
Shin Yoo

Large Language Models in SE
CS454 AI-Based Software Engineering

Large Training Corpus

Input (text, source code…)

Language Model Probability

John: Hi, nice to meet you. How are you?

Mary: I’m ____, _____ ___. ___ ___?

a) fine, thank you. And you?

b) okay, I guess. But why?

def SieveOfEratosthenes(num):

a) prime = [True for i in range(num+1)]…

b) arr = re.findall(r'[0-9]+', word)…

Python: for _ __ _____ …

a) i in range

b) (int i = 0;

Java: for _ ___ _ _ _ _ …

a) i in range

b) (int i = 0;

A Thought Experiment
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that
behaves as if it understands Chinese
language.

• You are in a closed room with the AI program
source code.

• Someone passes a paper with Chinese
characters written on it, into the room.

• You use the source code as instruction to
generate the response to the input, and sends
the response out of the room.

• Do you understand Chinese language, or not?

• Among other risks, authors ask
whether LLMs actually
“understand” anything.

• What do you think?

• The internal design is clearly a
statistical language model, i.e., it
says what is the most likely, not
what is the correct.

Stochastic Parrot?
On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big?

Emily M. Bender∗
ebender@uw.edu

University of Washington
Seattle, WA, USA

Timnit Gebru∗
timnit@blackinai.org

Black in AI
Palo Alto, CA, USA

Angelina McMillan-Major
aymm@uw.edu

University of Washington
Seattle, WA, USA

Shmargaret Shmitchell
shmargaret.shmitchell@gmail.com

The Aether

ABSTRACT
The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switch-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodology of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
benchmarks for English. In this paper, we take a step back and ask:
How big is too big? What are the possible risks associated with this
technology and what paths are available for mitigating those risks?
We provide recommendations including weighing the environmen-
tal and financial costs first, investing resources into curating and
carefully documenting datasets rather than ingesting everything on
the web, carrying out pre-development exercises evaluating how
the planned approach fits into research and development goals and
supports stakeholder values, and encouraging research directions
beyond ever larger language models.

CCS CONCEPTS
•Computingmethodologies!Natural language processing.
ACM Reference Format:
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big? . In Conference on Fairness, Accountability, and Trans-
parency (FAccT ’21), March 3–10, 2021, Virtual Event, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3442188.3445922

1 INTRODUCTION
One of the biggest trends in natural language processing (NLP) has
been the increasing size of language models (LMs) as measured
by the number of parameters and size of training data. Since 2018
∗Joint first authors

FAccT ’21, March 3–10, 2021, Virtual Event, Canada
ACM ISBN 978-1-4503-8309-7/21/03.
https://doi.org/10.1145/3442188.3445922

alone, we have seen the emergence of BERT and its variants [39,
70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks.

We first consider environmental risks. Echoing a line of recent
work outlining the environmental and financial costs of deep learn-
ing systems [129], we encourage the research community to priori-
tize these impacts. One way this can be done is by reporting costs
and evaluating works based on the amount of resources they con-
sume [57]. As we outline in §3, increasing the environmental and
financial costs of these models doubly punishes marginalized com-
munities that are least likely to benefit from the progress achieved
by large LMs and most likely to be harmed by negative environ-
mental consequences of its resource consumption. At the scale we
are discussing (outlined in §2), the first consideration should be the
environmental cost.

Just as environmental impact scales with model size, so does
the difficulty of understanding what is in the training data. In §4,
we discuss how large datasets based on texts from the Internet
overrepresent hegemonic viewpoints and encode biases potentially
damaging to marginalized populations. In collecting ever larger
datasets we risk incurring documentation debt. We recommend
mitigating these risks by budgeting for curation and documentation
at the start of a project and only creating datasets as large as can
be sufficiently documented.

As argued by Bender and Koller [14], it is important to under-
stand the limitations of LMs and put their success in context. This
not only helps reduce hype which can mislead the public and re-
searchers themselves regarding the capabilities of these LMs, but
might encourage new research directions that do not necessarily
depend on having larger LMs. As we discuss in §5, LMs are not
performing natural language understanding (NLU), and only have
success in tasks that can be approached by manipulating linguis-
tic form [14]. Focusing on state-of-the-art results on leaderboards
without encouraging deeper understanding of the mechanism by
which they are achieved can cause misleading results as shown

610

This work is licensed under a Creative Commons Attribution International 4.0 License.

Large Language Model
(really, a very large statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive
language model, i.e., given a sequence of tokens, it repeatedly tries to predict
the next token.

• The biggest hype in SE research right now with an explosive growth,
because:

• Emergent behaviour leading to very attractive properties such as in-
context learning, Chain-of-Thoughts, or PAL

• They seem to get the semantics of the code and work across natural
and programming language

Further Guides

• Large Language Models for Software Engineering: Survey and Open
Problems (https://arxiv.org/abs/2310.03533)

• Large Language Models for Software Engineering: A Systematic Literature
Review (https://arxiv.org/abs/2308.10620)

• Software Testing with Large Language Model: Survey, Landscape, and Vision
(https://arxiv.org/abs/2307.07221)

https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2307.07221

• Above certain size, LLMs change
their behavior in interesting ways

• The point of change in slope is
referred to as “breaks”

Emergent Behavior

Caballero et al., https://arxiv.org/abs/2210.14891

https://arxiv.org/abs/2210.14891

In-context Learning

• Previously, getting a model for a specific task involved either dedicated model
+ training, or at least general pre-trained model + fine-tuning

• Above certain size, LLMs show the ability to perform in-context learning, i.e.,
they learn as part of their context (i.e., preceding tokens), leading to prompt
engineering:

• Few-shot learning: the context explains the problem, and gives a few
examples of question-answer. LLMs can now answer an un-seen question.

• Zero-shot learning: the context explains the problem as well as how it can
be solved. LLMs can now answer an un-seen problem.

A couple of examples

 LLMs are Few-shot Testers:

 Exploring
 LLM-based
 General Bug
 Reproduction
 [Sungmin Kang, Juyeon Yoon], Shin Yoo
 Presented on 2023-05-19 by Sungmin

 Motivation

 2

 Users Report Bugs - Bug Reports!

 For example, many projects have systems to handle bug reports.
 3

 Bug Reproduction

 From natural language description… …to executable tests.
 4

 Automatic Bug Reproduction Would Help

 1 2

 Bug-revealing Test

 Fault Localization

 Automated Program
 Repair

 Reproducing tests are key to
 automated debugging efficacy.

 We mine software repositories to find
 many tests originate from bug reports.

 5

 Automatic Bug Reproduction Would Help

 1 2

 Feature

 Test

 Report

 Test

 28%
 Reproducing tests are key to
 automated debugging efficacy.

 We mine software repositories to find
 many tests originate from bug reports.

 6

 Only partial solutions have been explored

 Soltani et al. analyzed crash stack traces to reproduce crashes.
 However, crashes are only a small proportion of all bugs.

 Song & Chaparro used traditional NLP tools to identify e.g. expected behavior.
 However, they do not generate bug-reproducing tests.

 7

 Bug reproduction needs strong NLP capabilities

 While a human can write a reproducing test with this report,
 the expected behavior is implied, making it difficult to automatically process this report.

 8

 Language Models are key to tackling the problem

 Simple example of test generation from GitHub Copilot page
 9

 “Just” using LLMs has low usability

 Shuster et al. (2021) highlights the issue of
 hallucination in LLMs like GPT-x.

 O’Hearn noted in his ICSE’20 keynote that developers value
 having less false positives from automatic tools

 10

 Overall:

 The general bug reproduction problem
 has been a challenge, due to the difficulty of NLP.

 We propose LIBRO, which

 uses LLMs to generate tests based … then applies post-processing to
 on provided bug reports … ensure the developer only sees the
 best results.

 11

 Approach

 12

 Using Large Language Models

 Language Models are Autocomplete Machines

 (image from thegradient.pub)

 13

 Using Large Language Models

 Formulating bug reproduction as autocomplete

 Report Content

 The first part of the prompt presents the bug report.

 14

 Using Large Language Models

 Formulating bug reproduction as autocomplete

 Prompting Reproducing Test Generation

 The second part increases the likelihood of a bug-reproducing test
 (from a language distribution perspective).

 15

 Using Large Language Models

 LLMs are known to benefit with examples

 A prompt template we used for experiments.
 Note the example answers (highlighted).

 16

 Using Large Language Models

 Given a prompt, sample N candidate tests.

 Prompt
 T1
 Example

 Report LLM T2

 Bug Report

 Example
 Test T3

 …

 Tn

 LLM-portion of LIBRO algorithm - note the prompt and N samples.
 (in our case, we sampled N=50 tests as default.)

 17

 Postprocessing LLM Results

 Showing 50 tests is infeasible
 test1 {
 filler;
 filler2;
 }

 test2 {
 filler;
 filler2;
 }

 test3 {
 filler;
 filler2;
 }

 test4 {
 filler;
 filler2;
 }

 test5 {
 filler;
 filler2;
 }

 test6 {
 filler;
 filler2;
 }

 test7 {
 filler;
 filler2;
 }

 test8 {
 filler;
 filler2;
 }

 test9 {
 filler;
 filler2;
 }

 test10 {
 filler;
 filler2;
 }

 test11 {
 filler;
 filler2;
 }

 test12 {
 filler;
 filler2;
 }

 test13 {
 filler;
 filler2;
 }

 test14 {
 filler;
 filler2;
 }

 test15 {
 filler;
 filler2;
 }

 test16 {
 filler;
 filler2;
 }

 test17 {
 filler;
 filler2;
 }

 test18 {
 filler;
 filler2;
 }

 test19 {
 filler;
 filler2;
 }

 test20 {
 filler;
 filler2;
 }

 test21 {
 filler;
 filler2;
 }

 test22 {
 filler;
 filler2;
 }

 test23 {
 filler;
 filler2;
 }

 test24 {
 filler;
 filler2;
 }

 test25 {
 filler;
 filler2;
 }

 test26 {
 filler;
 filler2;
 }

 test27 {
 filler;
 filler2;
 }

 test28 {
 filler;
 filler2;
 }

 test29 {
 filler;
 filler2;
 }

 test30 {
 filler;
 filler2;
 }

 test31 {
 filler;
 filler2;
 }

 test32 {
 filler;
 filler2;
 }

 test33 {
 filler;
 filler2;
 }

 test34 {
 filler;
 filler2;
 }

 test35 {
 filler;
 filler2;
 }

 test36 {
 filler;
 filler2;
 }

 test37 {
 filler;
 filler2;
 }

 test38 {
 filler;
 filler2;
 }

 test39 {
 filler;
 filler2;
 }

 test40 {
 filler;
 filler2;
 }

 test41 {
 filler;
 filler2;
 }

 test42 {
 filler;
 filler2;
 }

 test43 {
 filler;
 filler2;
 }

 test44 {
 filler;
 filler2;
 }

 test45 {
 filler;
 filler2;
 }

 test46 {
 filler;
 filler2;
 }

 test47 {
 filler;
 filler2;
 }

 test48 {
 filler;
 filler2;
 }

 test49 {
 filler;
 filler2;
 }

 test50 {
 filler;
 filler2;
 }

 18

 Postprocessing LLM Results

 Some might not even compile!
 test1 {
 filler;
 filler2;
 }

 test2 {
 filler;
 filler2;
 }

 test3 {
 filler;
 filler2;
 }

 test4 {
 filler;
 filler2;
 }

 test5 {
 filler;
 filler2;
 }

 test6 {
 filler;
 filler2;
 }

 test7 {
 filler;
 filler2;
 }

 test8 {
 filler;
 filler2;
 }

 test9 {
 filler;
 filler2;
 }

 test10 {
 filler;
 filler2;
 }

 test11 {
 filler;
 filler2;
 }

 test12 {
 filler;
 filler2;
 }

 test13 {
 filler;
 filler2;
 }

 test14 {
 filler;
 filler2;
 }

 test15 {
 filler;
 filler2;
 }

 test16 {
 filler;
 filler2;
 }

 test17 {
 filler;
 filler2;
 }

 test18 {
 filler;
 filler2;
 }

 test19 {
 filler;
 filler2;
 }

 test20 {
 filler;
 filler2;
 }

 test21 {
 filler;
 filler2;
 }

 test22 {
 filler;
 filler2;
 }

 test23 {
 filler;
 filler2;
 }

 test24 {
 filler;
 filler2;
 }

 test25 {
 filler;
 filler2;
 }

 test26 {
 filler;
 filler2;
 }

 test27 {
 filler;
 filler2;
 }

 test28 {
 filler;
 filler2;
 }

 test29 {
 filler;
 filler2;
 }

 test30 {
 filler;
 filler2;
 }

 test31 {
 filler;
 filler2;
 }

 test32 {
 filler;
 filler2;
 }

 test33 {
 filler;
 filler2;
 }

 test34 {
 filler;
 filler2;
 }

 test35 {
 filler;
 filler2;
 }

 test36 {
 filler;
 filler2;
 }

 test37 {
 filler;
 filler2;
 }

 test38 {
 filler;
 filler2;
 }

 test39 {
 filler;
 filler2;
 }

 test40 {
 filler;
 filler2;
 }

 test41 {
 filler;
 filler2;
 }

 test42 {
 filler;
 filler2;
 }

 test43 {
 filler;
 filler2;
 }

 test44 {
 filler;
 filler2;
 }

 test45 {
 filler;
 filler2;
 }

 test46 {
 filler;
 filler2;
 }

 test47 {
 filler;
 filler2;
 }

 test48 {
 filler;
 filler2;
 }

 test49 {
 filler;
 filler2;
 }

 test50 {
 filler;
 filler2;
 }

 19

 LIBRO’s post-processing in three steps

 0

 T

 T
 T
 T3

 T

 1

 T1 T2

 2
 Bug 1

 T1

 Bug 2

 T1

 3
 1

 2

 T1

 T

 T
 T

 T
 T

 T T3 Tn 3

 T2

 Tn

 Raw LLM Outputs Execute and Cluster Decide if Results Reliable Rank Tests

 20

 Postprocessing LLM Results

 Injecting to target files

 Select the file with greatest lexical similarity and inject the test; add import statements for unmet dependencies.

 file1 file2 file3 … fileN
 21

 Postprocessing LLM Results

 Execute Tests. Four results possible:

 1 2 3

 Compile
 failures

 Passing in
 Buggy

 Non-
 reproducing

 4

 LLM-made
 test

 Compiler

 Compilable
 Tests

 Execution

 Failing-in-
 Buggy
 (FIB) Inspect

 Reproducing
 test

 22

 Postprocessing LLM Results

 Cluster FIB tests with error message

 23

 Postprocessing LLM Results

 Show results only if cluster size large enough

 24

 Postprocessing LLM Results

 Ranking tests with three heuristics (1)

 25

 Postprocessing LLM Results

 Ranking tests with three heuristics (2)

 26

 Recap

 Diagram of LIBRO

 27

 Results

 28

 Evaluating the Technique

 RQ1: Efficacy

 How many bugs reproduced? (D4J)

 RQ2: Efficiency

 ⏱
 How much resources are required?

 RQ3: Generality

 Are results similar on held-out data?

 29

 RQ1: Efficacy

 RQ1-1: One-third of all bugs were successfully reproduced. RQ1-2: LIBRO significantly outperforms baselines.

 30

 RQ2-2: Time cost of each component

 The API call and actual execution of the test took the longest amount of time.
 31

 RQ2-3: Selection performance

 Selecting by counting the failing-in-buggy tests was effective;
 32

 RQ2-3: Ranking performance

 Our within-FIB ranking technique was better than the random baseline.
 33

 RQ3: Generality

 RQ3-1: LIBRO demonstrating it works outside of its (potential) training data.

 RQ3-2: LIBRO selection and ranking heuristics generalize to novel data as well.
 34

 Successful Example

 public void testIssue() {
 DateTimeZone.forOffsetHoursMinutes
 cannot handle negative offset < 1 hour

 DateTimeZone.forOffsetHoursMinutes(h,
 m) cannot handle negative offset < 1 hour
 like -0:30 due to argument range
 checking. I used forOffsetMillis ()
 instead.
 This should probably be mentioned in the
 documentation or negative minutes be
 accepted.

 Bug Report: Joda-Time BUG #8

 DateTimeZone tz =
 DateTimeZone. forOffsetHoursMinutes (0, -30);
 assertNotNull (tz);
 }

 A test generated by LIBRO

 public void testForOffsetHoursMinutes_int_int() {
 ...
 assertEquals (DateTimeZone.forID("-00:15"),
 DateTimeZone. forOffsetHoursMinutes (0, -15));
 ...
 }

 A developer-written test
 35

 Examples and Failure Analysis

 ● When failures happened, we find that
 ○ 32.5% are due to a need of complex helper functions;
 ○ 27.5% are due to low report quality;
 ○ 20% are due to LLM misunderstanding of report;
 ○ 15% are due to dependency on external resources;
 ○ 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

 36

 Conclusion
 Read our preprint!

 1
 We tackle the problem of
 reproducing general bugs from reports.

 2
 We propose LIBRO, which combines LLMs and postprocessing
 to effectively reproduce bug reports.

 3
 Our evaluation shows LIBRO successfully reproduces bugs,
 and that its postprocessing heuristics work.

 Contact us at sungmin.kang@kaist.ac.kr / juyeon.yoon@kaist.ac.kr
 Find our preprint with the QR code above, or by searching for “Exploring LLM-based General Bug Reproduction”

 37

Zero-shot Automated Debugging
Kang et al., EMSE 2025 (to appear)

48

Kang et al.

Construct
Prompt

Scientific
Debugging
Explanation

Debugging
Problem

Description

1 def f(n):
2 # Evaluate if n can be
3 # written as the sum of 4
4 # positive even numbers.
5 return n%2==0 and n>8

fails on the test
assert f(8) == True, f(8)

with the error message
...
AssertionError: False

Hypothesize
via LLM

Hypothesis: The input 8 is even.
Perhaps the condition on line 5 is
classifying the input as odd.
Prediction: n%2==0 will be false.
Experiment: `b debugging.py:5 ;; c
;; p (n%2==0)`

The LLM makes a hypothesis
about what the bug is, and an
experiment to run.

Observe
via execution

Observation: True

The debugger verifies
by performing the
experiment.

Conclude
via LLM

Conclusion: The
hypothesis is rejected.

The LLM judges the
hypothesis (here, to
be incorrect).

Hypothesis: [The prev. hypothesis]
was REJECTED. Perhaps the
condition… is classifying the
input as less than or equal to 8.
Prediction: n>8 will be false.
Experiment: `b debugging.py:5 ;; c
;; p (n>8)`

The prior hypothesis was
rejected; the LLM suggests
n>8 is problematic.

Observation: False

This time, the
debugger confirms the
prediction.

Conclusion: The
hypothesis is supported.

The LLM deems the
hypothesis correct.

1 2 3

4 5

Hypothesis: [The prev. hypothesis]
was SUPPORTED. Perhaps it should
be changed to n>=8.
Prediction: If the condition on
line 5 is changed to n>=8, the
test will pass.
Experiment: `REPLACE(5, "n>8",
"n>=8") AND RUN`

6

The LLM generates a custom
command to fix the code and
execute the failing test.

Observation:
[No exception triggered]

Due to the fix, the
failing test passed.

Conclusion: The
hypothesis is supported.
<DEBUGGING DONE>

The LLM signals that
debugging is done
(<DEBUGGING DONE>).

7 8 9
Legend

Dashed boxes:
generated by LLM

Solid boxes: generated by
debugger / test execution

def f(n):
 return (n%2==0 and
 n>=8)

Fix is generated;
the developer may
check the process
(steps 1-9)
on request.

Suggest
via LLM

10

Append to prompt
after generation

Legend

A B C D E

Annotated Run (1-10)

Pipeline (A-E)

Figure 1: The pipeline and a real example run of A���SD, with annotations in black boxes and lightly edited for clarity. Given
a detailed description of the scienti�c debugging concept and a description of the bug (A), A���SD will generate a hypothesis
about what the bug is and construct an experiment to verify, using an LLM (B), actually run the experiment using a debugger
or code execution (C), and decide whether the hypothesis is correct based on the experiment result using an LLM (D). The
hypothesize-observe-conclude loop is repeated until the LLM concludes the debugging or an iteration limit is reached; �nally,
a �x is generated (E), with an explanation (white boxes from (1) to (9)) that the developer may view.

3.2 Hypothesize-Observe-Conclude
With the initial prompt,A���SD starts iterating over the ‘hypothesize-
observe-conclude’ loop depicted in Figure 1 (B - D). The result
of each process is appended to the prompt to allow incremental
hypothesis prediction; i.e. when generating the conclusion in 3 ,
the LLM would predict it based on the concatenation of the initial
prompt, 1 , and 2 . We describe each iteration of the loop as a step:
for example, Figure 1 1 - 3 would make up one step.

Hypothesize. Here, we lead the language model to generate a
hypothesis by appending the token Hypothesis: to the prompt, so
that the language model generates a hypothesis about the bug. We
observe that the Prediction: and Experiment: line headers are
also generated in turn by the LLM, due to the detailed description
of the scienti�c debugging process provided by the prompt. The
important aspect for the next step is the Experiment command,
where the language model either generates a debugger command
that can be executed by a debugger, or a custom code modi�cation-
and-execution script so that the language model can ‘test’ a certain
change. As the document is in Markdown format, the Experiment
script is wrapped in backticks (�); this script is extracted from the
LLM output to get concrete code execution results in the next step.

Examples can be seen in Figure 1 1 , 4 , and 7 - note thatA���SD
also localizes the fault as a part of the hypothesizing process, thus
making fault localization explainable as well.

Observe. The generated experiment script is passed to a back-
ground process based on traditional software engineering tools that
provides real execution results back to the language model, so that
we can ground the generation process of A���SD on real results,
and also build credibility for developer presentation. The model
can either (i) invoke a composite debugger command by setting a
breakpoint and printing a value, or (ii) modify the code and run
the failing test with the aforementioned DSL. When executing a
debugger command, it is executed via the command-line interface
of the language-appropriate debugger, and the output from the last
subcommand of the composite command (assumed to be a print
command) is returned, as in Figure 1 2 and 5 . When the break-
point is within a loop, the debugger collects values at di�erent
timesteps of execution and returns them together, e.g. ‘At each loop
execution, the expression was: [v1, v2, ...]’, up to a maximum of 100
values. Meanwhile, upon test execution from a edit-and-execute
DSL command, if an exception is raised, the exception type and
message are returned as the observation; otherwise, the result ‘[No
exception triggered]’ is appended, as in Figure 1 8 .

Behind the scene

Chain-of-Thoughts
Wei et al., https://arxiv.org/abs/2201.11903

• Underneath, LLMs are doing autocompletion, not any other type of reasoning:
they appear to be capable of rational inference because the corpus they are
trained include traces of logical reasoning.

• So, conditioning the model (with the context) to be more precise about the
reasoning steps can result in generation of more accurate reasoning steps.

• Add “Let’s think in step by step” at the end of every prompt (https://
arxiv.org/abs/2205.11916) 🙃 🫥 🫠

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916

Gao et al., ICML 2023

• What is even more logical and
step by step than natural
language? Programming
language :)

• Providing few-shop examples
that are mixtures of NL and LP
can enhance the reasoning
capabilities of LLM

Program-Aided Language Models
(PAL)

PAL: Program-aided Language Models 2

A: The bakers started with 200 loaves
loaves_baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves_sold_morning = 93
loaves_sold_afternoon = 39
The grocery store returned 6 loaves.
loaves_returned = 6
The answer is
answer = loaves_baked - loaves_sold_morning
 - loaves_sold_afternoon + loaves_returned

>>> print(answer)
74

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left?

Chain-of-Thought (Wei et al., 2022)
Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.
tennis_balls = 5
2 cans of 3 tennis balls each is
bought_balls = 2 * 3
tennis balls. The answer is
answer = tennis_balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread
did they have left?

Program-aided Language models (this work)
Input

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.
The answer is 62.

Model Output

Figure 1: A diagram illustrating PAL: Given a mathematical reasoning question, Chain-of-thought (left) generates interme-
diate reasoning steps of free-form text. In contrast, Program-aided Language models (PAL, right) generate intermediate
steps and Python code. This shifts the role of running the reasoning steps from the language model to the Python interpreter.
The final answer is obtained by running the generated reasoning chain. Chain-of-thought reasoning is highlighted in blue;
PAL steps are highlighted in gray and pink ; the Python interpreter run is highlighted in black and green.

require LLMs, solving and reasoning can be done with the
external solver. This bridges an important gap in chain-of-
thought-like methods, where reasoning chains can be correct
but produce an incorrect answer.

We demonstrate the effectiveness of PAL across 13 arith-
metic and symbolic reasoning tasks. In all these tasks,
PAL using Codex (Chen et al., 2021a) outperforms much
larger models such as PaLM-540B using chain-of-thought
prompting. For example, on the popular GSM8K bench-
mark, PAL achieves state-of-the-art accuracy, surpassing
PaLM-540B with chain-of-thought by absolute 15% top-
1 accuracy. When the questions contain large numbers, a
dataset we call GSM-HARD, PAL outperforms COT by an ab-
solute 40%. We believe that this seamless synergy between
a neural LLM and a symbolic interpreter is an essential step
towards general and robust AI reasoners.

2. Background: Few-shot Prompting
Few-shot prompting leverages the strength of large-language
models to solve a task with a set of k examples that are pro-
vided as part of the test-time input (Brown et al., 2020;
Liu et al., 2021; Chowdhery et al., 2022), where k is usu-
ally a number in the low single digits. These input-output
examples {(xi, yi)}ki=1 are concatenated in a prompt p
⌘ hx1 · y1i k hx2 · y2i k . . . k hxk · yki. where “·” denotes
the concatenation of an input and output, and “k” indicate
the concatenation of different examples. During inference,
a test instance xtest is appended to the prompt, and p kxtest

is passed to the model which attempts to complete p k xtest,
and thereby generate an answer ytest. Note that such few-
shot prompting does not modify the underlying LLM.

PAL: Program-aided Language Models, Gao et al., ICML 2023

https://arxiv.org/abs/2211.10435 

https://arxiv.org/abs/2211.10435

Yao et al., ICLR 2023

• What if we need external information
for the in-context learning? In other
words, can LLMs be given tools?

• Remember that this is still
autocompletion:

• LLMs can be taught to signal the
need to invoke tools

• Whenever LLMs need tool
invocation, we can do it ourselves
and paste the outcome back into
the context

ReAct

ReAct: Synergizing Reasoning and Acting in Language Models, Yao et al., ICLR 2023

https://arxiv.org/abs/2210.03629

Published as a conference paper at ICLR 2023

$FW����7KLQN>)LUVW�,�QHHG�WR�ILQG�D�SHSSHU�VKDNHU���PRUH �
OLNHO\�WR�DSSHDU�LQ�FDELQHWV��������FRXQWHUWRSV����������� �@
$FW����*R�WR�FDELQHW�� �
2EV����2Q�WKH�FDELQHW����\RX�VHH�D�YDVH��� �

�+HUH�WKH�DJHQW�JR�WR�FDELQHW����WKHQ�FDELQHW�������WKHQ�FRXQWHUWRS���DQG���

$FW����*R�WR�FRXQWHUWRS�� �
2EV����2Q�WKH�FRXQWHUWRS����\RX�VHH�D�DSSOH����D�EUHDG��� �
�������D�SHSSHU�VKDNHU����DQG�D�YDVH���

$FW����7DNH�SHSSHU�VKDNHU���IURP�FRXQWHUWRS�� �
2EV����<RX�SLFN�XS�WKH�SHSSHU�VKDNHU���IURP�WKH�FRXQWHUWRS��� �

$FW����7KLQN>1RZ�,�ILQG�D�SHSSHU�VKDNHU����1H[W��,�QHHG�WR �
SXW�LW�LQ�RQ�GUDZHU��� @
$FW����*R�WR�GUDZHU�� �
2EV����'UDZHU���LV�FORVHG� �

$FW�����2SHQ�GUDZHU�� �
2EV�����<RX�RSHQ�'UDZHU���ª

$FW�����3XW�SHSSHU�VKDNHU���LQ�RQ�GUDZHU�� �
2EV�����<RX�SXW�SHSSHU�VKDNHU���LQ�RQ�WKH�GUDZHU���

��D��6WDQGDUG

$QVZHU��L3RG

��E��&R7��5HDVRQ�2QO\�

7KRXJKW��/HW
V�WKLQN�VWHS �
E\�VWHS��$SSOH�5HPRWH�ZDV �
RULJLQDOO\�GHVLJQHG�WR �
LQWHUDFW�ZLWK�$SSOH�79� �
$SSOH�79�FDQ�EH�FRQWUROOHG �
E\�L3KRQH��L3DG��DQG�L3RG �
7RXFK��6R�WKH�DQVZHU�LV �
L3KRQH��L3DG��DQG�L3RG �
7RXFK�

$QVZHU��L3KRQH��L3DG��L3RG �
7RXFK

��F��$FW�2QO\�

$FW����6HDUFK>$SSOH�5HPRWH@ �
2EV����7KH�$SSOH�5HPRWH�LV �D�
UHPRWH�FRQWURO�ª

$FW����6HDUFK>)URQW�5RZ@�
2EV����&RXOG�QRW�ILQG�>)URQW �
5RZ@��6LPLODU��ª

$FW����6HDUFK>)URQW�5RZ�
�VRIWZDUH� @�
2EV����)URQW�5RZ�LV�D �
GLVFRQWLQXHG�PHGLD�FHQWHU �
VRIWZDUH�ª

$FW����)LQLVK>\HV@

��G��5H$FW��5HDVRQ���$FW�

7KRXJKW����,�QHHG�WR�VHDUFK�$SSOH�5HPRWH�DQG�ILQG�WKH �
SURJUDP�LW�ZDV�RULJLQDOO\�GHVLJQHG�WR�LQWHUDFW�ZLWK�
$FW����6HDUFK>$SSOH�5HPRWH@
2EV����7KH�$SSOH�5HPRWH�LV�D�UHPRWH�FRQWURO�LQWURGXFHG�LQ �
2FWREHU������E\�$SSOH�ª�RULJLQDOO\�GHVLJQHG�WR�FRQWURO�WKH �
)URQW�5RZ�PHGLD�FHQWHU �SURJUDP�ª

7KRXJKW����$SSOH�5HPRWH�ZDV�RULJLQDOO\�GHVLJQHG�WR�FRQWURO �
WKH�)URQW�5RZ�PHGLD�FHQWHU�SURJUDP��,�QHHG�WR�VHDUFK�)URQW�
5RZ�QH[W�DQG�ILQG�ZKDW�RWKHU�GHYLFH�FDQ�FRQWURO�LW�
$FW����6HDUFK>)URQW�5RZ@
2EV����&RXOG�QRW�ILQG�>)URQW�5RZ@��6LPLODU��>
)URQW�5RZ �
6HDW�WR�(DUWK
��
)URQW�5RZ�0RWRUVSRUWV
�
)URQW�5RZ�
�VRIWZDUH�
��ª@

7KRXJKW����)URQW�5RZ�LV�QRW�IRXQG��,�QHHG�WR�VHDUFK�)URQW�
5RZ��VRIWZDUH� ��
$FW����6HDUFK>)URQW�5RZ��VRIWZDUH� @
2EV����)URQW�5RZ�LV�D�GLVFRQWLQXHG�PHGLD�FHQWHU�VRIWZDUH�ª

7KRXJKW����)URQW�5RZ��VRIWZDUH��LV�FRQWUROOHG�E\�DQ�$SSOH �
5HPRWH�RU�WKH�NH\ERDUG�IXQFWLRQ�NH\V� �6R�WKH�DQVZHU�LV �
NH\ERDUG�IXQFWLRQ�NH\V�
$FW����)LQLVK>NH\ERDUG�IXQFWLRQ�NH\V @ Ҽ

4XHVWLRQ��$VLGH�IURP�WKH�$SSOH�5HPRWH��ZKDW�RWKHU�GHYLFH�
FDQ�FRQWURO�WKH�SURJUDP�$SSOH�5HPRWH�ZDV�RULJLQDOO\�
GHVLJQHG�WR�LQWHUDFW�ZLWK"

��D��$FW�2QO\�
$FW����*R�WR�GUDZHU�� �
2EV����7KH�GUDZHU���LV�FORVHG� �

$FW����2SHQ�GUDZHU�� �
2EV����<RX�RSHQ�WKH�GUDZHU����7KH�GUDZHU���LV�RSHQ��,Q�LW� �
\RX�VHH�D�GLVKVSRQJH����DQG�D�VSRRQ���
�
$FW����*R�WR�VLQNEDVLQ�� �
2EV����2Q�WKH�VLQNEDVLQ����\RX�VHH�D�GLVKVSRQJH����D �
VSDWXOD����DQG�D�VSRRQ��� �

$FW����7DNH�SHSSHUVKDNHU���IURP�VLQNEDVLQ�� �
2EV����1RWKLQJ�KDSSHQV� �

$FW����7DNH�SHSSHUVKDNHU���IURP�VLQNEDVLQ�� �
2EV����1RWKLQJ�KDSSHQV� �

��E��5H$FW��5HDVRQ���$FW�

Ҽ

<RX�DUH�LQ�WKH�PLGGOH�RI�D�URRP��/RRNLQJ�TXLFNO\�DURXQG�
\RX��\RX�VHH�D�FDELQHW����D�FDELQHW����D�FRIIHH�PDFKLQH����
D�FRXQWHUWRS�����D�VWRYH�EXUQHU����DQG�D�WRDVWHU����
<RXU�WDVN�LV�WR��3XW�VRPH�SHSSHU�VKDNHU�RQ�D�GUDZHU�

����$OI:RUOG

����+RWVSRW�4$

Figure 1: (1) Comparison of 4 prompting methods, (a) Standard, (b) Chain-of-thought (CoT,
Reason Only), (c) Act-only, and (d) ReAct (Reason+Act), solving a HotpotQA (Yang et al., 2018)
question. (2) Comparison of (a) Act-only and (b) ReAct prompting to solve an AlfWorld (Shridhar
et al., 2020b) game. In both domains, we omit in-context examples in the prompt, and only show task
solving trajectories generated by the model (Act, Thought) and the environment (Obs).

answers from questions in arithmetic, commonsense, and symbolic reasoning tasks (Wei et al.,
2022). However, this “chain-of-thought” reasoning is a static black box, in that the model uses
its own internal representations to generate thoughts and is not grounded in the external world,
which limits its ability to reason reactively or update its knowledge. This can lead to issues like fact
hallucination and error propagation over the reasoning process (Figure 1 (1b)). On the other hand,
recent work has explored the use of pre-trained language models for planning and acting in interactive
environments (Ahn et al., 2022; Nakano et al., 2021; Yao et al., 2020; Huang et al., 2022a), with
a focus on predicting actions via language priors. These approaches usually convert multi-modal
observations into text, use a language model to generate domain-specific actions or plans, and then
use a controller to choose or execute them. However, they do not employ language models to reason
abstractly about high-level goals or maintain a working memory to support acting, barring Huang
et al. (2022b) who perform a limited form of verbal reasoning to reiterate spatial facts about the
current state. Beyond such simple embodied tasks to interact with a few blocks, there have not been
studies on how reasoning and acting can be combined in a synergistic manner for general task solving,
and if such a combination can bring systematic benefits compared to reasoning or acting alone.

In this work, we present ReAct, a general paradigm to combine reasoning and acting with language
models for solving diverse language reasoning and decision making tasks (Figure 1). ReAct
prompts LLMs to generate both verbal reasoning traces and actions pertaining to a task in an
interleaved manner, which allows the model to perform dynamic reasoning to create, maintain, and
adjust high-level plans for acting (reason to act), while also interact with the external environments
(e.g. Wikipedia) to incorporate additional information into reasoning (act to reason).

2

https://arxiv.org/abs/2210.03629

Self Consistency
Wang et al., ICLR 2023 (https://arxiv.org/abs/2203.11171)

• Sample an LLM multiple times for the same question: the majority answer is
the most likely to be the correct one!

• Intuitively because: “we hypothesize that correct reasoning processes, even if
they are diverse, tend to have greater agreement in their final answer than
incorrect processes”, i.e., there are multiple reasoning paths to arrive at the
correct answer, but fewer ways to arrive at the incorrect one

• Still very early days but: can we connect this to the concept of landscape
analysis? Is the correct answer the highest (=correct) and also the biggest
(=the most accessible) hill?

https://arxiv.org/abs/2203.11171

Wang et al., ICLR 2023

LLM Reasoning as Constructive Optimisation
Why does self-consistency work?

• Fitness Landscape = [solution space]
[fitness dimension]

• Optimisation is essentially climbing up hills
to get higher fitness

• What if we see LLM-based solution
generation as an optimisation process?

• What would be the landscape that
results in self-consistency?

×

LLM Reasoning as Constructive Optimisation
Why does self-consistency work?

• With problems for which the self-
consistency works, we may hypothesise
that:

• The tallest hill is also the largest; there
are multiple starting points and
pathways to the top

• Smaller hills (=incorrect solutions) have
smaller base area, resulting in fewer
pathways to their top

Code is a unique artifact because it executes.
(And we’ve been doing dynamic analysis for a long time)

Candidates

Human
Factchecking

Prompt LLM
Answer

Answer

Answer

Answer

Candidates

Prompt LLM
Answer

Answer

Answer

Answer!

NL + LLM Pipeline

PL/NL + LLM Pipeline

Isn’t this testing? :)

Cross-cutting Concerns

• Architecture: is asking a single LLM instance for answers sufficient? There
are views that agents, and even multi-agents, are the future.

• Energy: closed-source LLMs are huge and come with massive carbon
footprints. What is the trade-off between performance and energy
consumption?

• Openness: organisations will NOT send their internal data over the network to
query commercial models. What is the right provenance?

• Trajectory: have we already seen the performance peak? Or will they keep
improving over time?

