Naturalness of Code

CS454 Al-Based Software Engineering

Shin Yoo

What is “natural” about language?

* Natural language refers to ordinary languages that occur naturally in human
community “by process of use, repetition, and change without conscious

planning of premeditation” (Wikipedia)

 From the statistical point of view, it means that most of our utterances are
simple, repetitive, and therefore predictable.

o Surely this is how we all learn language.

https://en.wikipedia.org/wiki/Natural_language

duolingo

3:19 N\ Ol LTE @

X @ ¥s

Complete the sentence

iLo siento! j !

oooooooooooooooooooo

Agua Leche Perdon Pan

CONTINUE

duolingo

3:20 \ Gl LTE @

X Ps

& HARD EXERCISE

Complete the sentence

Yo inglés. ;Tu

.........................

hablas hablo

CONTINUE

3:21 duolingo

Gl LTE @)

X G 9

& HARD EXERCISE

Complete the sentence

ooooo

hablo hablas

CHECK

espanol. ¢

John: Hi, nice to meet you. How are you?

Mary: I’'m , . ?

a) fine, thank you. And you?

b) okay, | guess. Why care?

Do yuo fnid tihs
smilpe to raed?
Bceuase of the
phaonmneal pweor
of the hmuan mnid,
msot plepoe do.

What about code?

* |tis not “natural”, in the sense that we have artificially created the grammar
for programming languages.

 Programming languages do evolve, but how?
* Intentionally”? New grammars, language consortiums, etc...

* (GGradually? Languages do affect each other, a newer and more popular
style eventually gets accepted, etc...

Python: for Java: for

a) iinrange a) (inti=0;

b) 27 b) 2?2

On the Naturalness of Software
Hindle et al., ICSE 2012

* “Programming languages, in theory, are complex, flexible and powerful, but
the programs that real people actually write are mostly simple and rather
repetitive, and thus they have usefully predictable statistical properties that
can be captured in statistical language models and leveraged for software
engineering tasks.”

Language Model

» Given a set of tokens, &, a set of possible utterances, & *, and a set of
actual utterances, & C I, a language model is a probability distribution p

over utterances s € &, i.e.,, Vs € [0 <p(s) < 1 A Zp(s) =1

sed

» That is, given all possible sequences of tokens, & *, how likely is it that
someone says a specific sentence, s € &7?

Probability of Utterance

* An utterance (or a sentence) is a sequence of tokens (or words). Suppose we
have N tokens, a;, a,, ..., ay that consist s. What is p(s)?

« p(s) =P(d1)l?(d2 al)p(a3 ay -Clz)]?(a4 a, s, Clg)---P(aN Cl1---aN_1)

 But these conditional probabilities are hard to calculate: the only feasible
approach would be count each utterance that qualifies, but & is too big, let
alone I *.

N-Gram

 Assumes Markov property, I.e., the next token is influenced only by those
came immediately before (say, within the window of n tokens)!

e pla; ay...a,_y) ~p(a;, a,_sa, »a;, ;)
e This is now much more tractable:
count(a;_,,a;_»,a;_1,d;)

. p(a a. d: ~d:) —
L M=3T=2"-] caunt(di_g, di_2s ai—l’*)

How surprising a sentence Is...

» Given a language model .# and a sentence s, we can define the entropy of
the sentence;

|
. H ,(5) = — ;logp%(al...an)

* Under the n-gram model:

1 1 «
H%(S) —_ ; Ingﬂ(Cll . .Cln) ~ — ; Z lng%(Cll Cll-_3, ai_z, Cli_l)
1

Tokens 2 -
Java Project Version Lines Total Unique
Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298
Cassandra 20110122 135992 697498 13002 T o -
Eclipse-E4 20110426 1543206 6807301 08652 s
Log4) 20101119 68528 247001 8056 S S D N —
Lucene 20100319 429957 2130349 32676 ”
Maven?2 20101118 61622 263831 7637 S
Maven3 20110122 114527 462397 10839 S o
Xalan-J 20091212 349837 1085022 39383 2
Xerces 20110111 257572 992623 19542 =
Tokens § E
Ubuntu Domain Version Lines Total Unique ks .
Admin 10.10 9092325 41208531 1140555 S
Doc 10.10 87192 362501 15373 ©] - -
Graphics 10.10 1422514 7453031 188792 B e T s i S
Interpreters 10.10 1416361 6388351 201538 L S5 = e ==
Mail 10.10 1049136 4408776 137324 - ° o 6 o o @
Net 10.10 5012473 20666917 541896 | | | | | | | | | |
Sound 10.10 1698584 29310969 436377 o s 4 s s 7 s o 10
Tex 10.10 1405674 14342943 375845
Text 10.10 1325700 6291804 155177 Order of N—-Grams
Web 10.10 1743376 11361332 216474
Tokens
English Corpus Version p. Total . Unique Figure 1: Comparison of Enghsh Cross-Entropy versus the
Code Cross Entropy of 10 projects.
Brown 20101101 81851 1161192 56057
Gutenberg 20101101 55578 2621613 51156

Table I: 10 Java Projects, C code from 10 Ubuntu 10.10 Cat-
egories, 3 English Corpus used 1n our study. English 1s the

concatenation of Brown and Gutenberg. Ubuntu 10.10 Maver-
ick was released on 2010/10/10.

A Hands-on for Natural Language

 N-gram Language Model with NLTK: https://www.kaggle.com/code/alvations/
n-gram-language-model-with-nltk

* NLTK Is a famous NLP toolkit for Python

 We will leave this for you to try later

https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk

A Hands-on for Python Code

* We will use Python corpus from CodeSearchNet (https://github.com/github/
CodeSearchNet)

 The hands-on script is available from: https://github.com/coinse/cs454-
ngrams

https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams

So what can you do with this?

(On practical level) Autocompletion

* (Given a few preceding tokens, you can quickly compute the likelihood of a
specific token to follow the given tokens: autocompletion!

* |n practice, there are much more extra information on top of ngram analysis if
we want to do implement autocompletion within an IDE. What?

e [ype
* \ariable scope

* Vocabulary <— (we will come back to this)

Percent Gain over Eclipse

120 —

100 —

(0]
o
I

(©))
o
I

TN
o
I

20 —

® Percent Gain

® Raw Gain (count)

— 4000

_e—e—e TN

u —n g
| |

~—
i H— N —Nn—Nn.

o—o¢— ¢ °

— 3000

— 2000

— 1000

I I I I I I I I I I I I
3 4 5 6 7 8 9 10 111

Suggestion Length

12 13 14 15

(a) Gain using top 2 suggestions.

Raw Gain (count)

Percent Gain over Eclipse

100

® Percent Gain — 5000
® Raw Gain (count)
80 —
u — 4000
60 7 - 3000
|
o
40 .
= — 2000
[}
e — ©
20 — 1000
e —©
.i.\.\./.\
~a_—m o _oq—90—°
0 D \.\.—.—._ O
| | | | | | | | | | | | |
3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

(b) Gain using top 6 suggestions.

Raw Gain (count)

Percent Gain over Eclipse

80 —

60 —

40 —

20 —

® Percent Gain
® Raw Gain (count)

— 5000

— 4000

— 3000

— 2000

— 1000

10 11
Suggestion Length

I I I I
12 13 14 15

(¢) Gain using top 10 suggestions.

Figure 4: Suggestion gains from merging n-gram suggestions into those of Eclipse.

Raw Gain (count)

(On curiosity level) What is the usual entropy?

* |n other words, do we write unique code, or whatever we write are usually
boilerplates, repetitive, expectable?

* |nterestingly, a predecessor of the Naturalness paper asked this first: “A Study
of the Uniqueness of Source Code” by Gabel and Su, FSE 2010

o After abstracting unique identifiers for matching, you have to write over 30
tokens to get unique in general: this is about 5~6 lines of code.

* A single line (=6 tokens) is almost always redundant (i.e., the same line can
be found in the same program)

Median Syntactic Redundancy (%)

Max Hamming Dist:

g Abstraction 0 1 2 3 4

6 None 63.3 748 884 96.7 99.9
Renamed IDs 98.3 987 990 99.6 99.9

20 None 7.8 140 23.6 34.8 49.9
Renamed IDs 59.5 79.6 90.8 96.1 98.5

C 35 None 4.1 5.5 7.2 9.1 11.1
Renamed IDs 14.8 195 250 30.8 37.3

77 None 2.0 2.4 2.7 3.1 34
Renamed IDs 4.5 5.0 5.6 6.0 6.5

120 None 1.4 1.6 1.8 1.9 2.0
Renamed IDs 2.7 2.9 3.1 3.2 34

6 None 545 689 84.8 95.8 99.8
Renamed IDs 979 985 99.2 998 100.0

20 None 3.2 7.8 151 25.2 39.3
Ctt Renamed IDs 48.1 68.2 83.6 924 96.9
35 None 0.9 1.5 2.4 3.6 5.3
Renamed IDs 98 133 18.0 224 27.8

77 None 0.1 0.3 0.3 0.5 0.6
Renamed IDs 1.6 1.8 2.1 2.3 2.6

120 None 0.0 0.0 0.1 0.1 0.1
Renamed IDs 0.7 0.8 0.9 0.9 1.0

6

20

Java 35
77

120

None
Renamed IDs

None
Renamed IDs

None
Renamed IDs

None
Renamed IDs

None
Renamed IDs

69.5
98.2

9.6
72.2

3.9
23.0

1.8
4.9

1.3
2.6

31.0
98.5

18.1
338.1

5.6
30.4

2.2
5.3

1.5
2.9

92.9
98.8

30.5
95.4

3.0
39.7
2.6
5.9

1.7
3.1

98.5
99.5

45.9
98.1

10.8
48.5

2.9
6.4

1.8
3.3

99.9
99.9

63.5
99.2

14.1
56.5

3.3
7.0

1.9
3.5

Table 4: Median syntactic redundancy values for the 6,000 corpus

projects.

Many related guestions

* Does correct code have lower entropy, and vice versa? (Assuming that LM is
trained on the whole corpus of code, and that there are more correct code
than incorrect ones)

e If so, can we use LM to write/fix code?
* |s buggy code unnatural??

* |f so, can we detect them simply by computing how unique they are?

Dual Channel Constraints
Casalnuovo et al., ICSE NIER 2020

 Next iterative refinement of the naturalness idea :)
e Source code communicates meaning over two different channels:

* AL (Algorithmic) Channel: a human tells a computer what to do —> the semantic is
complied into machine instructions and eventually executed

 NL (Natural Language) Channel: a human tells other humans what the source
code does —> others can read the code and understand

* |Importantly, each channel constraints what is allowed in the other!

 No one will use random variable names; no one will name a function quick_sort
If the code actually implements insertion sort algorithm

An example of exploiting the dual channel

* Predictive Mutation Analysis (Kim et al., TOSEM 2022): which tests can Kill
this mutant? Can we predict without actually executing tests at all?

* Concrete analysis based on AL channel: actually executes the test against
the mutant, and observe the execution results - if the results are different
from the results obtained from the original program, mutant is killed

» | earnt analysis based on NL channel: based on previous concrete analysis,
we try to learn the connection between vocabularies of mutants and tests

that kill them

Lang Chart

, 1.0 1.0
Test Method ~ Source Method Mutated Mutation TSPy
: O = iy, S 3K 0TS | O = = = T ———————:_:_:'_:_:_
Name Name Line Before After Operator 0.8 — —o-&'-==.===5___=; 08 LIS : _-'!
0.6 DERSSSESSSESK 0.6
o o
Word Embedding Word Embedding L o4 L 0.4
1A [1A i 365 days 4] days
Bidirectional GRU Bidirectional GRU 0.0 363.days S e ol 0.0 0 — :
Target Ver. Target Ver.
Gson Clhi
. , 1.0 1.0
Comparison Comparison e~ Seshat
0.8 = PMT == 0.8 1 &t—_—-—_—_——_—_— ————
Coverage based baseline ._.X-_:-_--‘ ===3
¢ 0.61 T 0 0.6- s Y,
Concatenate S S ’
. 0.4 L 0.4
Linear Linear 02 03
0.0 1< 1,918 days - . 0.0+e<—380days .,
1 510 15 1 1020 30
Concatenate a Target Ver. Target Ver.
JC Csv
1.0 1.0
. - O G == — — & _
Linear 0.8 A gans WP S0 0.8 oo——___ "= -
x\ >6.~9<\ B e T == 9
v 0.6 HE T ey P 0.6 e e LTI =
o o —_————
» ?
Softmax W 0.41 U 0.4
0.2 1 0.2-
Killed or Not Killed 0.0 466days, . 0.0 716days , .
1 5 10 15 20 25 1 510 15
Target Ver. Target Ver.

Fig. 3. Model architecture of Seshat Fig. 4. Prediction of the full kill matrix on Major

Summary

o Statistical view of source code can help certain task a lot.

 N-gram is computationally attractive way of computing a Language Model
(LM).

 But if we scale up LMs then we get... :)

