods will return
true if both argument are NaN. Unless I’m mistaken,
this contradicts the IEEE standard.
If nobody objects, I’m going to make the changes.

Listing 1: Example prompt without examples.
1 # NaN in "equals" methods

2 ## Description

3 In "MathUtils", some "equals" methods will return true if both

argument are NaN.

4 Unless I�m mistaken, this contradicts the IEEE standard.

5 If nobody objects, I�m going to make the changes.

6

7 ## Reproduction

8 >Provide a self-contained example that reproduces this issue.

9 ���
10 public void test

We evaluate a range of variations of this basic prompt.
Brown et al. [6] report that LLMs benefit from question-
answer examples provided in the prompt. In our case,
this means providing examples of bug reports (questions)
and the corresponding bug reproducing tests (answers).
With this in mind, we experiment with a varying number
of examples, to see whether adding more examples, and
whether having examples from within the same project or
from other projects, significantly influences performance.

As there is no restriction to the prompt format, we
also experiment with providing stack traces for crash bugs
(to simulate situations where a stack trace was provided),
or providing constructors of the faulty class (to simulate
situations where the location of the bug is known).

Our specific template format makes it highly unlikely
that prompts we generate exist verbatim within the LLM
training data. Further, most reports in practice are only
connected to the bug-revealing test via a chain of references.
As such, our format partly mitigates data leakage concerns,
among other steps taken to limit this threat described later in
the manuscript. Finally, when using chat-optimized models
such as ChatGPT in our experiments, we add examples
within the prompt, although in our experiments we needed
to update the prompt format as the model was updated, as
discussed in Section 6.4.4.

3.2 Querying an LLM
Using the generated prompt, LIBRO queries the LLM to
predict the tokens that would follow the prompt. Due to
the nature of the prompt, it is likely to generate a test

1. https://issues.apache.org/jira/browse/MATH-370
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TABLE 9: OpenAI model performance under prompts

Model GPT-0301 GPT-0613 GPT-0613
Prompt Prompt 1 Prompt 1 Prompt 2

Performance 164 72 168

50 tests. As LLMs tend to show similar performance for the
GHRB data which is likely not part of the training dataset
of any LLM, we suggest that LIBRO with general LLMs can
be used for novel bug reproduction.

Answer to RQ4-2: LLMs can still perform well for held-
out bugs; similarly to Defects4J, StarCoder shows the best
performance among the open-source models.

6.4.3 RQ4-3
While the LLMs of OpenAI are the most well-known and
show strong performance on a multitude of tasks [6], there
are few details known about the models, particularly start-
ing with the most recent model, GPT-4 [36], which did not
provide even basic details about the model such as model
size. Furthermore, OpenAI LLMs are regularly updated,
and thus pose a challenge for reproducibility in academic
research. For example, the LLM that was used in our initial
experiments, Codex (code-davinci-002), has since become
inaccessible to the public.

Comparing the OpenAI LLM models, gpt-3.5-turbo-
0301 achieved a similar performance of 164 bugs given 10
test generation attempts, but gpt-3.5-turbo-0613 achieved a
much worse performance than both of these models, only
reproducing 72 bugs under the same condition, as shown
in Table 9. Initially, such results may appear to represent a
shift in model performance, as has been suggested by Chen
et al. [18] which noted that the number of executable Python
scripts generated by ChatGPT had reduced. Inspecting the
results from gpt-3.5-turbo-0613, we find that gpt-0613 would
generate full test files instead of test methods, so that
the generated code could no longer be processed correctly
by our postprocessing pipeline. Modifying the prompt by
placing the examples in the system message and empha-
sizing the need to generate test methods instead of test
files, gpt-3.5-turbo-0613 could achieve similar performance
to its earlier version. Thus, it is difficult to conclude from
our data that ChatGPT has become “worse” over time, as
Chen et al. [18] argue. Rather, as noted by Narayanan and
Kappor [37], it highlights the risk when building services
on top of ChatGPT: its behavior can change at any time,
and thus postprocessing pipelines or prompts may need to
adapt without warning.

Answer to RQ4-3: Similarly to prior work, we observe
a change in ChatGPT behavior; in our case, ChatGPT
became less susceptible to few-shot learning, and our
post-processing pipeline which relied on a specific output
format failed.

6.4.4 RQ4-4
While Figure 6 compared the performance of LLMs trained
in different ways, we also make a comparison between

LLMs that are from the same family and were thus trained
in a similar manner, but are of substantially different size,
to demonstrate how LLM size can affect bug reproduction
performance. We plot the results of these experiments in
Figure 8a. As the graph shows, bug reproduction suddenly
becomes possible when using the 7B model for CodeGen2.
Such results are reminiscent of ‘emergent’ properties of
LLMs [38], in which LLM capabilities suddenly appear at
a certain model size, which makes LLM capabilities difficult
to predict prior to training. On the other hand, in the Incoder
family, even the 1B model can reproduce a certain amount
of bugs using our default prompt. Regardless of whether
the property is emergent, the results in Figure 6 show that
bug reproduction performance tends to increase as model
size increases.

Answer to RQ4-4: LIBRO performance improves as the
underlying LLM size increases; for CodeGen2, a sudden
appearance of reproduction capability is observed.

(a) Model Size (b) Temperature

Fig. 8: Evaluation of the influence of LLM configuration to
performance.

6.4.5 RQ4-5

Figure 8b shows the performance of LIBRO when using
StarCoder. As the graph shows, we find that the perfor-
mance was best when the temperature was 0.6, which was
similar to our initial setting of temperature=0.7. At tem-
perature=0.6, LIBRO-StarCoder could reproduce 127 bugs
when generating ten tests for each bug report. Looking at
each temperature, we find that at temperatures lower than
0.6, the LLM tends to generate identical or similar tests
for a given bug report, and thus does not reproduce more
bugs as more tests are generated. Meanwhile, for higher
temperatures, the coherence of the LLM-generated results
deteriorates, and thus increasingly less bugs are reproduced.
Indeed, while not shown in the graph, our experiments
when the temperature was set to 2.0 revealed that the
LLM would almost exclusively generate unparsable code,
indicating that setting the LLM to the right temperature is
important when achieving strong bug reproduction perfor-
mance.

Answer to RQ4-5: The performance of LIBRO-StarCoder is
optimized when the temperature is set to 0.6, which gets
a good balance between generation diversity and result
coherence.



Zero-shot Automated Debugging
Kang et al., https://arxiv.org/abs/2304.02195
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Construct
Prompt

Scientific 
Debugging 
Explanation

Debugging 
Problem 

Description

1 def f(n):
2     # Evaluate if n can be
3     # written as the sum of 4
4     # positive even numbers.
5     return n%2==0 and n>8

fails on the test
assert f(8) == True, f(8)

with the error message
...
AssertionError: False

Hypothesize
via LLM

Hypothesis: The input 8 is even. 
Perhaps the condition on line 5 is 
classifying the input as odd.
Prediction: n%2==0 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n%2==0)`

The LLM makes a hypothesis 
about what the bug is, and an 
experiment to run.

Observe
via execution

Observation: True

The debugger verifies 
by performing the 
experiment.

Conclude
via LLM

Conclusion: The 
hypothesis is rejected.

The LLM judges the 
hypothesis (here, to 
be incorrect).

Hypothesis: [The prev. hypothesis] 
was REJECTED. Perhaps the 
condition… is classifying the 
input as less than or equal to 8.
Prediction: n>8 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n>8)`

The prior hypothesis was 
rejected; the LLM suggests 
n>8 is problematic.

Observation: False

This time, the 
debugger confirms the 
prediction.

Conclusion: The 
hypothesis is supported.

The LLM deems the 
hypothesis correct.

1 2 3

4 5

Hypothesis: [The prev. hypothesis] 
was SUPPORTED. Perhaps it should 
be changed to n>=8.
Prediction: If the condition on 
line 5 is changed to n>=8, the 
test will pass.
Experiment: `REPLACE(5, "n>8", 
"n>=8") AND RUN`

6

The LLM generates a custom 
command to fix the code and 
execute the failing test.

Observation: 
[No exception triggered]

Due to the fix, the 
failing test passed.

Conclusion: The 
hypothesis is supported. 
<DEBUGGING DONE>

The LLM signals that 
debugging is done 
(<DEBUGGING DONE>).

7 8 9
Legend

Dashed boxes:
generated by LLM

Solid boxes: generated by 
debugger / test execution

def f(n):
  return (n%2==0 and
            n>=8)

Fix is generated; 
the developer may 
check the process 
(steps 1-9) 
on request.

Suggest
via LLM

10

Append to prompt
after generation

Legend

A B C D E

Annotated Run (1-10)

Pipeline (A-E)

Figure 1: The pipeline and a real example run of A���SD, with annotations in black boxes and lightly edited for clarity. Given
a detailed description of the scienti�c debugging concept and a description of the bug (A), A���SD will generate a hypothesis
about what the bug is and construct an experiment to verify, using an LLM (B), actually run the experiment using a debugger
or code execution (C), and decide whether the hypothesis is correct based on the experiment result using an LLM (D). The
hypothesize-observe-conclude loop is repeated until the LLM concludes the debugging or an iteration limit is reached; �nally,
a �x is generated (E), with an explanation (white boxes from (1) to (9)) that the developer may view.

3.2 Hypothesize-Observe-Conclude
With the initial prompt,A���SD starts iterating over the ‘hypothesize-
observe-conclude’ loop depicted in Figure 1 ( B - D ). The result
of each process is appended to the prompt to allow incremental
hypothesis prediction; i.e. when generating the conclusion in 3 ,
the LLM would predict it based on the concatenation of the initial
prompt, 1 , and 2 . We describe each iteration of the loop as a step:
for example, Figure 1 1 - 3 would make up one step.

Hypothesize. Here, we lead the language model to generate a
hypothesis by appending the token Hypothesis: to the prompt, so
that the language model generates a hypothesis about the bug. We
observe that the Prediction: and Experiment: line headers are
also generated in turn by the LLM, due to the detailed description
of the scienti�c debugging process provided by the prompt. The
important aspect for the next step is the Experiment command,
where the language model either generates a debugger command
that can be executed by a debugger, or a custom code modi�cation-
and-execution script so that the language model can ‘test’ a certain
change. As the document is in Markdown format, the Experiment
script is wrapped in backticks (�); this script is extracted from the
LLM output to get concrete code execution results in the next step.

Examples can be seen in Figure 1 1 , 4 , and 7 - note thatA���SD
also localizes the fault as a part of the hypothesizing process, thus
making fault localization explainable as well.

Observe. The generated experiment script is passed to a back-
ground process based on traditional software engineering tools that
provides real execution results back to the language model, so that
we can ground the generation process of A���SD on real results,
and also build credibility for developer presentation. The model
can either (i) invoke a composite debugger command by setting a
breakpoint and printing a value, or (ii) modify the code and run
the failing test with the aforementioned DSL. When executing a
debugger command, it is executed via the command-line interface
of the language-appropriate debugger, and the output from the last
subcommand of the composite command (assumed to be a print
command) is returned, as in Figure 1 2 and 5 . When the break-
point is within a loop, the debugger collects values at di�erent
timesteps of execution and returns them together, e.g. ‘At each loop
execution, the expression was: [v1, v2, ...]’, up to a maximum of 100
values. Meanwhile, upon test execution from a edit-and-execute
DSL command, if an exception is raised, the exception type and
message are returned as the observation; otherwise, the result ‘[No
exception triggered]’ is appended, as in Figure 1 8 .

https://arxiv.org/abs/2304.02195


Yao et al., ICLR 2023

• What if we need external information 
for the in-context learning? In other 
words, can LLMs be given tools?


• Remember that this is still 
autocompletion:


• LLMs can be taught to signal the 
need to invoke tools


• Whenever LLMs need tool 
invocation, we can do it ourselves 
and paste the outcome back into 
the context

ReAct

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al., ICLR 2023

https://arxiv.org/abs/2210.03629

Published as a conference paper at ICLR 2023
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Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

answers from questions in arithmetic, commonsense, and symbolic reasoning tasks (Wei et al.,
2022). However, this “chain-of-thought” reasoning is a static black box, in that the model uses
its own internal representations to generate thoughts and is not grounded in the external world,
which limits its ability to reason reactively or update its knowledge. This can lead to issues like fact
hallucination and error propagation over the reasoning process (Figure 1 (1b)). On the other hand,
recent work has explored the use of pre-trained language models for planning and acting in interactive
environments (Ahn et al., 2022; Nakano et al., 2021; Yao et al., 2020; Huang et al., 2022a), with
a focus on predicting actions via language priors. These approaches usually convert multi-modal
observations into text, use a language model to generate domain-specific actions or plans, and then
use a controller to choose or execute them. However, they do not employ language models to reason
abstractly about high-level goals or maintain a working memory to support acting, barring Huang
et al. (2022b) who perform a limited form of verbal reasoning to reiterate spatial facts about the
current state. Beyond such simple embodied tasks to interact with a few blocks, there have not been
studies on how reasoning and acting can be combined in a synergistic manner for general task solving,
and if such a combination can bring systematic benefits compared to reasoning or acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting with language
models for solving diverse language reasoning and decision making tasks (Figure 1). ReAct
prompts LLMs to generate both verbal reasoning traces and actions pertaining to a task in an
interleaved manner, which allows the model to perform dynamic reasoning to create, maintain, and
adjust high-level plans for acting (reason to act), while also interact with the external environments
(e.g. Wikipedia) to incorporate additional information into reasoning (act to reason).
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https://arxiv.org/abs/2210.03629


Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning: 
they appear to be capable of rational inference because the corpus they are 
trained include traces of logical reasoning.


• So, conditioning the model (with the context) to be more precise about the 
reasoning steps can result in generation of more accurate reasoning steps.


• Add “Let’s think in step by step” at the end of every prompt (https://
arxiv.org/abs/2205.11916) 🙃 🫥 🫠

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916


Gao et al., ICML 2023

• What is even more logical and 
step by step than natural 
language? Programming 
language :)


• Providing few-shop examples 
that are mixtures of NL and LP 
can enhance the reasoning 
capabilities of LLM

Program-Aided Language Models 
(PAL)

PAL: Program-aided Language Models 2

A: The bakers started with 200 loaves 
loaves_baked = 200 
They sold 93 in the morning and 39 in the afternoon 
loaves_sold_morning = 93 
loaves_sold_afternoon = 39 
The grocery store returned 6 loaves. 
loaves_returned = 6 
The answer is 
answer = loaves_baked - loaves_sold_morning
  - loaves_sold_afternoon + loaves_returned 

>>> print(answer) 
74 

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? 

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left? 

Chain-of-Thought (Wei et al., 2022)
Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? 

A: Roger started with 5 tennis balls.  
tennis_balls = 5 
2 cans of 3 tennis balls each is 
bought_balls = 2 * 3 
tennis balls. The answer is  
answer = tennis_balls + bought_balls 

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
did they have left? 

Program-aided Language models (this work)
Input

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.  
The answer is 62. 

Model Output

Figure 1: A diagram illustrating PAL: Given a mathematical reasoning question, Chain-of-thought (left) generates interme-
diate reasoning steps of free-form text. In contrast, Program-aided Language models (PAL, right) generate intermediate
steps and Python code. This shifts the role of running the reasoning steps from the language model to the Python interpreter.
The final answer is obtained by running the generated reasoning chain. Chain-of-thought reasoning is highlighted in blue;
PAL steps are highlighted in gray and pink ; the Python interpreter run is highlighted in black and green.

require LLMs, solving and reasoning can be done with the
external solver. This bridges an important gap in chain-of-
thought-like methods, where reasoning chains can be correct
but produce an incorrect answer.

We demonstrate the effectiveness of PAL across 13 arith-
metic and symbolic reasoning tasks. In all these tasks,
PAL using Codex (Chen et al., 2021a) outperforms much
larger models such as PaLM-540B using chain-of-thought
prompting. For example, on the popular GSM8K bench-
mark, PAL achieves state-of-the-art accuracy, surpassing
PaLM-540B with chain-of-thought by absolute 15% top-
1 accuracy. When the questions contain large numbers, a
dataset we call GSM-HARD, PAL outperforms COT by an ab-
solute 40%. We believe that this seamless synergy between
a neural LLM and a symbolic interpreter is an essential step
towards general and robust AI reasoners.

2. Background: Few-shot Prompting
Few-shot prompting leverages the strength of large-language
models to solve a task with a set of k examples that are pro-
vided as part of the test-time input (Brown et al., 2020;
Liu et al., 2021; Chowdhery et al., 2022), where k is usu-
ally a number in the low single digits. These input-output
examples {(xi, yi)}ki=1 are concatenated in a prompt p
⌘ hx1 · y1i k hx2 · y2i k . . . k hxk · yki. where “·” denotes
the concatenation of an input and output, and “k” indicate
the concatenation of different examples. During inference,
a test instance xtest is appended to the prompt, and p kxtest

is passed to the model which attempts to complete p k xtest,
and thereby generate an answer ytest. Note that such few-
shot prompting does not modify the underlying LLM.

PAL: Program-aided Language Models, Gao et al., ICML 2023

https://arxiv.org/abs/2211.10435 

https://arxiv.org/abs/2211.10435


• LLM = (Statistical) 
Autocompletion = completion 
not necessarily because it is the 
right choice, but because it is the 
likely choice.


• How do we filter out 
hallucinations?


• Automated testing should help 
a bit, but eventually we will hit 
the oracle problem.

Hallucination



Self Consistency
Wang et al., ICLR 2023 (https://arxiv.org/abs/2203.11171)

• Sample an LLM multiple times for the same question: the majority answer is 
the most likely to be the correct one!


• Intuitively because: “we hypothesize that correct reasoning processes, even if 
they are diverse, tend to have greater agreement in their final answer than 
incorrect processes”, i.e., there are multiple reasoning paths to arrive at the 
correct answer, but fewer ways to arrive at the incorrect one


• Still very early days but: can we connect this to the concept of landscape 
analysis? Is the correct answer the highest (=correct) and also the biggest 
(=the most accessible) hill?

https://arxiv.org/abs/2203.11171


Low Technical Barrier

• No language specific pre-analysis: you just paste the target code and call the 
API…?


• Low entry cost, yes, but:


• Real innovation and practical impact only possible when you really 
understand the problem domain


• Post-processing to filter out hallucination heavily involves existing 
automated testing techniques.



Remainder of today:

• AutoFL: how to use ReAct like function-call ability to perform fault localization


• DroidAgent: how to harness the reasoning capabilities of LLMs so that they 
drive an autonomous agent


