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Automated Program Repair

• Along with Program Synthesis, one of the holy grails in automation of 
software development!


• Program Synthesis: given specifications, automatically write the program 
that satisfies them from the scratch (if we consider Input/Output pairs as 
low-level specification, GP is one way to do program synthesis)


• Automated Program Repair: given specification and a faulty 
implementation, automatically fix the buggy program to be correct



Competent Programmer Hypothesis (CPH)

• Originally proposed to justify mutation testing:


• Programmers write code that is almost correct.


• Mutation Testing aims to evaluate how good your test cases are: it 
emulates real faults by injecting small syntactic faults (such as changing + 
to - in the source code) - CPH justifies the “small” part, i.e., real faults are 
also small.


• APR is possible directly because CPH. That is, APR aims for small edits 
that deals with small mistakes or a minor corner cases, not complete 
rewrites or redesign (for now).



Program Repair formulated as search
What is the sequence of edits (patch) that will convert  to ?Pbuggy Pcorrect

Pbuggy Pcorrect

Patch



How to find the patch?

• Generate & Validate: create MANY candidate patches, and find one that 
works


• Search-based APR: use GP to sample candidate patches 


• Template-based APR: use templates of existing fixes to sample candidate 
patches


• Semantic APR: use formal specification for program paths, and derive 
patches from them (typically using SMT solvers and symbolic execution)


• Neural APR: rely on neural models (including LLMs) to generate patches



Search-Based APR

• This is the one that started the whole APR sub-field.


• GenProg (Weimer et al., 2009) proposed two very important observations


• GP can be done to an existing program (i.e., the buggy version)


• For some bugs, the fix is already in the same codebase


• To begin with, we can represent the program as the AST (i.e., trees, the 
language that GP speaks naturally)



Performing GP to Existing Programs

• Problem: you have an existing version (a single entity) but you need diversity 
(multiple entities)


• Solution: define your mutation operator, and your initial population is exact 
copies of the original, existing program, but once mutated!


• Initial population = 1-hop neighbours of the original program w.r.t. the 
mutation operator



“The fix comes from the program itself”

• Initially, GenProg authors gave intuitive answers here: things like missing null-checks can be 
clearly be fixed with code from the same program.


• Also, sometimes fix is deleting unnecessary stuff from the code.


• Hence, the original GenProg uses the following three low-level genetic operators:


• Swap two statements


• Insert a randomly chosen statement1 after statement2


• Delete a statement


• Crossover is crossing these low level genetic operators along an execution path


• Mutation is applying one of these low level genetic operators randomly



So, how did it work?

• The initial version in 2009 was tested against 10 buggy programs, ranging from 22 to 
21,553 Lines of Code, and produced 10 patches.


• The improved version in 2012 (Le Goues et al., ICSE 2012) fixed 55 out of 105 bugs in 
8 programs ranging from 77K to 2.8M LoC: running on AWS, it cost GenProg $8 per 
bug.


• The scale-up was possible because the program representation was now just 
patches, not entire ASTs. Since GenProg starts from the same buggy program, 
individuals can be patches, i.e., the diff between the individual and the original 
program!


• When inserting code, choose from those that include in-scope variables only -> 
fewer compilation errors -> better search!



What is the fitness?
Quantitative measure of program correctness…?

• No such thing is real, so anything we do is a compromise.


• Test case based scoring: this is based on the fact that a correct patch would 
pass all tests. However, the inverse is not true: a patch that passes all tests may 
still not be correct!


• This is known as the plausible patch problem: a patch is plausible if it does not 
break any tests - but does this mean that the patch is also correct?


• Evaluating patch correctness requires human investigation…. consequently, it 
is hard and expensive.


• The fitness landscape is discrete and entirely dependent on the quality of tests.



The Plastic Surgery Hypothesis
Where do the fix ingredients come? From the same codebase?

• If the GenProg assumption about the fix ingredients is true… then human 
written bug patches should also be based on the same codebase!


• Plastic Surgery Hypothesis: “Changes to a codebase contain snippets that 
already exist in the codebase at the time of the change, and these snippets 
can be efficiently found and exploited.” - Barr et al., FSE 2014


• An analysis of 15,723 commits made to open source projects shows that 
43% are graftable from the same version being changed!


• Later work tried to narrow down the fix space by looking at various similarity 
measures between the fault location and other parts.



• …as in the graft, i.e., a twig 
inserted into a slit on other 
branch of a living plant, from 
which it receives sap

Graftable



• Theoretically speaking, given 
enough time, GP can find the patch 
(w.r.t. Plastic Surgery Hypothesis)


• But there is no guidance towards 
the fix location (similarities, scope 
analysis, and type checks can help 
filtering out, but perhaps no direct 
guidance)


• Without guidance on fix location, 
search-based APR becomes 
EXPENSIVE

Search-based APR



What if we start from the 
ingredients?



But how do we know which 
ingredients we need?



Template Based APR

• Certain types of faults occur repetitively throughout the lifetime of the same 
project, as well as across different projects.


• Can we extract “templates” of these recurring faults? These are our 
ingredients!


• Extraction is data mining of repositories (e.g., all commits that say “bug fix”) 
combined with abstraction (e.g., variable names do not have to match)


• We first localize the buggy code; then apply all the fix templates that match!


• We get multiple patches - now we need to validate them to find the one.



Fix Patterns of TBar (Liu et al., ISSTA 2019)
35 patterns in 15 categories

ISSTA ’19, July 15–19, 2019, Beijing, China Kui Liu, Anil Koyuncu, Dongsun Kim, Tegawendé F. Bissyandé

(1) Record performance: TBar creates a new higher baseline of
repair performance: 74/101 bugs are correctly/plausibly �xed
with perfect fault localization information and 43/81 bugs are
�xed with realistic fault localization output, respectively.

(2) Fix pattern selection:Most bugs are correctly �xed only by
a single �x pattern while other patterns generate plausible
patches. This implies that appropriate pattern prioritization can
prevent from plausible/incorrect patches. Otherwise, APR tools
might be over�tted in plausible but incorrect patches.

(3) Fix ingredient retrieval: It is challenging for template-based
APR to select appropriate donor code, which is an ingredient of
patch generation when using �x patterns. Inappropriate donor
code may cause plausible but incorrect patch generation. This
motivates a new research direction: donor code prioritization.

(4) Fault localization noise: It turns out that fault localization
accuracy has a large impact on repair performance when using
�x patterns in APR (e.g., applying a �x pattern to incorrect
location yields plausible/incorrect patches).

2 FIX PATTERNS
For this study, we systematically review1 the APR literature to iden-
tify approaches that leverage �x patterns. Concretely, we consider
the program repair website [3], a bibliography survey of APR [52],
proceedings of software engineering conference venues and jour-
nals as the source of relevant literature. We focus on approaches
dealing with Java program bugs, and manually collect, from the
paper descriptions as well as the associated artifacts, all pattern
instances that are explicitly mentioned. Table 1 summarizes the
identi�ed relevant literature and the quantity of identi�ed �x pat-
terns targeting Java programs. Note that the techniques described
in the last four papers (i.e., HDRepair, ssFix, CapGen, and SimFix
papers) do not directly use �x patterns: they leverage code change
operators or rules, which we consider similar to using �x patterns.

Table 1: Literature review on �x patterns for Java programs.

Authors APR tool name # of �x
patterns

Publication
Venue

Publication
Year

Pan et al. [55] - 27 EMSE 2009
Kim et al. [23] PAR 10 (16⇤) ICSE 2013
Martinez et al. [49] jMutRepair 2 ISSTA 2016
Durieux et al. [13] NPE�x 9 SANER 2017
Long et al. [41] Genesis 3 (108⇤) FSE 2017
D. Le et al. [25] S3 4 FSE 2017
Saha et al. [62] ELIXIR 8 (11⇤) ASE 2017
Hua et al. [17] SketchFix 6 ICSE 2018
Liu and Zhong [40] SOFix 12 SANER 2018
Koyuncu et al. [24] FixMiner 28 UL Tech Report 2018
Liu et al. [35] - 174 TSE 2018
Rolim et al. [60] REVISAR 9 UFERSA Tech Report 2018
Liu et al. [39] AVATAR 13 SANER 2019
D. Le et al. [29] HDRepair† 11 SANER 2016
Xin and Reiss [74] ssFix† 34 ASE 2017
Wen et al. [69] CapGen† 30 ICSE 2018
Jiang et al. [18] SimFix† 16 ISSTA 2018

⇤In the PAR paper [23], 10 �x patterns are presented, but 16 �x patterns are released online [2]. In
Genesis, 108 code transformation schemas are inferred for three kinds of defects. In ELIXIR, there is
one �x pattern that consists of four sub-�x patterns.

2.1 Fix Patterns Inference
Fix patterns have been explored with the following four ways:
(1) Manual Summarization: Pan et al. [55] identi�ed 27 �x pat-

terns from patches of �ve Java projects to characterize the �x
1For conferences and journals, we consider ICSE, FSE, ASE, ISSTA, ICSME, SANER,

TSE, TOSEM, and EMSE. The search keywords are ‘program’+‘repair’, ‘bug’ +‘�x’.

ingredients of patches. They do not however apply the identi-
�ed patterns to �x actual bugs. Motivated by this work, Kim
et al. [23] summarized 10 �x patterns manually extracted from
62,656 human-written patches collected from Eclipse JDT.

(2) Mining: Long et al. [41] proposed Genesis, to infer �x pat-
terns for three kinds of defects from existing patches. Liu and
Zhong [40] explored �x patterns from Q&A posts in Stack Over-
�ow. Koyuncu et al. [24] mined �x patterns at the AST level
from patches by using code change di�erentiating tool [14]. Liu
et al. [35] and Rolim et al. [60] proposed to mine �x patterns
for static analysis violations. In general, mining approaches
yield a large number of �x patterns, which are not always about
addressing deviations in program behavior. For example, many
patterns are about code style [39]. Recently, with AVATAR [39],
we proposed an APR tool that considers static analysis violation
�x patterns to �x semantic bugs.

(3) Pre-de�nition: Durieux et al. [13] pre-de�ned 9 repair actions
for null pointer exceptions by unifying the related �x patterns
proposed in previous studies [12, 22, 45]. On the top of PAR [23],
Saha et al. [62] further de�ned 3 new �x patterns to improve the
repair performance. Hua et al. [17] proposed an APR tool with
six pre-de�ned so-called code transformation schemas. We also
consider operator mutations [49] as pre-de�ned �x patterns, as
the number of operators and mutation possibilities is limited
and pre-set. Xin and Reiss [74] proposed an approach to �xing
bugs with 34 prede�ned code change rules at the AST level. Ten
of the rules are not for transforming the buggy code but for
the simple replacement of multi-statement code fragments. We
discard these rules from our study to limit bias.

(4) Statistics: Besides formatted �x patterns, researchers [18, 69]
also explored to automate program repair with code change in-
structions (at the abstract syntax tree level) that are statistically
recurrent in existing patches [18, 37, 48, 68, 81]. The strategy is
then to select the top-n most frequent code change instructions
as �x ingredients to synthesize patches.

2.2 Fix Patterns Taxonomy
After manually assessing all �x patterns presented in the literature
(cf. Table 1), we identi�ed 15 categories of patterns labeled based
on the code context (e.g., a cast expression), the code change ac-
tions (e.g., insert an “if” statement with “instanceof” check) as well
as the targets (e.g., ensure the program will no throw a ClassCastEx-
ception.). A given category may include one or several specialized
sub-categories. Below, we present the labeled categories and provide
the associated 35 Code Change Patterns described in simpli�ed
GNU di� pattern for easy understanding.
FP1. Insert Cast Checker. Inserting an instanceof check before
one buggy statement if this statement contains at least one unchecked
cast expression. Implemented in: PAR, Genesis, AVATAR, SOFix†,
HDRepair†, SketchFix†, CapGen†, and SimFix†.

+ if (exp instanceof T) {

var = (T) exp; ......

+ }

where exp is an expression (e.g., a variable expression) and T is
the casting type, while “. . . . . .” means the subsequent statements
dependent on the variable var. Note that, “†” denotes that the �x
pattern is not speci�cally illustrated in the corresponding APR tools

TBar: Revisiting Template-Based Automated Program Repair ISSTA ’19, July 15–19, 2019, Beijing, China

since the tools have some abstract �x patterns that can cover the �x
pattern. The same notation applies to the following descriptions.
FP2. Insert Null Pointer Checker. Inserting a null check before
a buggy statement if, in this statement, a �eld or an expression
(of non-primitive data type) is accessed without a null pointer
check. Implemented in: PAR, ELIXIR, NPE�x, Genesis, FixMiner,
AVATAR, HDRepair†, SOFix†, SketchFix†, CapGen†, and SimFix†.
FP2.1: + if (exp != null) {

...exp...; ......

+ }

FP2.2: + if (exp == null) return DEFAULT_VALUE;

...exp...;

FP2.3: + if (exp == null) exp = exp1;

...exp...;

FP2.4: + if (exp == null) continue;

...exp...;

FP2.5: + if (exp == null)

+ throw new IllegalArgumentException(...);

...exp...;

where DEFAULT_VALUE is set based on the return type (RT) of the
encompassing method as below:

DEFAULT_VALUE =

8>>>>>><
>>>>>>:

false, if RT = boolean;
0, if RT = pr imiti�e t�pe ;
new String(), if RT = Str in�;
“return;”, if RT = �oid ;
null, otherwise .

(1)

exp1 is a compatible expression in the buggy program (i.e., that has
the same data type as exp). FP2.4 is speci�c to the case of a buggy
statement within a loop (i.e., for or while).
FP3. Insert Range Checker. Inserting a range checker for the
access of an array or collection if it is unchecked. Implemented
in: PAR, ELIXIR, Genesis, SketchFix, AVATAR, SOFix† and SimFix†.

+ if (index < exp.length) {

...exp[index]...; ......

+ }

OR

+ if (index < exp.size()) {

...exp.get(index)...; ......

+ }

where exp is an expression representing an array or collection.
FP4. Insert Missed Statement. Inserting a missing statement be-
fore, or after, or surround a buggy statement. The statement is either
an expression statement with a method invocation, or a return/try-
catch/if statement. Implemented in: ELIXIR, HDRepair, SOFix,
SketchFix, CapGen, FixMiner, and SimFix.
FP4.1: + method(exp);

FP4.2: + return DEFAULT_VALUE;

FP4.3: + try {

statement; ......

+ } catch (Exception e) { ... }

FP4.4: + if (conditional_exp) {

statement; ......

+ }

where exp is an expression from a buggy statement. It may be empty
if the method does not take any argument. FP4.4 excludes three �x
patterns (FP1, FP2, and FP3) that are used with speci�c contexts.
FP5. Mutate Class Instance Creation.Replacing a class instance
creation expression with a cast super.clone() method invocation if
the class instance creation is in an overridden clone method. Im-
plemented in: AVATAR.

public Object clone() {

- ... new T();

+ ... (T) super.clone();

}

where T is the class name of the current class containing the buggy
statement.
FP6. Mutate Conditional Expression.Mutating a conditional ex-
pression that returns a boolean value (i.e., true or false) by either
updating it, or removing a sub conditional expression, or inserting
a new conditional expression into it. Implemented in: PAR, ssFix,
S3, HDRepair, ELIXIR, SketchFix, CapGen, SimFix, and AVATAR.
FP6.1: - ...condExp1...

+ ...condExp2...

FP6.2: - ...condExp1 Op condExp2...

+ ...condExp1...

FP6.3: - ...condExp1...

+ ...condExp1 Op condExp2...

where condExp1 and condExp2 are conditional expressions. Op is the
logical operator ‘||’ or ‘&&’. Themutation of operators in conditional
expressions is not summarized in this �x pattern but in FP11.
FP7. Mutate Data Type. Replacing the data type in a variable dec-
laration or a cast expression with another data type. Implemented
in: PAR, ELIXIR, FixMiner, SOFix, CapGen, SimFix, AVATAR, and
HDRepair†.
FP7.1: - T1 var ...;

+ T2 var ...;

FP7.2: - ...(T1) exp...;

+ ...(T2) exp...;

where both T1 and T2 denote two di�erent data types. exp means
the being casted expression (including variable).
FP8. Mutate Integer Division Operation.Mutating the integer
division expressions to return a �oat value, by mutating its divisor
or divider to make them be of type �oat.Released by Liu et al. [35],
it is not implemented in any APR tool yet.
FP8.1: - ...dividend / divisor...

+ ...dividend / (double or float) divisor...

FP8.2: - ...dividend / divisor...

+ ...(double or float) dividend / divisor...

FP8.3: - ...dividend / divisor...

+ ...(1.0 / divisor) * dividend...

where dividend and divisor are integer number literals or integer-
returned expressions (including variables).
FP9. Mutate Literal Expression. Mutating boolean, number, or
String literals in a buggy statement with other relevant literals, or
correspondingly-typed expressions. Implemented in: HDRepair,
S3, FixMiner, SketchFix, CapGen, SimFix and ssFix†.
FP9.1: - ...literal1...

+ ...literal2...

FP9.2: - ...literal1...

+ ...exp...

where literal1 and literal2 are of the same type literals, but having
di�erent values (e.g., literal1 is true, literal2 is false). exp denotes
any expression value of the same type as literal1.
FP10. Mutate Method Invocation Expression.Mutating the bu-
ggy method invocation expression by adapting its method name or
arguments. This pattern consists of four sub �x patterns:

(1) Replacing the method name with another one which has a
compatible return type and same parameter type(s) as the
buggy method that was invoked.

(2) Replacing at least one argument with another expression
which has a compatible data type. Replacing a literal or
variable is not included in this �x pattern, but rather in
FP9 and FP13 respectively.

(3) Removing argument(s) if the method invocation has the
suitable overridden methods.
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since the tools have some abstract �x patterns that can cover the �x
pattern. The same notation applies to the following descriptions.
FP2. Insert Null Pointer Checker. Inserting a null check before
a buggy statement if, in this statement, a �eld or an expression
(of non-primitive data type) is accessed without a null pointer
check. Implemented in: PAR, ELIXIR, NPE�x, Genesis, FixMiner,
AVATAR, HDRepair†, SOFix†, SketchFix†, CapGen†, and SimFix†.
FP2.1: + if (exp != null) {

...exp...; ......

+ }

FP2.2: + if (exp == null) return DEFAULT_VALUE;

...exp...;

FP2.3: + if (exp == null) exp = exp1;

...exp...;

FP2.4: + if (exp == null) continue;

...exp...;

FP2.5: + if (exp == null)

+ throw new IllegalArgumentException(...);

...exp...;

where DEFAULT_VALUE is set based on the return type (RT) of the
encompassing method as below:

DEFAULT_VALUE =

8>>>>>><
>>>>>>:

false, if RT = boolean;
0, if RT = pr imiti�e t�pe ;
new String(), if RT = Str in�;
“return;”, if RT = �oid ;
null, otherwise .

(1)

exp1 is a compatible expression in the buggy program (i.e., that has
the same data type as exp). FP2.4 is speci�c to the case of a buggy
statement within a loop (i.e., for or while).
FP3. Insert Range Checker. Inserting a range checker for the
access of an array or collection if it is unchecked. Implemented
in: PAR, ELIXIR, Genesis, SketchFix, AVATAR, SOFix† and SimFix†.

+ if (index < exp.length) {

...exp[index]...; ......

+ }

OR

+ if (index < exp.size()) {

...exp.get(index)...; ......

+ }

where exp is an expression representing an array or collection.
FP4. Insert Missed Statement. Inserting a missing statement be-
fore, or after, or surround a buggy statement. The statement is either
an expression statement with a method invocation, or a return/try-
catch/if statement. Implemented in: ELIXIR, HDRepair, SOFix,
SketchFix, CapGen, FixMiner, and SimFix.
FP4.1: + method(exp);

FP4.2: + return DEFAULT_VALUE;

FP4.3: + try {

statement; ......

+ } catch (Exception e) { ... }

FP4.4: + if (conditional_exp) {

statement; ......

+ }

where exp is an expression from a buggy statement. It may be empty
if the method does not take any argument. FP4.4 excludes three �x
patterns (FP1, FP2, and FP3) that are used with speci�c contexts.
FP5. Mutate Class Instance Creation.Replacing a class instance
creation expression with a cast super.clone() method invocation if
the class instance creation is in an overridden clone method. Im-
plemented in: AVATAR.

public Object clone() {

- ... new T();

+ ... (T) super.clone();

}

where T is the class name of the current class containing the buggy
statement.
FP6. Mutate Conditional Expression.Mutating a conditional ex-
pression that returns a boolean value (i.e., true or false) by either
updating it, or removing a sub conditional expression, or inserting
a new conditional expression into it. Implemented in: PAR, ssFix,
S3, HDRepair, ELIXIR, SketchFix, CapGen, SimFix, and AVATAR.
FP6.1: - ...condExp1...

+ ...condExp2...

FP6.2: - ...condExp1 Op condExp2...

+ ...condExp1...

FP6.3: - ...condExp1...

+ ...condExp1 Op condExp2...

where condExp1 and condExp2 are conditional expressions. Op is the
logical operator ‘||’ or ‘&&’. Themutation of operators in conditional
expressions is not summarized in this �x pattern but in FP11.
FP7. Mutate Data Type. Replacing the data type in a variable dec-
laration or a cast expression with another data type. Implemented
in: PAR, ELIXIR, FixMiner, SOFix, CapGen, SimFix, AVATAR, and
HDRepair†.
FP7.1: - T1 var ...;

+ T2 var ...;

FP7.2: - ...(T1) exp...;

+ ...(T2) exp...;

where both T1 and T2 denote two di�erent data types. exp means
the being casted expression (including variable).
FP8. Mutate Integer Division Operation.Mutating the integer
division expressions to return a �oat value, by mutating its divisor
or divider to make them be of type �oat.Released by Liu et al. [35],
it is not implemented in any APR tool yet.
FP8.1: - ...dividend / divisor...

+ ...dividend / (double or float) divisor...

FP8.2: - ...dividend / divisor...

+ ...(double or float) dividend / divisor...

FP8.3: - ...dividend / divisor...

+ ...(1.0 / divisor) * dividend...

where dividend and divisor are integer number literals or integer-
returned expressions (including variables).
FP9. Mutate Literal Expression. Mutating boolean, number, or
String literals in a buggy statement with other relevant literals, or
correspondingly-typed expressions. Implemented in: HDRepair,
S3, FixMiner, SketchFix, CapGen, SimFix and ssFix†.
FP9.1: - ...literal1...

+ ...literal2...

FP9.2: - ...literal1...

+ ...exp...

where literal1 and literal2 are of the same type literals, but having
di�erent values (e.g., literal1 is true, literal2 is false). exp denotes
any expression value of the same type as literal1.
FP10. Mutate Method Invocation Expression.Mutating the bu-
ggy method invocation expression by adapting its method name or
arguments. This pattern consists of four sub �x patterns:

(1) Replacing the method name with another one which has a
compatible return type and same parameter type(s) as the
buggy method that was invoked.

(2) Replacing at least one argument with another expression
which has a compatible data type. Replacing a literal or
variable is not included in this �x pattern, but rather in
FP9 and FP13 respectively.

(3) Removing argument(s) if the method invocation has the
suitable overridden methods.
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since the tools have some abstract �x patterns that can cover the �x
pattern. The same notation applies to the following descriptions.
FP2. Insert Null Pointer Checker. Inserting a null check before
a buggy statement if, in this statement, a �eld or an expression
(of non-primitive data type) is accessed without a null pointer
check. Implemented in: PAR, ELIXIR, NPE�x, Genesis, FixMiner,
AVATAR, HDRepair†, SOFix†, SketchFix†, CapGen†, and SimFix†.
FP2.1: + if (exp != null) {

...exp...; ......

+ }

FP2.2: + if (exp == null) return DEFAULT_VALUE;

...exp...;

FP2.3: + if (exp == null) exp = exp1;

...exp...;

FP2.4: + if (exp == null) continue;

...exp...;

FP2.5: + if (exp == null)

+ throw new IllegalArgumentException(...);

...exp...;

where DEFAULT_VALUE is set based on the return type (RT) of the
encompassing method as below:

DEFAULT_VALUE =

8>>>>>><
>>>>>>:

false, if RT = boolean;
0, if RT = pr imiti�e t�pe ;
new String(), if RT = Str in�;
“return;”, if RT = �oid ;
null, otherwise .

(1)

exp1 is a compatible expression in the buggy program (i.e., that has
the same data type as exp). FP2.4 is speci�c to the case of a buggy
statement within a loop (i.e., for or while).
FP3. Insert Range Checker. Inserting a range checker for the
access of an array or collection if it is unchecked. Implemented
in: PAR, ELIXIR, Genesis, SketchFix, AVATAR, SOFix† and SimFix†.

+ if (index < exp.length) {

...exp[index]...; ......

+ }

OR

+ if (index < exp.size()) {

...exp.get(index)...; ......

+ }

where exp is an expression representing an array or collection.
FP4. Insert Missed Statement. Inserting a missing statement be-
fore, or after, or surround a buggy statement. The statement is either
an expression statement with a method invocation, or a return/try-
catch/if statement. Implemented in: ELIXIR, HDRepair, SOFix,
SketchFix, CapGen, FixMiner, and SimFix.
FP4.1: + method(exp);

FP4.2: + return DEFAULT_VALUE;

FP4.3: + try {

statement; ......

+ } catch (Exception e) { ... }

FP4.4: + if (conditional_exp) {

statement; ......

+ }

where exp is an expression from a buggy statement. It may be empty
if the method does not take any argument. FP4.4 excludes three �x
patterns (FP1, FP2, and FP3) that are used with speci�c contexts.
FP5. Mutate Class Instance Creation.Replacing a class instance
creation expression with a cast super.clone() method invocation if
the class instance creation is in an overridden clone method. Im-
plemented in: AVATAR.

public Object clone() {

- ... new T();

+ ... (T) super.clone();

}

where T is the class name of the current class containing the buggy
statement.
FP6. Mutate Conditional Expression.Mutating a conditional ex-
pression that returns a boolean value (i.e., true or false) by either
updating it, or removing a sub conditional expression, or inserting
a new conditional expression into it. Implemented in: PAR, ssFix,
S3, HDRepair, ELIXIR, SketchFix, CapGen, SimFix, and AVATAR.
FP6.1: - ...condExp1...

+ ...condExp2...

FP6.2: - ...condExp1 Op condExp2...

+ ...condExp1...

FP6.3: - ...condExp1...

+ ...condExp1 Op condExp2...

where condExp1 and condExp2 are conditional expressions. Op is the
logical operator ‘||’ or ‘&&’. Themutation of operators in conditional
expressions is not summarized in this �x pattern but in FP11.
FP7. Mutate Data Type. Replacing the data type in a variable dec-
laration or a cast expression with another data type. Implemented
in: PAR, ELIXIR, FixMiner, SOFix, CapGen, SimFix, AVATAR, and
HDRepair†.
FP7.1: - T1 var ...;

+ T2 var ...;

FP7.2: - ...(T1) exp...;

+ ...(T2) exp...;

where both T1 and T2 denote two di�erent data types. exp means
the being casted expression (including variable).
FP8. Mutate Integer Division Operation.Mutating the integer
division expressions to return a �oat value, by mutating its divisor
or divider to make them be of type �oat.Released by Liu et al. [35],
it is not implemented in any APR tool yet.
FP8.1: - ...dividend / divisor...

+ ...dividend / (double or float) divisor...

FP8.2: - ...dividend / divisor...

+ ...(double or float) dividend / divisor...

FP8.3: - ...dividend / divisor...

+ ...(1.0 / divisor) * dividend...

where dividend and divisor are integer number literals or integer-
returned expressions (including variables).
FP9. Mutate Literal Expression. Mutating boolean, number, or
String literals in a buggy statement with other relevant literals, or
correspondingly-typed expressions. Implemented in: HDRepair,
S3, FixMiner, SketchFix, CapGen, SimFix and ssFix†.
FP9.1: - ...literal1...

+ ...literal2...

FP9.2: - ...literal1...

+ ...exp...

where literal1 and literal2 are of the same type literals, but having
di�erent values (e.g., literal1 is true, literal2 is false). exp denotes
any expression value of the same type as literal1.
FP10. Mutate Method Invocation Expression.Mutating the bu-
ggy method invocation expression by adapting its method name or
arguments. This pattern consists of four sub �x patterns:

(1) Replacing the method name with another one which has a
compatible return type and same parameter type(s) as the
buggy method that was invoked.

(2) Replacing at least one argument with another expression
which has a compatible data type. Replacing a literal or
variable is not included in this �x pattern, but rather in
FP9 and FP13 respectively.

(3) Removing argument(s) if the method invocation has the
suitable overridden methods.



Template Based APR

• Pros


• Eliminates the fix ingredient search problem


• Can generate patches fast


• Can control the scope of APR effectively


• Cons


• Can generate a LOT of patches (remember templates still have holes, which results 
in combinatorial explosions), which increases the validation cost


• In some sense, Template Based APR can be considered as scoped exhaustive search.



Semantic APR
A motivating example from Angelix (Mechtaev et al., ICSE 2016)

1 � i f (max range endpoint < eol range start )
2 � max range endpoint = eol range start ;
3
4 � pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);
5 + i f (max range endpoint)
6 + printab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(a) The developer-provided bug patch for coreutils bug 13627
where multiple locations are repaired

1 i f (max range endpoint < eol range start )
2 max range endpoint = eol range start ;
3
4 if (1)
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(b) The buggy version after semantics-preserving transformation
(the shaded part is added)

1 i f (↵)
2 max range endpoint = � ;
3
4 i f (�)
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(c) Suspicious expressions are replaced with symbolic variables

1 i f (0)
2 max range endpoint = eol range start ;
3
4 i f (! (max range endpoint == 0))
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(d) A repair generated from our repair algorithm; expressions in
the shaded areas are synthesized from our repair tool, Angelix.

Figure 1: Motivating example

figure the number and kinds of suspicious expressions that
can be made symbolic; such expressions include conditional
expressions, right-hand sides of assignments, and function
parameters. Our repair algorithm proceeds to run symbolic
execution over the program in Figure 1c with provided tests
to collect the semantic information necessary to repair the
given buggy program. Using this extracted semantic infor-
mation, we synthesize repair expressions. To synthesize a
repair, we use component-based patch synthesis algorithm
based on MaxSMT as in our prior work [24]. This results in
a repair close to the original program, because the structures
of the original buggy expressions are maximally preserved.
The resultant small patches can bring in various benefits
such as improved maintainability of patches (simple patches
are easier to understand than complex patches), and reduced
risk for regression (simple patches are less likely to change
the correct behavior than complex patches).

2.1 Concise Semantic Signature for Repair
In order to synthesize a repair, our repair algorithm col-

lects the following pieces of semantic information of the pro-
gram. First, we need to know whether for each test, there
exists a program path through which a given test passes.
Our repair algorithm detects such test-passing paths via con-
trolled symbolic execution—“controlled” in the sense that we
control which execution paths are explored during symbolic
execution by installing symbolic variables (in our example,
↵, �, and �). In our running example, given a program
of Figure 1c, symbolic execution explores di↵erent paths at
the if conditionals in line 1 (if (↵)) and line 4 (if (�)). If a
test-passing path is not detected, we make the next (user-
configured) n suspicious expressions as symbolic, and repeat
the procedure to find test-passing paths. On the other side,
the existence of a test-passing path ⇡ that goes through the
installed symbols implies the existence of a concrete value
for each symbol that makes the test pass. As the second
piece of semantic information, we infer these values (called
angelic values) using a constraint solver. Lastly, we need
to know the program state (called angelic state) at each in-
stalled symbol in the test-passing path. For example, in
order to synthesize a repair expression, !(max range endpoint
== 0), at line 4 of Figure 1d, the value of the variable
max range endpoint should be known. Our repair algorithm
collects the values of the visible program variables at each
symbol-installed program location. These variables are used
as synthesis ingredients when synthesizing repair expres-

sions. The following shows the semantic signature of our
running example when two tests (t1 and t2) are provided.

t1 : {⇡1 : h(↵, False,�1), (�, False,�2)i,
⇡2 : h(↵, T rue,�3), (�, 0,�4), (�, False,�5)i}

t2 : {⇡3 : h(↵, False,�6), (�, T rue,�7)i,
⇡4 : h(↵, T rue,�8), (�, 3,�9), (�, T rue,�10)i},

where ti referes to a test, ⇡i denotes a test-passing path,
and �i : V ariables ! V alues denotes an angelic state.

The preceding semantic signature—which we call an an-
gelic forest as defined in Definition 3—concisely captures all
three pieces of semantic information we need to synthesize
a repair. First, the fact that there exist two execution paths
(⇡1 and ⇡2) that make test t1 pass is encoded in t1 : {⇡1,⇡2}.
Similarly, test t2 can also pass in two execution paths, ⇡3

and ⇡4. Note that the suggested repair shown in Figure 1d
follows path ⇡1 in test t1, and ⇡3 in t2. Second, the concrete
value of each symbol is denoted at each test-passing path.
For example, in path ⇡1, symbol ↵ and � should have value
False, as denoted with ⇡1 : h(↵, False), (�, False)i. The con-
crete value of symbol � does not appear because statement
max range endpoint = � of Figure 1c is not executed in path
⇡1. Meanwhile, in path ⇡2, the values of all three symbols
appear as denoted with ⇡2 : h(↵, T rue), (�, 0), (�, False)i.
Lastly, angelic state �i informs about the values of variables
to use in repair synthesis. The same variable can have dif-
ferent values along a path, and that is why each instance
of a symbol is associated with its own angelic state. In our
coreutils example, �2(max range endpoint) is zero, and this is
why the suggested repair expression, !(max range endpoint ==
0), returns the concrete value of �, False, as specified in ⇡1.

2.2 Reasons for Scalability
As will be shown in the experimental results (Section 5),

our repair method can handle programs as large as wire-
shark (2814 KLoC), while it generates multi-location re-
pairs. There are multiple reasons why our repair method
scales. First, we use a lightweight semantic signature for
program synthesis. Compare our semantic signature with
the one used in DirectFix [24] which can also synthesize
multi-location repairs. The semantic signature used in Di-
rectFix is essentially the semantics of the whole program.
There, the relationship between each and every expression
appearing in the program is maintained, unlike in our new



Neural Program Repair

• Deep Neural Network can generate or convert (=translate) sequences 
(=words, or a series of tokens).


• Can we translate buggy code into correct code using NMT (Neural Machine 
Translation)?


• Similarly to template based APR, we need to collect actual fix commits: not 
to extract templates, but to learn what a fix commit typically does



SequenceR
Chen et al., IEEE TSE 2021

• Trained a sequence-to-sequence DNN model against 35,587 pairs of buggy 
and fixed code.


• Need to deal with OOV (Out-of-Vocabulary) problem, as source code is full of 
unique identifiers: a particular translation that was correct with one program 
may not be correct with another.


• Still, can generate interesting one-line patches
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assumptions about fault localization, it is hard to compare
different repair techniques [41]. By assuming perfect fault
localization, we purely focus on the patch generation step
of the algorithm.

4.6 Answer to RQ4: Qualitative Case Studies

We now present the diversity of repair operators that are
captured by SEQUENCER. These cases are culled from the
950 correct patches SEQUENCER generated for the Co-
dRep4Full test dataset. Both the buggy line that was part of
the input is shown and the correct patch which includes ex-
amples of repair operators. We also highlight again the effec-
tiveness of the copy mechanism by using a bold underlined
font for those tokens that were copied (i.e., that are outside
the vocabulary of the 1,000 most common tokens).

4.6.1 Case study: method call change
Our training and evaluation data consist of object-oriented
Java software. We observe that SEQUENCER captures differ-
ent kinds of operations related to method calls.

Call change Here a call to method writeUTF is replaced
by a call to method writeString.

� out.writeUTF( failure ) ;
+ out.writeString( failure ) ;

Listing 10: Call change

Call deletion The buggy line chains two method calls;
this successful prediction consists of deleting one of them.

� FieldMappers x = context.mapperService () .
smartNameFieldMappers( fieldName );

+ FieldMappers x = context.smartNameFieldMappers( fieldName );

Listing 11: Call deletion.

Argument addition In this patch, SEQUENCER adds an
argument (which in Java, means calling another method).

� stage.getViewport () .update( width, height ) ;
+ stage .getViewport () .update( width, height, true ) ;

Listing 12: Argument addition

Target change In this successful case, the patch
also calls method isTerminated but on another tar-
get (scheduledExecutorService instead of executorService,
which is copied from the input context).

� if( !( executorService . isTerminated () ) ) {
+ if ( !( scheduledExecutorService . isTerminated () ) ) {

Listing 13: Target change

4.6.2 Case study: if-condition change
SEQUENCER can change if conditions, and in this particular
case, removes two clauses from the boolean formula.

� if( ( ( t >= 0 ) && ( t <= 1 ) ) && ( intersection != null ) )
+ if ( intersection != null )

Listing 14: if-condition change

4.6.3 Case study: Java keyword change
SEQUENCER is also able to generate patches involving the
replacement of programming language keywords, indicat-
ing clues of syntax understanding.

� break ;
+ continue ;

Listing 15: Java keyword change

4.6.4 Case study: change from field access to method call
A good practice of software engineering is to implement en-
capsulation by calling methods instead of directly accessing
fields, this is handled by SEQUENCER as follows (size to
size())

� app.log( "PixmaPackerTest" , ( "Number of textures: " + ( atlas .
getTextures () . size ) ) ) ;

+ app . log( "PixmaPackerTest" , ( "Number of textures: " + ( atlas .
getTextures () . size () ) ) ) ;

Listing 16: change from field access to method call

4.6.5 Case study: off-by-one repair
Finally, SEQUENCER is also able to repair classical off-by-one
errors.

� nextIndex = currentIndex ;
+ nextIndex = ( currentIndex ) � 1;

Listing 17: off-by-one repair

Overall, SEQUENCER uses all three kinds of token oper-
ations: 1) Token deletion, e.g., Listing 11; 2) Token addition,
e.g., Listing 12; 3) Token replacement, e.g., Listing 10.

5 ABLATION STUDY

We perform an ablation study to understand the relative
importance of each component of our approach. The process
is as follows. First, we identify the golden model based
on a greedy optimization in the parameter search space.
This is the model that we described in section 4. Then we
change one single parameter to a different reasonable value
and report the performance on the same testing dataset.
The ablation results demonstrate that parameter selections
for the golden model produce the highest acceptance rates
for the configurations we tested. The model parameters we
found with our dataset are likely to yield reasonable results
when training for other computer languages so long as a
form of abstract buggy context can be done to provide context
related to the buggy line. We provide details on our ablation
results to aid future researchers in understanding which
variables are most likely to improve their own models.

Due to randomness in learning, for each parameter, we
run each configuration multiple times and report the mean
and standard deviation for the model as recommended for
assessment of random algorithms [42]. As our goal is to
select the best model for use in our Defects4J evaluation,
we use the test set from CodRep4Full to select the best run
of each model, hence we report the percentage decrease of
the best run for a given model from the best result found
with the golden model. Due to computational constraints,
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NMT based Neural APR

• Pros


• An end-to-end solution: buggy line goes in, fixed line comes out


• Pipeline itself is language agnostic


• Cons


• Needs well prepared training data


• This is just template based APR, with "templates" in the training data learnt 
in the neural weights?



• Original GPTx models are 
autocompletion engines in the 
form of (large) language model


• chatGPT has been put through 
RLHF (Reinforcement Learning 
from Human Feedback) for 
conversational finetuning

GPTx & chatGPT



(Un)reasonable Effectiveness of LLMs

• They are fundamentally trained to be autocompletion engines (i.e., a model 
that predicts the probability distributions, but...


• Above certain size, they also exhibit interesting emergent behaviour, such as 
few-shot and zero-shot learning - not via training, but via prompting


• Few-shot learning: you show the model a few examples of a problem 
instance, and the model learns to solve the problem


• Zero-shot learning: you simply explain the problem, and the model learns to 
solve the problem



The Bleeding Edge
So many recent research outcomes...

• ChatRepair (Xia & Zhang, 2023): Outperforms all existing Neural APR techniques, as well as 
some template based techniques.


• AutoSD (Kang & Yoo, 2023): Employs a debugging guideline designed for human, and tells the 
LLM to adopt it - which it does surprisingly well.


• Pros


• Very little technical barrier: you are essentially asking the model to repair something in 
natural language - with additional information in the form of text


• Cons


• We do not really understand the repair logic, it is a huge black box


• The usual risks of adopting LLMs: hallucination, verification of the results, etc...



Some auxiliary concerns about 
APR...



Patch Validation

• Increasingly, we are moving towards techniques that will produce multple 
patch candidates.


• Initial validation means we need to check for the plausiblity - which is costly, 
as we need to execute tests against patch candidates.


• Further, eventually we need to check for the correctness - which is often only 
possible with humans.


• If we cannot choose the correct patch automatically, at least we can try to 
rank them...?



Benchmarking

• How do we evaluate new and upcoming APR techniques? By comparing their 
performance against the same set of bugs.


• This led to huge popularity of some bug benchmarks, such as Defects4J, a 
collection of open source Java bugs.


• There is the danger of the community gradually overfitting to only a small 
number of known benchmarks, instead of being generally effective.


• LLMs make this even more complicated, because their training corpus is 
extremely large (i.e., they have seen everything)



Long Term Maintenance

• This was one of the very initial concerns back in 2009: if we start accepting 
machine generated patches, what happens later when someone does not 
understand why certain changes were made?


• Very difficult to objectively measure


• Depends heavily on what type of APR is adopted too: only trivial things (for 
example, deleting stuff so that the build passes) or serious patches?


• We only have a few cases of industrial adoption, so this remains to be seen.


• On the other hand, we have embraced GitHub CoPilot....?



Human Adoption

• The makers of automated technique tend to assume that end users will 
simply welcome the automation :)


• In reality, they may not trust any automated results, unless they feel they 
understand the underlying process.



Practical Adoptions



Meta
SapFix, Marginean et al., ICSE 2019

• Adopted APR Framework for six key Android apps, including Facebook, 
Messenger, Instagram


• Focuses on NPE, which are in turn automatically found by Sapienz, a 
search-based automated GUI testing tool


• The paper reports that, for the studied buggy versions, 48% of patches 
automatically generated by SapFix were approved to be correct by the 
developers.



Bloomberg
Kerbas et al., IEEE Software 2021

• Bloomburg, London, collaborated with UK academics to adopt APR for a 
production environment. Here are their emphasis:


• Fix Novelty: APR does not really have to technically novel, as long as it 
brings value to practitioners


• Fix Simplicity: academia focuses on finding increasingly more difficult bugs 
- but Bloomberg wanted to focus on trivial yet frequently recurring bugs as 
they waste more developer time overall


• Fix Verification: instead of fully automated patch verification, process-based 
human checks are fine with practitioners



Going beyond “repair”…



Genetic Improvement (GI)

• APR “improves” programs by removing bugs. That is, it is an improvement 
with respect to the functional property of correctness.


• Can we improve other aspects of a given software?


• Faster? Use less memory? 


• Faster for a specific class of inputs, i.e., specialization?



GP, but for non-functional properties

• Langdon & Harman, IEEE Transactions on Evolutionary Computation, 2013: optimized 
Bowtie2 (a widely used genome sequencing tool) to be 70 times faster on average.


• Genome sequencing results are not binary: there are margins for acceptable error. 
GP exploits this to discard some computation that only affects a very small number 
of cases.


• Petke et al., EuroGP 2014: optimizes a SAT solver to be more efficient for a particular 
class of problems, and achieves 17% improvement, which matches the manual 
optimization done by human experts


• Here, GI is performed as selective transplantation of code from two donors: one  is 
the winner of MiniSAT competition in 2009, the other is the participant of the same 
competition that performed the best for the given problem instance.



Summary

• Automatically fixing bugs is within the reach of reality: we are seeing the first 
wave of industry adoptions, and LLMs will only accelerate this.


• Many different approaches exist in order to explore the space of possible 
“variants” of the buggy program; all focus on different trade-off points 
between accuracy and cost.


• Important take-away message: human written code is not always correct, not 
always immutable; applying automated changes to code can sometimes 
result in productive outcome :)


