
Shin Yoo

Naturalness of Code
CS454 AI-Based Software Engineering

What is “natural” about language?

• Natural language refers to ordinary languages that occur naturally in human
community “by process of use, repetition, and change without conscious
planning of premeditation” (Wikipedia)

• From the statistical point of view, it means that most of our utterances are
simple, repetitive, and therefore predictable.

• Surely this is how we all learn language.

https://en.wikipedia.org/wiki/Natural_language

John: Hi, nice to meet you. How are you?

Mary: I’m ____, _____ ___. ___ ___?

a) fine, thank you. And you?

b) okay, I guess. Why care?

What about code?

• It is not “natural”, in the sense that we have artificially created the grammar
for programming languages.

• Programming languages do evolve, but how?

• Intentionally? New grammars, language consortiums, etc…

• Gradually? Languages do affect each other, a newer and more popular
style eventually gets accepted, etc…

Python: for _ __ _____ … Java: for _ ___ _ _ _ _ …

a) i in range

b) ??

a) (int i = 0;

b) ??

On the Naturalness of Software
Hindle et al., ICSE 2012

• “Programming languages, in theory, are complex, flexible and powerful, but
the programs that real people actually write are mostly simple and rather
repetitive, and thus they have usefully predictable statistical properties that
can be captured in statistical language models and leveraged for software
engineering tasks.”

Language Model

• Given a set of tokens, , a set of possible utterances, , and a set of
actual utterances, , a language model is a probability distribution
over utterances , i.e.,

• That is, given all possible sequences of tokens, , how likely is it that
someone says a specific sentence, ?

𝒯 𝒯*
𝒮 ⊂ 𝒯 p

s ∈ 𝒮 ∀s ∈ 𝒮[0 < p(s) < 1 ∧ ∑
s∈𝒮

p(s) = 1

𝒯*
s ∈ 𝒮

Probability of Utterance

• An utterance (or a sentence) is a sequence of tokens (or words). Suppose we
have tokens, that consist . What is ?

•

• But these conditional probabilities are hard to calculate: the only feasible
approach would be count each utterance that qualifies, but is too big, let
alone .

N a1, a2, …, aN s p(s)

p(s) = p(a1)p(a2 |a1)p(a3 |a1 . a2)p(a4 |a1, a2, a3)…p(aN |a1…aN−1)

𝒮
𝒯*

N-Gram

• Assumes Markov property, i.e., the next token is influenced only by those
came immediately before (say, within the window of tokens)!

•

• This is now much more tractable:

•

n

p(ai |a1…ai−1) ≃ p(ai |ai−3ai−2ai−1)

p(ai |ai−3ai−2ai−1) =
count(ai−3, ai−2, ai−1, ai)
count(ai−3, ai−2, ai−1, *)

How surprising a sentence is…

• Given a language model and a sentence , we can define the entropy of
the sentence:

•

• Under the n-gram model:

•

ℳ s

Hℳ(s) = −
1
n

log pℳ(a1…an)

Hℳ(s) = −
1
n

log pℳ(a1…an) ≃ −
1
n

n

∑
1

log pℳ(ai |ai−3, ai−2, ai−1)

Draf
t!

techniques for smoothing the estimates of a very large number
of coefficients, some of which are larger than they should be
and others smaller. Sometimes it is better to back-off from a
trigram model to a bigram model. The technical details are
beyond the scope of this paper, but can be found in any ad-
vanced NLP textbook. In practice we found that Kneser-Ney
smoothing (e.g., Koehn [3], §7) gives good results for software
corpora. However, we note that these are very early efforts in
this area, and new software language models and estimation
techniques might improve on the results presented below.

But how do we know when we have a good language model?

B. What Makes a Good Model?
Given a repetitive and highly predictable corpus of docu-

ments (or programs), a good model captures the regularities
in the corpus. Thus, a good model, estimated carefully from
a representative corpus, will predict with high confidence the
contents of a new document drawn from the same population.
Such a model can guess the contents of the new document
with very high probability. In other words, the model will not
find a new document particularly surprising, or “perplexing”.
In NLP, this idea is captured by a measure called perplexity,
or its log-transformed version, cross-entropy4. Given a doc-
ument s = a1 . . . an, of length n, and a language model M,
we assume that the probability of the document estimated by
the model is pM(s). We can write down the cross-entropy
measure as:

HM(s) = � 1

n
log pM(a1 . . . an)

and by the formulation presented in Section II-A:

HM(s) = � 1

n

nX

1

log pM(ai | a1 . . . ai�1)

This is a measure of how “surprised” a model is by the
given document. A good model has low entropy for most
documents. It gives higher probabilities, (closer to 1, and thus
lower absolute log values) to most words in the document.
If one could manage to deploy a (hypothetical) truly superb
model within an IDE to help programmers complete code
fragments, it might be able to guess with high probability
most of the program, so that most of the programming work
can be done by just hitting a tab key! In practice of course, we
would probably be satisfied with a lot less.

But how good are the models that we can actually build
for “natural” software? Is software is really as “natural” (i.e.,
unsurprising) as natural language?

III. METHODOLOGY & FINDINGS

To shed light on this question, we performed a series of
experiments with both natural language and code corpora, first
comparing the “naturalness” (using cross-entropy) of code

4http://en.wikipedia.org/wiki/Cross entropy; see also [4], §2.2, page 75,
equation 2.50

Tokens
Java Project Version Lines Total Unique

Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298

Cassandra 20110122 135992 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652

Log4J 20101119 68528 247001 8056
Lucene 20100319 429957 2130349 32676
Maven2 20101118 61622 263831 7637
Maven3 20110122 114527 462397 10839
Xalan-J 20091212 349837 1085022 39383
Xerces 20110111 257572 992623 19542

Tokens
Ubuntu Domain Version Lines Total Unique

Admin 10.10 9092325 41208531 1140555
Doc 10.10 87192 362501 15373

Graphics 10.10 1422514 7453031 188792
Interpreters 10.10 1416361 6388351 201538

Mail 10.10 1049136 4408776 137324
Net 10.10 5012473 20666917 541896

Sound 10.10 1698584 29310969 436377
Tex 10.10 1405674 14342943 375845
Text 10.10 1325700 6291804 155177
Web 10.10 1743376 11361332 216474

Tokens
English Corpus Version Lines Total Unique

Brown 20101101 81851 1161192 56057
Gutenberg 20101101 55578 2621613 51156

Table I: 10 Java Projects, C code from 10 Ubuntu 10.10 Cat-
egories, 3 English Corpus used in our study. English is the
concatenation of Brown and Gutenberg. Ubuntu 10.10 Maver-
ick was released on 2010/10/10.

with English texts, and then comparing various code corpora
to each other to further gain insight into the similarities and
differences between code corpora.

Our natural language studies were based on two very widely
used corpora: the Brown corpus, and the Gutenberg corpus5.
For code, we used several sets of corpora, including a collec-
tion of Java projects, as well a collection of applications from
Ubuntu, broken up into application domain categories. All are
listed in Table I.

After removing comments, the projects were lexically ana-
lyzed to produce token sequences that were used to estimate
n-gram language models. Most of our corpora are in C and
Java. Extending to other languages is trivial.

The Java projects were our central focus; we used them
both for cross-entropy studies, and some experiments with an
Eclipse plug-in for a language-model-based code-suggestion
task. Table I describes the 10 Java projects that we used. The
Version indicates the date of the last revision in the Git repos-
itory when we cloned the project. Unique Tokens refers to
the number of different kinds of tokens that make up the to-
tal token count given in the Tokens field. Lines is calculated
using Unix wc on all files within each repository, and tokens

5We retrieved these corpora from http://www.nltk.org/.

3

Draf
t!

●
● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

2
4

6
8

1
0

Order of N−Grams

C
ro

ss
 E

n
tr

o
p
y

(1
0
−

F
o
ld

 C
ro

ss
 V

a
lid

a
tio

n
)

●

●

●
● ● ● ● ● ● ●

Figure 1: Comparison of English Cross-Entropy versus the
Code Cross Entropy of 10 projects.

are extracted from each of these files. The Ubuntu domain
categories were quite large in some cases, ranging up to 9
million lines, 41 million tokens (one million unique). The
number of unique tokens is interesting and relevant, as they
give a very rough indication on the potential “surprisingness”
of the project corpus. If these unique token were uniformly
distributed throughout the project (highly unlikely), we could
expect a cross-entropy of log2(1.15E6), or approximately 20
bits. A similar calculation for the Java projects ranges from
about 13 bits to about 17 bits.

A. Cross-Entropy of Code

Cross-entropy is a measure of how surprising a test docu-
ment is to a distribution model estimated from a corpus. Thus
if one tests a corpus against itself, one has to set aside some
portion of the corpus for testing, and estimate (train) the model
on the rest of the corpus. In all our experiments, we measured
cross-entropy by averaging out over a 10-fold cross-validation:
we split the corpus 90%–10% (in lines) at random 10 loca-
tions, trained on the 90% and tested on 10%, and measured
the average cross-entropy. A further bit of notation: when we
say we measured the cross-entropy of X to Y , Y is the train-
ing corpus used to estimate the parameters of the distribution
model MY used to calculate HMY (X).

First, we wanted to see if there was evidence to support
the claim that software was “natural”, in the same way that
English is natural, viz., whether regularities in software could
be captured by language models.

RQ 1: Do n-gram language models capture regularities in
software?

To answer this question, we estimated n-gram models for
several values of n over both the English corpus and the 10
Java language project corpora, using averages over 10-fold
cross validation (each corpus to itself) as described above. The
results are in Figure 1. The single line above is the average
over the 10 folds for the English corpus, beginning at about
10 bits for unigram models, and trailing down to under 8 bits
for 10-gram models. The average self cross-entropy for the 10
projects are shown below in boxplots, one for each order from
unigram models to 10-gram models. Several observations can
be made. First, software unigram entropy is much lower than
might be expected from a uniform distribution over unique
tokens, because token frequencies are obviously very skewed.

Second, cross-entropy declines rapidly with n-gram order,
saturating around tri- or 4-grams. The similarity in the decline
in English and the Java projects is striking. This decline sug-
gests that there is as much of repetitive local context that is
being captured by the language model in Java programs, as
it is in the English corpora. We take this to be highly encour-
aging: the ability to model the regularity of the local context
in natural languages has proven to be extremely valuable in
statistical natural language processing; we hope (and in fact,
provide some evidence to support the claim) that this regularity
can be exploited for software tools.

Last, but not least, software is far more regular than English
with entropies sinking down to under 2 bits in some cases.

Corpus-based statistical language models can capture
a high level of local regularity in software, even more so
than in English.

This raises a worrying question: is the increased regularity
we are capturing in software merely a difference between En-
glish and Java? Java is certainly a much simpler language than
English, with a far more structured syntax. Might not the lower
entropy be simply an artifact of the artificially simple syntax
for Java? If the statistical regularity of the local context being
captured by the language model were simply arising from the
simplicity of Java, then we should find this uniformly across
all the projects; in particular, if we train a model on one Java
project, and test on another, we should successfully capture
the local regularity in the language. Thus, we sublimate this
anxiety-provoking question into the following:

RQ 2: Is the local regularity that the statistical language
model captures merely language-specific or is it also
project-specific?

This is a pretty simple experiment. For each of the 10
projects, we train a trigram model, and evaluate its cross-
entropy with each of the 9 others, and compare the value
with the average 10-fold cross-entropy against itself. This
plot is shown in Figure 3. The x-axis lists all the different
Java projects, and, for each, the boxplot shows the range of

4

A Hands-on for Natural Language

• N-gram Language Model with NLTK: https://www.kaggle.com/code/alvations/
n-gram-language-model-with-nltk

• NLTK is a famous NLP toolkit for Python

• We will leave this for you to try later

https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk
https://www.kaggle.com/code/alvations/n-gram-language-model-with-nltk

A Hands-on for Python Code

• We will use Python corpus from CodeSearchNet (https://github.com/github/
CodeSearchNet)

• The hands-on script is available from: https://github.com/coinse/cs454-
ngrams

https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/github/CodeSearchNet
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams
https://github.com/coinse/cs454-ngrams

So what can you do with this?

(On practical level) Autocompletion

• Given a few preceding tokens, you can quickly compute the likelihood of a
specific token to follow the given tokens: autocompletion!

• In practice, there are much more extra information on top of ngram analysis if
we want to do implement autocompletion within an IDE. What?

• Type

• Variable scope

• Vocabulary <— (we will come back to this)

Draf
t!

●

●

●

●

●

● ● ●

●

● ●
● ●

0

20

40

60

80

100

120

P
e

rc
e

n
t

G
a

in
 o

ve
r

E
cl

ip
se

R
a
w

 G
a

in
 (

co
u

n
t)

0

1000

2000

3000

4000

3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

● Percent Gain
Raw Gain (count)

(a) Gain using top 2 suggestions.

●

●

● ●

●

● ●

●

●

● ●
● ●

0

20

40

60

80

100

P
e

rc
e

n
t

G
a

in
 o

ve
r

E
cl

ip
se

R
a
w

 G
a

in
 (

co
u

n
t)

0

1000

2000

3000

4000

5000

3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

● Percent Gain
Raw Gain (count)

(b) Gain using top 6 suggestions.

●

●

● ●

●
● ●

●
●

● ●
● ●

0

20

40

60

80

P
e

rc
e

n
t

G
a

in
 o

ve
r

E
cl

ip
se

R
a
w

 G
a

in
 (

co
u

n
t)

0

1000

2000

3000

4000

5000

3 4 5 6 7 8 9 10 11 12 13 14 15

Suggestion Length

● Percent Gain
Raw Gain (count)

(c) Gain using top 10 suggestions.

Figure 4: Suggestion gains from merging n-gram suggestions into those of Eclipse.

67% additional suggestions from the language model that are
correct; between 7 and 15 characters, the gains range from
3–16%.

The additional suggestions from NGSE run the gamut,
including methods, classes & fields predictable from fre-
quent trigrams in the corpus, (e.g., println, iterator,

IOException, append, toString, assertEquals,

transform), package names (e.g., apache, tools,

util, java) as well as language keywords (e.g., import,
public, return, this). An examination of the tokens
reveals why the n-grams approach adds most value with
shorter tokens. The language model we build is based on all
the files in the system, and the most frequent n-grams are
those that occur frequently in all the files. In the corpus, we
find that coders tend to choose shorter names for entities that
are used more widely and more often; naturally these give rise
to stronger signals that are picked up by the n-gram language
model. It is worth repeating here that a significant portion,
viz.., 50% of the successful suggestions are not Java keywords
guessed from language context—they are project-specific
tokens. This reinforces our claim that the statistical language
model is capturing a significant level of local regularity in the
project corpus.

In the table below, we present we present a different way of
looking at the benefit of MSE ; the total number of keystrokes
saved by using the base ECSE , (first row) the MSE (second
row) and the percent gain from using MSE .

Top 2 Top 6 Top 10

ECSE 42743 77245 95318
MSE 68798 103100 120750
Increase 61% 33% 27%

We close this section by pointing out that we used one spe-
cific language model to enhance one specific software tool, a

suggestion engine. With more sophisticated language models,
specifically ones that combines syntax, scoping and type in-
formation, we expect to achieve even lower entropy, and thus
better performance in this and other software tools.

V. RELATED WORK

There are a few related areas of research, into which this
line of work could be reasonably contextualized.

Code Completion and Suggestion By completion we mean
the task of completing a partially typed-in token; by suggestion
we mean suggesting a complete token. The discussion above
concerned suggestion engines.

Several modern mature software development environments
(SDEs) provide both code completion and code suggestion,
often with a unified interface. Two notable open-source Java-
based examples are Eclipse and IntelliJ IDEA. As in our work,
these tools draw possible completions from existing code, but
the methods of suggestion are fundamentally different.

Eclipse and IntelliJ IDEA respond to a programmer’s com-
pletion request (a keyboard shortcut such as ctrl+space) by
deducing what tokens “might apply” in the current syntactic
context. Here, the tools are primarily guided by Java program-
ming language semantics. For example, both Eclipse and Intel-
liJ IDEA respond to a completion request, by parsing available
source code, and create a short list of expected token types. If
this list contains, say, a reference type, the tools use the rules
of the type system to add a list of currently-defined type-names
to the list of completions. Similarly, if a variable is expected,
the tools names visible in the symbol table. Eclipse and IDEA
implement dozens of these “syntactic and semantic rules” for
various classes of syntactic constructs. As a final step, both
tools rank the completions with a collection of apparently
hand-coded heuristics.

Our approach is complementary. Rather than using language
semantics and immediate context, to guess what might apply,

7

(On curiosity level) What is the usual entropy?

• In other words, do we write unique code, or whatever we write are usually
boilerplates, repetitive, expectable?

• Interestingly, a predecessor of the Naturalness paper asked this first: “A Study
of the Uniqueness of Source Code” by Gabel and Su, FSE 2010

• After abstracting unique identifiers for matching, you have to write over 30
tokens to get unique in general: this is about 5~6 lines of code.

• A single line (=6 tokens) is almost always redundant (i.e., the same line can
be found in the same program)

control for the cases in which copied files are very slightly adapted
(e.g. a copyright header) or are of different but similar versions. Be-
fore adding this filter, we did measure its potential effect: in all
cases, it reduces the relative size of the corpus (with respect to a
single project) by less than one percent.
Outliers The plot of npp follows the standard trend, but it converges
on a much higher value of redundancy. Upon investigation, we noted
that over half of the project’s source code consists of generated lexers
used for syntax highlighting, which at least one project in the corpus
undoubtedly contains as well. Other interesting projects included
atlas and hugin, with the former showing an abnormally steep
drop off in redundancy and the latter having an exceptionally low
redundancy value at low levels of granularity. We do not have a
complete explanation for these phenomena, but we hypothesize that
they are a result of the projects’ specialized domains (linear algebra
solving and panoramic photo stitching, respectively).

One minor effect is exhibited in a minority of the graphs: at very
low levels of granularity, slightly increasing granularity counterintu-
itively increases redundancy. This is an artifact of our methodology:
at a given level of granularity g, only files with at least one g-sized se-
quence are counted as part of the project. We could have formulated
our measurements either way, either including or excluding tiny files,
but in any case, the effect is negligible: these files generally only
contain between 0–1.5% of any given project’s code.

In summary, we observe a substantial amount of incidental similar-
ity between these projects and our corpus. The bulk of the syntactic
redundancy is exhibited at significant, but still fairly low, levels of
granularity: 6 to 40 tokens, or approximately one to seven lines of
code.

4.3 Breadth: Corpus Projects
Our breadth experiments involve calculating estimated syntactic

redundancy values for all 6,000 of our corpus projects. Summary
statistics of the results appear in Table 4, and we have included
density plots of the distributions of these values, overlaid for each
language, in Figure 5. In this section, we restrict the language of our
observations to general and qualified terms: other than basic summa-
rization, these data are ‘raw,’ and we have not formally formulated/
tested any hypotheses, and we have not performed any statistical
tests. Here, our primary contribution is in the collection of a vast
amount of previously unknown (or perhaps unattainable) data; our
interpretations are secondary and are suggestions of general trends.

At g = 6, approximately one line of code (shown Figure 5a),
the projects are nearly wholly redundant when measured under
abstraction, and their values of syntactic redundancy are over half
when measured using no abstraction at all. All three languages
are apparently in agreement, which suggests the possibility that
individual lines of code are not unique.

The next level of granularity, g = 20 (Figure 5b) is more interest-
ing. In our depth experiments, this level of granularity falls in the
center of the range of values at which we observe a high redundancy
values. On the whole, these aggregate redundancy measures are es-
sentially in agreement with the individual values for our SourceForge
experiments, but the individual languages are less in agreement with
each other: the suggestion of a general trend is still there, but we
observe more variation. The Java projects, for example, appear
to have a generally higher level of redundancy, while the C and
C++ measurements are much closer to each other in value. Once
again, we observe a substantial and consistent spread between the
abstracted and non-abstracted measurements, suggesting a general
trend of incidental similarity.

At g = 35 (Figure 5c), our observations are again in line with
our depth experiments: we observe generally more uniqueness (i.e.,

Median Syntactic Redundancy (%)
Max Hamming Dist:

g Abstraction 0 1 2 3 4

C

6 None 63.3 74.8 88.4 96.7 99.9
Renamed IDs 98.3 98.7 99.0 99.6 99.9

20 None 7.8 14.0 23.6 34.8 49.9
Renamed IDs 59.5 79.6 90.8 96.1 98.5

35 None 4.1 5.5 7.2 9.1 11.1
Renamed IDs 14.8 19.5 25.0 30.8 37.3

77 None 2.0 2.4 2.7 3.1 3.4
Renamed IDs 4.5 5.0 5.6 6.0 6.5

120 None 1.4 1.6 1.8 1.9 2.0
Renamed IDs 2.7 2.9 3.1 3.2 3.4

C++

6 None 54.5 68.9 84.8 95.8 99.8
Renamed IDs 97.9 98.5 99.2 99.8 100.0

20 None 3.2 7.8 15.1 25.2 39.3
Renamed IDs 48.1 68.2 83.6 92.4 96.9

35 None 0.9 1.5 2.4 3.6 5.3
Renamed IDs 9.8 13.3 18.0 22.4 27.8

77 None 0.1 0.3 0.3 0.5 0.6
Renamed IDs 1.6 1.8 2.1 2.3 2.6

120 None 0.0 0.0 0.1 0.1 0.1
Renamed IDs 0.7 0.8 0.9 0.9 1.0

Java

6 None 69.5 81.0 92.9 98.5 99.9
Renamed IDs 98.2 98.5 98.8 99.5 99.9

20 None 9.6 18.1 30.5 45.9 63.5
Renamed IDs 72.2 88.1 95.4 98.1 99.2

35 None 3.9 5.6 8.0 10.8 14.1
Renamed IDs 23.0 30.4 39.7 48.5 56.5

77 None 1.8 2.2 2.6 2.9 3.3
Renamed IDs 4.9 5.3 5.9 6.4 7.0

120 None 1.3 1.5 1.7 1.8 1.9
Renamed IDs 2.6 2.9 3.1 3.3 3.5

Table 4: Median syntactic redundancy values for the 6,000 corpus
projects.

less redundancy), and the spread between the abstracted and non-
abstracted measurements significantly narrows. At g = 77 (Fig-
ure 5d) and 120 (no figure, but displayed in Table 4), we observe
near-total uniqueness, and we also observe a potential broad-scale
confirmation of the phenomenon of the redundancy measures con-
verging on the more rare, intentionally copied code fragments:
both the abstracted and non-abstracted distributions appear centered
around similar values.

Across all runs, our measurements are in agreement with our
depth experiments: redundancy is near total at the line level and
remains significant through the range of approximately one to six
lines.

5. THREATS TO VALIDITY
Threats to the validity of our study fall under two main categories:

construct validity and external validity.
Construct Validity The construct validity of our study rests on
our ability to accurately measure ‘true’ syntactic redundancy, a
measure that we have approximated concretely in terms of a corpus
in the hope that it provides an accurate estimation of the same value
computed for ‘all code in existence.’

Here, the most obvious threat is that our corpus is insufficiently
large or varied, leading us to potentially underreport redundancy.
We believe this to be unlikely: the corpus is highly diverse, and we
report quite similar measurements for all three languages, despite
the fact that the majority of the Java and C/C++ portions of corpus
are derived from wholly different sources.

control for the cases in which copied files are very slightly adapted
(e.g. a copyright header) or are of different but similar versions. Be-
fore adding this filter, we did measure its potential effect: in all
cases, it reduces the relative size of the corpus (with respect to a
single project) by less than one percent.
Outliers The plot of npp follows the standard trend, but it converges
on a much higher value of redundancy. Upon investigation, we noted
that over half of the project’s source code consists of generated lexers
used for syntax highlighting, which at least one project in the corpus
undoubtedly contains as well. Other interesting projects included
atlas and hugin, with the former showing an abnormally steep
drop off in redundancy and the latter having an exceptionally low
redundancy value at low levels of granularity. We do not have a
complete explanation for these phenomena, but we hypothesize that
they are a result of the projects’ specialized domains (linear algebra
solving and panoramic photo stitching, respectively).

One minor effect is exhibited in a minority of the graphs: at very
low levels of granularity, slightly increasing granularity counterintu-
itively increases redundancy. This is an artifact of our methodology:
at a given level of granularity g, only files with at least one g-sized se-
quence are counted as part of the project. We could have formulated
our measurements either way, either including or excluding tiny files,
but in any case, the effect is negligible: these files generally only
contain between 0–1.5% of any given project’s code.

In summary, we observe a substantial amount of incidental similar-
ity between these projects and our corpus. The bulk of the syntactic
redundancy is exhibited at significant, but still fairly low, levels of
granularity: 6 to 40 tokens, or approximately one to seven lines of
code.

4.3 Breadth: Corpus Projects
Our breadth experiments involve calculating estimated syntactic

redundancy values for all 6,000 of our corpus projects. Summary
statistics of the results appear in Table 4, and we have included
density plots of the distributions of these values, overlaid for each
language, in Figure 5. In this section, we restrict the language of our
observations to general and qualified terms: other than basic summa-
rization, these data are ‘raw,’ and we have not formally formulated/
tested any hypotheses, and we have not performed any statistical
tests. Here, our primary contribution is in the collection of a vast
amount of previously unknown (or perhaps unattainable) data; our
interpretations are secondary and are suggestions of general trends.

At g = 6, approximately one line of code (shown Figure 5a),
the projects are nearly wholly redundant when measured under
abstraction, and their values of syntactic redundancy are over half
when measured using no abstraction at all. All three languages
are apparently in agreement, which suggests the possibility that
individual lines of code are not unique.

The next level of granularity, g = 20 (Figure 5b) is more interest-
ing. In our depth experiments, this level of granularity falls in the
center of the range of values at which we observe a high redundancy
values. On the whole, these aggregate redundancy measures are es-
sentially in agreement with the individual values for our SourceForge
experiments, but the individual languages are less in agreement with
each other: the suggestion of a general trend is still there, but we
observe more variation. The Java projects, for example, appear
to have a generally higher level of redundancy, while the C and
C++ measurements are much closer to each other in value. Once
again, we observe a substantial and consistent spread between the
abstracted and non-abstracted measurements, suggesting a general
trend of incidental similarity.

At g = 35 (Figure 5c), our observations are again in line with
our depth experiments: we observe generally more uniqueness (i.e.,

Median Syntactic Redundancy (%)
Max Hamming Dist:

g Abstraction 0 1 2 3 4

C

6 None 63.3 74.8 88.4 96.7 99.9
Renamed IDs 98.3 98.7 99.0 99.6 99.9

20 None 7.8 14.0 23.6 34.8 49.9
Renamed IDs 59.5 79.6 90.8 96.1 98.5

35 None 4.1 5.5 7.2 9.1 11.1
Renamed IDs 14.8 19.5 25.0 30.8 37.3

77 None 2.0 2.4 2.7 3.1 3.4
Renamed IDs 4.5 5.0 5.6 6.0 6.5

120 None 1.4 1.6 1.8 1.9 2.0
Renamed IDs 2.7 2.9 3.1 3.2 3.4

C++

6 None 54.5 68.9 84.8 95.8 99.8
Renamed IDs 97.9 98.5 99.2 99.8 100.0

20 None 3.2 7.8 15.1 25.2 39.3
Renamed IDs 48.1 68.2 83.6 92.4 96.9

35 None 0.9 1.5 2.4 3.6 5.3
Renamed IDs 9.8 13.3 18.0 22.4 27.8

77 None 0.1 0.3 0.3 0.5 0.6
Renamed IDs 1.6 1.8 2.1 2.3 2.6

120 None 0.0 0.0 0.1 0.1 0.1
Renamed IDs 0.7 0.8 0.9 0.9 1.0

Java

6 None 69.5 81.0 92.9 98.5 99.9
Renamed IDs 98.2 98.5 98.8 99.5 99.9

20 None 9.6 18.1 30.5 45.9 63.5
Renamed IDs 72.2 88.1 95.4 98.1 99.2

35 None 3.9 5.6 8.0 10.8 14.1
Renamed IDs 23.0 30.4 39.7 48.5 56.5

77 None 1.8 2.2 2.6 2.9 3.3
Renamed IDs 4.9 5.3 5.9 6.4 7.0

120 None 1.3 1.5 1.7 1.8 1.9
Renamed IDs 2.6 2.9 3.1 3.3 3.5

Table 4: Median syntactic redundancy values for the 6,000 corpus
projects.

less redundancy), and the spread between the abstracted and non-
abstracted measurements significantly narrows. At g = 77 (Fig-
ure 5d) and 120 (no figure, but displayed in Table 4), we observe
near-total uniqueness, and we also observe a potential broad-scale
confirmation of the phenomenon of the redundancy measures con-
verging on the more rare, intentionally copied code fragments:
both the abstracted and non-abstracted distributions appear centered
around similar values.

Across all runs, our measurements are in agreement with our
depth experiments: redundancy is near total at the line level and
remains significant through the range of approximately one to six
lines.

5. THREATS TO VALIDITY
Threats to the validity of our study fall under two main categories:

construct validity and external validity.
Construct Validity The construct validity of our study rests on
our ability to accurately measure ‘true’ syntactic redundancy, a
measure that we have approximated concretely in terms of a corpus
in the hope that it provides an accurate estimation of the same value
computed for ‘all code in existence.’

Here, the most obvious threat is that our corpus is insufficiently
large or varied, leading us to potentially underreport redundancy.
We believe this to be unlikely: the corpus is highly diverse, and we
report quite similar measurements for all three languages, despite
the fact that the majority of the Java and C/C++ portions of corpus
are derived from wholly different sources.

Many related questions

• Does correct code have lower entropy, and vice versa? (Assuming that LM is
trained on the whole corpus of code, and that there are more correct code
than incorrect ones)

• If so, can we use LM to write/fix code?

• Is buggy code unnatural??

• If so, can we detect them simply by computing how unique they are?

Dual Channel Constraints
Casalnuovo et al., ICSE NIER 2020

• Next iterative refinement of the naturalness idea :)

• Source code communicates meaning over two different channels:

• AL (Algorithmic) Channel: a human tells a computer what to do —> the semantic is
complied into machine instructions and eventually executed

• NL (Natural Language) Channel: a human tells other humans what the source
code does —> others can read the code and understand

• Importantly, each channel constraints what is allowed in the other!

• No one will use random variable names; no one will name a function quick_sort
if the code actually implements insertion sort algorithm

An example of exploiting the dual channel

• Predictive Mutation Analysis (Kim et al., TOSEM 2022): which tests can kill
this mutant? Can we predict without actually executing tests at all?

• Concrete analysis based on AL channel: actually executes the test against
the mutant, and observe the execution results - if the results are different
from the results obtained from the original program, mutant is killed

• Learnt analysis based on NL channel: based on previous concrete analysis,
we try to learn the connection between vocabularies of mutants and tests
that kill them

Predictive Mutation Analysis via Natural Language Channel in Source Code 111:7

Linear

Softmax

Test Method
Name

Comparison

Word Embedding

Killed or Not Killed

Source Method
Name

Bidirectional GRU

Comparison

Word Embedding

Bidirectional GRU

Before After
Mutated

Line
Mutation
Operator

Concatenate

LinearLinear

Concatenate

Fig. 3. Model architecture of Seshat

contain some parts of program logic. Consequently, we use independent word embedding layer, as
well as the bidirectional GRU, for each part.

2.5.2 Word Embedding and Encoding Layer. The word embedding layer maps each word to a
numerical representation that captures the relative relationship betweenwords.We use Ep 2 R |+? |⇥3

for the name-based features, and Eq 2 R |+@ |⇥3 for the mutant-speci�c features: +? and +@ denote
vocabularies of the names and code tokens respectively, and 3 denotes a dimension of the word
embedding. We train the embedding layer from scratch as part of the model training, instead of
using pre-trained weights.

The words in the test method name {FC,1, . . . ,FC ,=} and the source method name {FB,1, . . . ,FB,<}
are passed to the word embedding layer and converted to GC ,8 = Ep (FC ,8) 2 R3 , 1  8  = and
GB, 9 = Ep (FB, 9) 2 R3 , 1  9  <. Subsequently, the bidirectional GRU is used to extract hidden
context between words in two directions. For the test method name:

�!
⌘C ,8 =

���!
GRU(GC,8) (1)

 �
⌘C ,8 =

 ���
GRU(GC,8) (2)

⌘C,8 =
�!
⌘C ,8 �

 �
⌘C ,8 (3)

The hidden representations of a forward GRU and a backward GRU are concatenated, composing
one representations ⌘C ,8 . Next, we adopt an attention mechanism to reward those words that are
deemed to be important.

DC,8 = tanh
�
,0CC⌘C,8 + 10CC

�
(4)

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.

Predictive Mutation Analysis via Natural Language Channel in Source Code 111:13

Fig. 4. Prediction of the full kill matrix on Major

the further the distance in G-axis between them. We also specify the exact number of elapsed days
between the �rst two versions in the G-axis for the sake of understanding. The colours in Figures 4
and 5 represent the models we use: the blue circle marker represents Seshat, the green X marker
represents PMT, and the orange triangle marker represents the coverage based baseline. In the
same colour variation, the model trained with the older program is marked as darker colour, and
the connected line between markers represent that the models are trained using the same base
version.

Figure 5 shows that Seshat performs the best for versions of Chart on PIT: the average F-score
from all pairs of versions of Chart is 0.92. For all subjects in PIT, Seshat achieves the average F-score
0.84. Compared to PIT, as shown in Figure 4, Seshat shows slightly worse prediction performance
on Major, with the overall average F-score 0.81.
Also, Seshat outperforms PMT and the coverage based model. PMT and the coverage based

model produce average F-scores of 0.70 and 0.39, respectively, when predicting the kill matrices of
PIT, and 0.68 and 0.19 for the kill matrices of Major. This supports our hypothesis that PMT lacks
�ne-grained features needed for test case level prediction. It is not surprising that the coverage

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.

Summary

• Statistical view of source code can help certain task a lot.

• N-gram is computationally attractive way of computing a Language Model
(LM).

• But if we scale up LMs then we get… :)

