
Shin Yoo

Test Adequacy & Input
Generation for DNNs
CS454 Automated Software Testing

Machine Learning

• Problems are solved by helping machines discover their own algorithms, without
needing to be explicitly told what to do by any human developed algorithms
(Wikipedia)

• Waves of recent advances

• Image Classification (2015~ ish): ImageNet Competition being won by CNNs

• RL (2016): AlphaGo that combined RL with CNNs and Monte-Carlo Tree Search

• Transformers (2017): sequence to sequence architecture (e.g., Machine Translation)

• Large Language Models (2022~): Large Transformers trained with large amounts of
data

ML-based systems are being adopted in safety critical domains.
Mostly due to their surprising performance…

Umm, shouldn’t we test these?

Challenges in Testing DNNs

• They are very different computational models from traditional procedural
programs that are written by humans.

• Further, ML models are “trained”, not written:

• Should we expect “learning” to be perfect?

• What is a bug? If a model’s decision on an input is “undesirable”, is it the
input’s fault, or the model’s?

• These models are often used to replace humans, but testing them requires
human judgements (the only source of test oracles).

Deep Neural Networks

Hardware parallelism (GPUs), advances in back-propagation methods, and other
innovations made DNNs surprisingly effective.

What are the faults?

Foundation Faults in TensorFlow, for example

User Code Faults in YOUR TensorFlow Code

Training Mis-training, biased training data, etc

Adversarial Input Malicious inputs that trick the learner

Robustness Input is not malicious but learner fails anyway

Traditional
Testing &
Analysis

Better
ML

??

What is the test oracle?

• For many practical ML/Deep Learning systems, inputs are raw, real-world
perceptions (such as photography/video, voice, etc)

• Currently human judgement (a.k.a. data labelling) is often the only effective
test oracle, but this is extremely expensive

Metamorphic Testing

• In testing, there is a widely known technique that focuses on metamorphic
relationships between inputs and outputs

• Given an IO pair for program P, y=P(x), if metamorphic relation f and g hold for
input and output, it has to follow that g(y) = P(f(x))

• For example: if P is the sine function, f(x) = π - x, g(y) = y. That is, if y0 =
P(x0), y1 = y0 = P(π - x0) = P(x1)

• MT cannot replace a full oracle, but if a program violates its own metamorphic
properties, something is wrong

Metamorphic Testing for DL

• MT has been applied to test DL robustness

• If we apply negligible (i.e., bearable by humans) perturbation to the input,
the output of the DL system should be the same

• Again, if a DL system violates this, something is wrong!

• Interestingly, the metamorphic testing concept is directly linked to the idea of
adversarial examples.

Adversarial Examples

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

DNN Robustness

• Adversarial Examples drew a LOT of attention.

• Early DNN testing work from SE was heavily influenced by this: it heavily
focused on robustness of DNNs, that is, a DNN should be robust against
minor perturbations in inputs.

• How would you test the robustness of a given DNN model?

Input Mutation (or fuzzing) for DNNs

• Suppose a model outputs for input , i.e., .

• Given an acceptable perturbation, , a robust model should also behave in such a
way that: .

• Note that this can be interpreted exactly as a metamorphic oracle

• What are acceptable perturbations?

• Transformations: scaling images, darkening/brightening images, rotating
images, etc

• Noises: Gaussian noise added to image, audio, etc

M o i M(i) = o

f
M(f(i)) = o

Testing Robustness requires Human Judgement

• Many search-based techniques exist for robustness testing of DNNs: find a
sequence of input transformations that result in incorrect model output

• To decide whether the result is a problem of robustness, or a problem of something
more serious, is not an easy task with no clear line

• Only humans can decide whether the sequence of transformations creates
something that is still “acceptable”

• The found perturbations can be used..

• To train the model further (adversarial training)

• To understand the boundaries of robust behaviour

Test Adequacy for Deep Learning Systems

• Test Adequacy: Is this input adequate for testing? That is, if there is a problem
in the target system, will this input reveal it?

• In general, undecidable in advance (otherwise we would have solved the
testing problem)

• Consequently, in traditional software testing, we rely on certain surrogate
metrics, such as coverage (the necessary condition for fault detection)

• However, what is the necessary condition for fault detection in DNNs???

• So far, we have two groups of thoughts: structural, and non-structural.

Structural Test Adequacy for DNN
Essentially, attempt to define structural coverage for neurons

• Various coverage criteria have been suggested:

• Neuron Coverage: given a set of test input, NC measures % of neutrons
that have been activated above a given threshold (e.g., 0.6)

• k-Multisection Neuron Coverage: mark the range of neuron activation
during training, divide the range into k buckets, and count the number of
buckets checked during execution of the given input set

• Strong Neuron Activation Coverage: mark the range of neuron activation
during training, and count the number of neutrons that are activated
beyond the maximum observed activation value

Structural Test Adequacy for DNNs

• All designed to improve diversity in test inputs: higher activation in certain
neuron —> new DNN behavior —> better chance of detecting anomaly

• This has shown to be effective when evaluating robustness of DNNs: inputs
that result in higher structural coverage also tend to reveal abnormal behavior
of the DNN under Test

• However, fundamentally limited in the sense that, while we can measure
neuron activation, we do not really understand what it means

Robustness Testing

• Structural coverage has been linked to inputs that can test DNN robustness
better.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of
the 40th International Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 2018. ACM.

Non-Structural Test Adequacy for DNNs

• Ideally, test adequacy should correlate with the likelihood of the input
revealing a problem: how do we predict that?

• Surprise Adequacy: we can simply measure how different the new input is
from the average training data - if it is very similar, we expect the model to
handle the input well; if it is very different, we expect the model to make a
mistake

• DeepGini: we can simply look at how confident the input outcome is - if the
model is very confident, then likely the decision is okay; if the model is not so
confident, then perhaps the decision is more likely to be incorrect

Surprise Adequacy (Kim et al, ICSE 2019)

Car

Face

hedge

vedge

...

Nose

Eyes

Wheel

...

...

...

(0.4 0.1 0.2 0.7 0.6 0.5 0.1)

Activation Trace

Summarisation

(KDE or point-cloud)

Learnt Knowledge
(from training data)

Quantitative Surprise Measure of New Input

Against the Summarisation

More surprising questions
are harder to answer correctly.

Trick questions (=adversarial
examples) are very surprising.

FSE 2020 Industry Track

• Reducing DNN Labelling Cost
using Surprise Adequacy: An
Industrial Case Study for
Autonomous Driving (Jinhan Kim,
Jeongil Ju, Robert Feldt, Shin Yoo)

• Collaboration with Hyundai Motors
R&D Division

• Low SA input are reasonably reliable,
so we can skip labelling them when
new input data are collected

• https://arxiv.org/abs/2006.00894

Applying SA

https://arxiv.org/abs/2006.00894

Video Visualisation

DeepGini
Feng et al., ISSTA 2020

• How should we prioritize inputs for DNN classifiers?

• Answer: we should run the ones for which the classifier is less confident.

• Quantified confidence is reflected in the final layer of classifiers, i.e., softmax.

• For input and class , and the probability of belonging to denoted as , the
uncertainty of being an instance of can be expressed as:

• Sum this over all classes:

•

t i t i pt,i
t i pt,i(1 − pt,i)

N

∑
i∈N

pt,i(1 − pt,i) = ∑
i∈N

pt,i − ∑
i∈N

p2
t,i = 1 − ∑

i∈N

p2
t,i

DeepGini
Feng et al., ISSTA 2020

• Consider a binary classification (i.e., two classes).

• Classifier is the most confused when it cannot
decide, i.e.,

•

• Classifier is quite certain that it is one of the two
classes, i.e.,

•

pt,0 = pt,1 = 0.5

ξ(t) = 1 − (0.52 + 0.52) = 0.5

pt,0 = 0.9,pt,1 = 0.1

ξ(t) = 1 − (0.92 + 0.12) = 0.18

DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep Neural Networks Conference’17, July 2017, Washington, DC, USA

Bag1 Bag2

Figure 2: Bag 2 has higher purity than Bag 1. Bag 1 has 50%
triangles and 50% circles. Bag 2 has 90% triangles and 10%
circles.

to the problem of measuring the purity of a bag. In fact, such a
reduction follows the very spirit of the measurement of Gini impu-
rity [26], which inspires us to propose DeepGini for measuring the
likelihood of misclassi�cation.

3.2 DeepGini: Prioritizing Tests of a DNN
Formally, the metric we use to measure the likelihood of misclassi-
�cation is de�ned as below.

De�nition 3.1. Given a test t and aDNN that outputs hpt,1,pt,2, · · · ,
pt,N i (�Ni=1pt,i = 1), we de�ne � (t) to measure the likelihood of t
being misclassi�ed:

� (t) = 1 � �Ni=1p
2
t,i

In the de�nition, pt,i is the probability that the test t belongs to
the class i . Figure 3 illustrates the distribution of � when the DNN
performs a binary classi�cation. The distribution illustrates that
when DNN outputs the same probability for the two classes, � has
the maximum value, indicating that we have high probability to
incorrectly classify the input test. This result follows our intuition
that a test is likely to be misclassi�ed if the DNN outputs similar
probabilities for each class, and the rationality of the result has
been explained in the previous subsection. The following theorem
demonstrates that even though a DNN classi�es input tests into
more than two classes, � has a similar distribution as that in Figure 3.

T������ 3.2. � (t) has the unique maximum if and only if 81
i, j N : pt,i = pt, j .

P����. According to Lagrangian multiplier method [28], let

L(pt,i , �) = � (t) + � ⇥ (�Ni=1pt,i � 1)
8pt,i , let

@L

@pt,1
= �2pt,1 + � = 0

@L

@pt,2
= �2pt,2 + � = 0

...
@L

@pt,N
= �2pt,N + � = 0

If we calculate the di�erence of any two above equations (e.g.
the ith and jth equation), we will have

2pt,i � 2pt, j = 0) pt,i = pt, j

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Distribution of � for 2-class problem. X-Axis: the
probability that a test input belongs to one of the two classes.
Y-Axis: the value of � .

Hence, when pt,1 = pt,2 = · · · = pt,N = 1/N , � (t) has the
unique extremum.

At the point (pt,1,pt,2, · · · ,pt,N), the Hessian matrix [1] of � is

266666664

�2 0 . . . 0
0 �2 . . . 0
...

...
. . .

...
0 0 . . . �2

377777775
which is a negative de�nite matrix. This implies that the unique
extremum must be the unique maximum [1].

⇤

We notice that many other metrics such as information en-
tropy [33] also have the above property and is almost equivalent to
� [27]. The di�erence is that it may require a non-statistical view,
e.g., the perspective of information theory, to explain the rationality.
In addition, we believe that the simplest is the best: the complexity
of computing quadratic sum is much easier than that of computing
entropy-like metrics because they require logarithmic computation.

According to the above discussion, � (t1) > � (t2) implies that t1
is more likely to be misclassi�ed. Hence, to prioritize n tests in a
set, we need to run the tests to collect the outputs, and then sort
these tests ti according to the value of � .

We argue that the time cost of running the tests is negligible.
First, the time cost to run a DNN is not time-consuming like training
the DNN. Compared to the expensive cost of manually labeling
all tests in a messy order, the time cost is completely negligible.
Second, this issue is shared with all neuron-coverage-based test
prioritization methods as they also need to to run tests to obtain
the coverage rates.

Example 3.3. Assume that we have four tests A,B,C , and D as
well as a DNN tries to classify them into three classes. Table 2 shows
their output vectors and the values of � . According to the values
of � , we can prioritize the tests as D,A,C , and B. D has the highest
probability to be misclassi�ed because the DNN outputs the most
similar probabilities for each of the three classes. In comparison,
for B andC , the DNN is more con�dent about their classes as B has

A Big Challenge

• For traditional software, inputs can be either randomly sampled, searched, or
synthesised

• For DL systems that interface with the real physical world, inputs have to be
collected from the real world

• You can try random sampling or search, but would it be relevant?

Sampling Inputs for DNNs
(Apart from physically collecting them, that is…)

• Model Based Approaches: think of this as a simple parametric generative
model - useful for simpler domains.

• Latent Space Approaches: we can exploit latent space embedding - navigate
the space while decoding the vectors

• Generative Model Approaches: more sophisticated models such as Stable
Diffusion are being explored as the bleeding edge…

Model Based Input Sampling
DeepJanus - Riccio & Tonella, FSE 2020

• For evaluating MNIST, an image classifier for hand-written digits, one can
design a model of each digits.

• For evaluating steering angle regression model for automous driving, one can
design a model of a road (= test input)

Model-based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

DL systems. Let us consider the frontiers of behaviours of two DL
systems that perform the same task but exhibit di�erent levels of
quality in terms of test accuracy (namely HQ: High Quality: LQ:
Low Quality). Both systems consist of a classi�er of handwritten
digits that predicts which digit is represented by an input image. In
a classi�cation problem such as this one, the frontier is represented
by pairs of similar inputs that are classi�ed di�erently (one correctly,
the other incorrectly).

To assess the di�erence between the frontiers of these two sys-
tems, we consider two images of handwritten digits taken from the
MNIST [28] dataset that are labeled correctly (i.e. as number “5”)
by both systems. They are shown in the �rst column of Fig. 1. Then,
we apply slight changes to the shape of the two inputs. Technically,
this is achieved by �rst extracting a vector model of the digits and
then manipulating the control points of such model. The result
consists of two pairs of samples in the frontier of each considered
system, i.e. LQ (second and third column) and HQ (fourth and �fth
column).

We can notice that the inputs in the frontier of LQ are very similar
to the original samples. Moreover, all the misclassi�ed inputs in its
frontier are still clearly recognisable as digit “5”. Instead, the frontier
of HQ contains inputs that are probably challenging to classify even
for humans. In particular, the �rst element of the �fth column has
the general shape of a �ve, but it could also be considered as a nine,
since the upper part of the �gure forms a circle. The second element
of the �fth column does not look like any reasonably classi�able
digit, despite its similarity with the corresponding member of the
pair on the other side of the frontier.

To summarise, the frontier of a low quality DL system is expected
to contain samples that are quite close to those that the system
is supposed to classify correctly, indicating a poor generalisation
capability. Di�erently, the frontier of a high quality DL system
includes cases that are di�cult or impossible to handle even for
humans, being outside the validity domain.

4 MODEL-BASED INPUT REPRESENTATION
We aim at generating inputs at the behavioural frontier of a DL sys-
tem and we want them to be realistic and representative. Therefore,
we adopt a model-based approach that produces test inputs starting
from a model representation of the input domain and enforces the
compliance with domain-speci�c constraints. This may require the
transformation of a concrete input into an abstract model that can
be manipulated by the exploration algorithm, in case no domain
speci�c model of the input is available. The transformation from
models to concrete inputs is instead always required.

To illustrate how our approach works in practice, we consider
both an exemplary classi�cation problem and a regression problem.
The classi�cation problem consists of handwritten digit recognition,
while the regression problem is steering angle prediction for self-
driving cars. In the latter case, we focus on systems that perform
behavioural cloning, i.e. the DL component learns the lane keeping
behaviour from a human driver [7]. In detail, the DL system is
able to autonomously keep the lane since it contains a DNN that
is trained with images captured by the camera sensors of the car,
paired with the steering angles provided by a driver.

Figure 2: Bitmap and vector image; model representation of
the image returned by Potrace

4.1 Image Classi�cation
We use the inputs available from the MNIST database [28] and
originally encoded as 28 x 28 images [28], with greyscale levels
that range from 0 to 255. We adopt Scalable Vector Graphics (SVG)1
as their model representation. SVG is an XML-based vector image
format for two-dimensional graphics that can represent shapes
as the combination of cubic and quadratic Bézier curves [20]. By
modelling handwritten digits as a combination of Bézier curves, we
ensure that the smoothness and curvature of handwritten shapes
is preserved and that images remain realistic even after (minor)
manipulation of the Bézier curve parameters.

To transform an original input image into its SVG model rep-
resentation, we use the Potrace algorithm [44]. This algorithm
performs a sequence of operations, including binarisation, despeck-
ling and smoothing, to produce a smooth vector image starting
from a bitmap. Figure 2 shows an MNIST image paired with its SVG
model and its description. The control parameters that determine
the shape of the modelled digit are: the start point, the end point
and the control points c1 and c2 that de�ne each Bézier segment.

In the other direction, we use rasterisation to transform a vector
model into a 28 x 28 grayscale image. This operation exploits the
functionality o�ered by LibRsvg2 and Cairo3, two popular open
source graphic libraries.

4.2 Steering Angle Prediction
We consider a self-driving car that is trained and tested in the
BeamNG [5] simulation environment. It features an accurate driving
physics engine and it is freely available and research-oriented.

The input to the steering angle predictor is an image captured by
the onboard sensor camera in the simulated environment. Therefore,
the test input is determined by the scenario in which the car drives.
Such simulated scenario can be modelled as the composition of the
roads, the driving task (i.e., start point, end point and lane to keep),
and the environment, which includes the weather and lightness
conditions.

For the sake of simplicity, let us consider scenarios consisting of
single plain asphalt roads surrounded by green grass on which the
car has to drive keeping the right lane. The environment is always
set to a clear day without fog. The roads are composed of two lanes
with �xed width in which there is a yellow center line plus two
white lines that separate each lane from the non-drivable area.

1https://www.w3.org/Graphics/SVG/
2https://wiki.gnome.org/Projects/LibRsvg
3https://www.cairographics.org

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Vincenzo Riccio and Paolo Tonella

Figure 3: The model of a road and the corresponding road

Figure 4: A test case rendered by the BeamNG simulation
engine is composed by the road, the driving task, the envi-
ronment and the car

Abstractedly, a road can be represented as a sequence of contigu-
ous points in a bi-dimensional space (assuming constant elevation).
To produce a smooth and realistic shape for the road beingmodelled,
we use Catmull-Rom cubic splines [8] and then we interpolate such
curves to obtain the 2D point sequence. Figure 3 shows the splines
that de�ne a road as well as its interpolated 2D points (marked as
grey dots). The control parameters that determine the shape of the
splines in Figure 3 are the coordinates of the control points of the
center line spline (marked as larger red dots).

The concrete representation of the driving scenario is strictly
dependent on the simulator. BeamNG exposes an intuitive API
for programmatically con�guring virtual roads and controlling the
simulations4. In BeamNG, a scenario is described by a JSON �le that
contains the set of points to render the roads. The simulation engine
renders the road by creating polygons starting from the points
provided in the scenario description and sets up the environment,
as shown in Figure 4.

To transform the abstract model into the road to be rendered in
the simulator, we calculate its points by exploiting the recursive
algorithm for the evaluation of Catmull-Rom cubic splines proposed
by Barry and Goldman [4] and the functionality o�ered by the
Shapely library for manipulation and analysis of planar geometric

4https://github.com/BeamNG/BeamNGpy

objects5. We also enforce the following domain speci�c constraints:
(1) the start point and the end point of a driving task should be
di�erent, (2) the road should fall within a square bounding box of
�xed size, and (3) a road should not self-intersect.

5 THE DEEPJANUS TECHNIQUE
D���J���� explores the behavioural space of a DL system to �nd
pairs of inputs at its frontier: one input on which the DL system
behaves as expected, and another similar input on which it misbe-
haves. By generating a pair of similar inputs that trigger di�erent
behaviours, we ensure that the failure-inducing inputs are close to
the validity domain and are likely to represent valid corner cases
on which the system misbehaves. Otherwise, by generating single
inputs that trigger misbehaviours, without staying close to corre-
sponding ones for which the system behaves well, it would have
been more likely to produce uninteresting test cases that are far
from the frontier and do not intersect the validity domain.

D���J���� aims at exploring the frontier at large, i.e., as thor-
oughly as possible, so as to report a broad picture of the boundary
behaviours to developers. To perform such exploration, it aims at
producing inputs at the frontier of behaviours and at maximising
the diversity among the elements that are moved toward the fron-
tier, so as to achieve thorough frontier exploration. At the same
time, it also maintains high similarity within each pair of inputs
crossing the frontier. Therefore, the problem solved by D���J����
can be cast as a multi-objective search problem [19]. To obtain a
diverse set of solutions, we hybridise traditional multi-objective
search-based algorithms [12] with novelty search [36]. The idea is
to measure the diversity between the population being evolved and
the archive of the best individuals.

Algorithm 1 outlines the top level steps implemented in D����
J����. Our algorithm is based on NSGA-II [12], a multi-objective
evolutionary search algorithm quite popular in search-based soft-
ware testing research [26, 34, 40, 49, 50], extended with: (1) hybridi-
sation with novelty search, achieved by de�ning a �tness function
that includes a measure of sparseness of the solutions (see Section
5.1.1); (2) use of an archive, to avoid cycling and to promote fron-
tier exploration at large (lines 5 and 15 of Algorithm 1); (3) use of
re-population, to escape from stagnation (line 13 of Algorithm 1).
Moreover, we de�ned domain speci�c mutation operators to evolve
the candidate solutions.

We implemented D���J���� in Python on top of the DEAP
evolutionary computation framework (v. 1.3.0) [15]. The code of
D���J���� is available online as open source [46].

5.1 Fitness Functions
The algorithm optimises two �tness functions, which measure re-
spectively the quality of an individual (consisting of its cross-pair
diversity and within pair similarity) and the closeness of the inputs
to the frontier of behaviours.

5.1.1 �ality of an individual. The quality of an individual is mea-
sured by two factors, namely (1) the distance between the two
members of a pair and (2) the sparseness of an individual with
respect to the individuals in the archive measure the quality of a

5https://github.com/Toblerity/Shapely

Latent Space Approaches
SINVAD - Kang & Yoo, SBST 2020

• Auto-encoders learn the latent space distribution of a domain by encoding
and decoding.

• Once we have an autoencoder, we can decode any point in the latent space
(i.e., the encoded space)

SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Select

Generate

E D

Search-based Optimization

Figure 1: Diagram of SINVAD. SINVAD uses the VAE encoder (E) to encode images into a latent space (bars). Search-based
optimization is performed not on raw pixels, but on latent representations. A representation is transformed back to an image
using the VAE decoder (D). The use of VAE networks before and after keeps search within the subset of plausible images.

3 SINVAD: SEARCH-BASED INPUT SPACE
NAVIGATION USING VAES

3.1 Problem Statement
A common application of DNNs is as image classi�ers. In such appli-
cations, a neural network N acts as a function that maps the space
of images I = [0, 1]c⇥w⇥h to a space representing the probability
of each class P = {� 2 [0, 1]n :

Õn
i=1�i = 1}, where there are n

categories. Formally, the DNN is a mapping Np : I ! P, and a
mapping Nc (i) =one-hot(argmaxNp (i)) is derived.

In practice, the semantic meaning of most images is unclear,
so the neural network is trained on a subset of images from the
space of plausible images D and maps to P. In test generation, this
becomes a problem as the space of all images of a certain resolution
is usually much larger than the space of all such images that are
valid D. If one looks at the MNIST dataset for example, it is clear
that the space of grayscale 28 by 28 images is much larger than
the space of digit images, for most random grayscale images look
more like static noise than coherent numbers [33]. Then, due to
the vast size di�erence between I and D and the complexity of
the neural networks employed to solve classi�cation problems, it is
often easy to obtain images that meet a certain criteria that are not
particularly interesting or meaningful. For example, it is relatively
easy to construct an image that resembles noise, but is classi�ed
with high con�dence as a cheetah [21]. While this is interesting, our
concern is often more closely related to the implications of when
neural networks are released in the wild, e.g. in what situations
would there be a risk of failure? As such, it would be bene�cial if
we could search exclusively in the space of plausible inputs.

3.2 SINVAD
We propose to use DNN based generative models, such as VAEs or
GANs, to solve this problem. A schema of our approach SINVAD is
provided in Figure 1. Generative models estimate the distribution of
a provided dataset over the entire space of all imagesI. In particular,
VAEs e�ectively try to �nd a mapping between Rd and D; the
encoder (E : D ! Rd) maps from images to latent representations,
and decoders (D : Rd ! D) operate vice versa. By executing

traditional search-based optimization algorithms, but within the
latent representation space, we can restrict our search space to
D, instead of the full image space I. Hence the result of search
will mostly be images that closely resemble true images from D.
Note that since the VAE itself has only been trained on a small
sub-sample of D, i.e. the training set, it might not be a very good
mapping to/from the actual D. We thus have to investigate the
practical value of our approach empirically, in the following.

4 RESEARCH QUESTIONS
In this paper, we seek to �nd the answer to four research questions.

RQ1. Plausibility: Can SINVAD generate images closely related
to D? Our justi�cation for using complex generative models is
the assumption that, if employed to reduce the search space, the
resulting images will be more closely aligned with the true data
distribution D, i.e. more ‘realistic’ than similar techniques that do
not employ generative models. To verify this point, we compare
SINVAD with search-based optimization algorithms that do not use
VAEs. We qualitatively compare whether an image is realistic or
not, as human perception is the only true guide in this case.

RQ2. Indecisiveness: Can SINVAD generate images near the de-
cision boundaries of neural networks? Using SINVAD with a certain
�tness function, one can make VAE-generated images that are near
oracle decision boundaries, i.e. the category identity of generated
images is unclear even to humans. We verify whether generated
images are also close to neural network decision boundaries by
employing dropout. When certain neurons are dropped, neural
networks are more likely to make mistakes on confusing inputs
rather than straightforward inputs. Using this, we aim to observe
that our images are indeed more di�cult to classify than default
test sets, thus providing additional scrutiny while testing.

RQ3. Di�erential Testing:Can SINVAD perform di�erential test-
ing for neural network comparison? To further investigate the po-
tential of the image space search that SINVAD enables, we use it for
di�erential testing of neural networks. By traversing the space and
comparing the outputs of the networks, we investigate whether we

SINVAD - Kang & Yoo, SBST 2020

• It means that we can interpolate
in the latent space, and decode
each step, to get “intermediate”
images!

• Compare the transition from 4 to
9, using interpolation in 1) latent
space, and 2) image space, the
original domain.

SINVAD: Search-based Image Space Navigation for DNN Image Classifier Test Input Generation ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Figure 3: PCAprojection of training dataAT space,with each
color signifying ATs from di�erent digits.

Figure 4: Placement of images optimized either at the raw,
pixel level (green) or at VAE latent vector level (red), in rela-
tion to the PCA projection of the training images.

these interpolated images side by side in Figure 5(a), while their
PCA trajectory in the AT space is presented in Figure 5(b). Note
that in Figure 5 (a), the raw representation has no understanding
of semantics, hence it mixes the images unnaturally. On the other
hand, the VAE representation tries to naturally interpolate between
the images, keeping intermediate images somewhat plausible. This
e�ect also appears in Figure 5 (b); while the raw representation
just takes a straight trajectory from the �rst to last point without
regard of semantics, the VAE representation spends little time in the
implausible regions where there are few previous images and more
time where there is a dense distribution of real images. This again
testi�es that VAEs can generate plausible images more consistently.

By changing the �tness functions used within SINVAD, we can
achieve di�erent semantic objectives. For example, we may want
to construct images that look like one category, but are classi�ed
as another (as in adversarial examples), and yet are still plausible.
The setting here is similar to Song et al. [30], but with di�erent

(b)

(a)

VAE

Raw

t=0 0.2 0.4 0.6 0.8 1.0

15 10 5 0 5 10

15

10

5

0

Trajectory of AT through interpolation

green: 4
red: 9
Raw
VAE

Figure 5: Trajectories of interpolated images projected into
the PCA space.

generative models and optimization methods. Using the �tness
function in Equation 1,

f (i) =
(
1 Nc (i) = Nc (i0)
|E(i) � E(i0)| else

(1)

we may obtain images that are semantically ambiguous. The upper
case denotes the case in which the new image’s classi�cation has
not changed; we do not want to accept such images. The lower
case is when the new image’s classi�cation is di�erent from the
original image; in such cases we want the image to look as simi-
lar to the original image as possible. Speci�cally, we employ the
following genetic algorithm. A random image i0 is sampled from
the test dataset. The latent representation of this image, E(i0), is
obtained. The inital population is constructed by sampling new rep-
resentations zi , where zi = E(i0) + �i , and �i ⇠ N (0, 1). An image
can be reconstructed using the decoder, so that ii = D(zi). Using
this image we calculate the �tness of the representation as in Eq.
1. Single-point crossover is used; mutation is performed by adding
a small noise vector on each genome. Individuals with smaller �t-
ness are selected for the next generation. An example result of this
optimization is shown in Figure 6. Observe that while this image
does look somewhat similar to a digit, it is not clear whether this
image is a 4 or a 9. On the other hand, raw pixel search does not
yield semantically plausible results as in Fig. 2, reducing the utility
in terms of analyzing and reasoning about the network.

Latent Space Approaches

Diffusion Model as an Exploration of Latent Space

• We simply perturb, or interpolate, the
latent vector given to the diffusion
model

• For example, synthesize a series of
images that transition from a
pingpong ball to a golf ball…

Diffusion Model as an Exploration of Latent Space

• Or from a cat to a fruit…!

Summary

• Major categories of DNN related testing work so far:

• Robustness Testing (mainly focused on the idea of adversarial examples)

• Test Adequacy (mainly focused on the idea of finding more interesting
inputs)

• Input Generation (mainly focused on how to automatically synthesize
interesting inputs)

• All face the same challenge of having to define what a DNN bug is

