Test Adequacy & Input
Generation for DNNs

CS454 Automated Software Testing

Shin Yoo

Machine Learning

* Problems are solved by helping machines discover their own algorithms, without

needing to be explicitly told what to do by any human developed algorithms
(Wikipedia)

* Waves of recent advances
* |Image Classification (2015~ ish): ImageNet Competition being won by CNNs
 RL (2016): AlphaGo that combined RL with CNNs and Monte-Carlo Tree Search
* Transformers (2017): sequence to sequence architecture (e.g., Machine Translation)

e Large Language Models (2022~): Large Transformers trained with large amounts of
data

ML-based systems are being adopted in safety critical domains.

Mostly due to their surprising performance...

IRl

—

Collage of some medical imaging applications in
which deep learning has achieved
state-of-the-art results.

From top-left to bottom-right:

mammographic mass classification
segmentation of lesions in the brain,

leak detection in airway tree segmentation,
diabetic retinopathy classification

prostate segmentation,

nodule classification,

breast cancer metastases detection,

skin lesion classification

bone suppression

CONOOOARON=

Umm, shouldn’t we test these?

Challenges in Testing DNNs

* They are very different computational models from traditional procedural
programs that are written by humans.

 Further, ML models are “trained”, not written:
* Should we expect “learning” to be perfect?

 What is a bug? If a model’s decision on an input is “undesirable”, is it the
input’s fault, or the model’s?

 These models are often used to replace humans, but testing them requires
human judgements (the only source of test oracles).

Deep Neural Networks

Simple Neural Network Deep Learning Neural Network

R\

ave K LAARNN im%“"g:?} S

g ..s:s.ézé lﬁ*éﬁ',iﬁt-{_ KX a‘r;’f{;{}&&?ﬁ X

@'};’9“3’ .g.}?o"l‘?. S S

S @l il g ke S

A OO SIRIOS R

IR\ PR\ SR
N/ N N 9f

@ nput Layer () Hidden Layer @ Output Layer

Hardware parallelism (GPUs), advances in back-propagation methods, and other
innovations made DNNs surprisingly effective.

What are the faults?

fols

Better
ML

Traditional
Testing &
Analysis

Robustness

Adversarial Input

Training

User Code

Foundation

Input Is not malicious but learner fails anyway

Malicious inputs that trick the learner

Mis-training, biased training data, etc

Faults in YOUR TensorFlow Code

Faults In

ensorklow, for example

What is the test oracle?

 For many practical ML/Deep Learning systems, inputs are raw, real-world
perceptions (such as photography/video, voice, etc)

» Currently human judgement (a.k.a. data labelling) is often the only effective
test oracle, but this is extremely expensive

Metamorphic Testing

* |n testing, there is a widely known technique that focuses on metamorphic
relationships between inputs and outputs

* Given an IO pair for program P, y=P(x), if metamorphic relation f and g hold for
input and output, it has to follow that g(y) = P(f(x))

* For example: if P is the sine function, f(x) =t - X, g(y) =Y. That is, if yo =
P(X0), Y1 = yo = P(t - Xo) = P(x1)

» MT cannot replace a full oracle, but if a program violates its own metamorphic
properties, something is wrong

Metamorphic Testing for DL

« MT has been applied to test DL robustness

* |f we apply negligible (i.e., bearable by humans) perturbation to the input,
the output of the DL system should be the same

* Again, if a DL system violates this, something is wrong!

* |nterestingly, the metamorphic testing concept is directly linked to the idea of
adversarial examples.

Adversarial Examples

automobile to bird automobile to frog ~ automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

4to 2 2to3 Oto4
q £ 0 4 7 STy
aA5%007
Oto7 Oto 8 7t09

ples for a neural network trained on MNIST

“stop” “80m speed limit” “go right”
to “30m speed limit” to “30m speed limit” to “go straight”

Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

DNN Robustness

* Adversarial Examples drew a LOT of attention.

» Early DNN testing work from SE was heavily influenced by this: it heavily
focused on robustness of DNNSs, that is, a DNN should be robust against

minor perturbations in inputs.

 How would you test the robustness of a given DNN model?

Input Mutation (or fuzzing) for DNNs

» Suppose a model M outputs o for input i, i.e., M(i) = o.

» Given an acceptable perturbation, f, a robust model should also behave in such a
way that: M(f(i)) = o.

* Note that this can be interpreted exactly as a metamorphic oracle
 What are acceptable perturbations?

* Transformations: scaling images, darkening/brightening images, rotating
iImages, etc

* Noises: Gaussian noise added to image, audio, etc

Testing Robustness requires Human Judgement

 Many search-based techniques exist for robustness testing of DNNSs: find a
sequence of input transformations that result in incorrect model output

e Jo decide whether the result is a problem of robustness, or a problem of something
more serious, Is not an easy task with no clear line

 Only humans can decide whether the sequence of transformations creates
something that is still “acceptable”

* The found perturbations can be used..
e To train the model further (adversarial training)

e To understand the boundaries of robust behaviour

Test Adequacy for Deep Learning Systems

* Jest Adequacy: Is this input adequate for testing? That is, if there is a problem
in the target system, will this input reveal it?

* In general, undecidable in advance (otherwise we would have solved the
testing problem)

 Consequently, in traditional software testing, we rely on certain surrogate
metrics, such as coverage (the necessary condition for fault detection)

 However, what is the necessary condition for fault detection in DNNs???

* So far, we have two groups of thoughts: structural, and non-structural.

Structural Test Adequacy for DNN

Essentially, attempt to define structural coverage for neurons

» \Various coverage criteria have been suggested:

 Neuron Coverage: given a set of test input, NC measures % of neutrons
that have been activated above a given threshold (e.g., 0.6)

* k-Multisection Neuron Coverage: mark the range of neuron activation
during training, divide the range into k buckets, and count the number of

buckets checked during execution of the given input set

o Strong Neuron Activation Coverage: mark the range of neuron activation
during training, and count the number of neutrons that are activated
beyond the maximum observed activation value

Structural Test Adequacy for DNNs

» All designed to improve diversity Iin test inputs: higher activation in certain
neuron —> new DNN behavior —> better chance of detecting anomaly

* This has shown to be effective when evaluating robustness of DNNs: inputs

that result in higher structural coverage also tend to reveal abnormal behavior
of the DNN under Test

 However, fundamentally limited in the sense that, while we can measure
neuron activation, we do not really understand what it means

Robustness lesting

o Structural coverage has been linked to inputs that can test DNN robustness
better.

translation(40,40) original scale(2 5x)

P RRie

original shear(0.1) original rotation(6 degree) original contrast(1.8) original brightness(50)

Figure 7: Sample images showing erroneous behaviors detected by DeepTest using synthetic images. For original images the arrows are
marked in blue, while for the synthetic images they are marked in red. More such samples can be viewed at https://deeplearningtest.github.
io/deepTest/.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of
the 40th International Conference on Software Engineering, ICSE '18, pages 303-314, New York, NY, USA, 2018. ACM.

Non-Structural Test Adequacy for DNNs

» |deally, test adequacy should correlate with the likelihood of the input
revealing a problem: how do we predict that?

o Surprise Adequacy: we can simply measure how different the new input is
from the average training data - if it is very similar, we expect the model to
handle the input well; if it is very different, we expect the model to make a

mistake

 DeepGini: we can simply look at how confident the input outcome is - if the
model is very confident, then likely the decision is okay; if the model is not so
confident, then perhaps the decision is more likely to be incorrect

Surprise Adequacy (Kim et al, ICSE 2019)

.....................

....................

(04 01 02 07 06 05 01) D__I’
5 DI —f5

Activation Trace

Learnt Knowledge
(from training data)

Summarisation
(KDE or point-cloud)

Quantitative Surprise Measure of New Input
Against the Summarisation

Accuracy (%)

100- 13—
95
901
85
80
75 —— Ascending DSA
—— Descending DSA
701 —»— Random
55 T T T T T T T T T T T
100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Images
— | oSt
— B|M-A
— B|M-B
— JSMA
— C&W
0 2000 4000 6000 8000 10000

Images

More surprising questions
are harder to answer correctly.

Trick questions (=adversarial
examples) are very surprising.

Applying SA

FSE 2020 Industry TraCk loU Inaccuracy Tradeoff T ‘

—e— Void
Lanes

—+— Road Markers

—+— Road

N S I N (D | I —— Vehicle

o
N

 Reducing DNN Labelling Cost
using Surprise Adequacy: An
Industrial Case Study for "%

Autonomous Driving (Jinhan Kim,
Jeongil Ju, Robert Feldt, Shin Yoo)

loU Inaccuracy

o o
= N
i

» Collaboration with Hyundai Motors
R&D Division

 Low SA input are reasonably reliable,
sO we can skip labelling them when
new input data are collected

» https://arxiv.org/abs/2006.00894

https://arxiv.org/abs/2006.00894

Video Visualisation

{

e T
_*Ju‘(
).\l

~ <GT-Inference Diff)

I(
3 i|
J ||
. Vehicle

!

| £a A2

H ;x".:?"’f
“ t‘i(“:'
o CI

DeepGini

Feng et al., ISSTA 2020

 How should we prioritize inputs for DNN classifiers?
e Answer: we should run the ones for which the classifier is less confident.

* Quantified confidence is reflected in the final layer of classifiers, i.e., softmax.

« For input 7 and class 1, and the probability of 7 belonging to 1 denoted as Dy ;> the
uncertainty of ¢ being an instance of i can be expressed as: p, (1 — p, ;)

e Sum this over all NV classes:

: sz,i(l — D) = Zpt,i — pri =1 - pr,-

1eEN 1eEN eN eEN

DeepGini

Feng et al., ISSTA 2020

 Consider a binary classification (i.e., two classes).

» Classifier is the most confused when it cannot /-\
decide, i.e., p,g = p; | = 0.5 i X

03 ..o° E °o..
0.25

+ £()=1-(0.5+0.5%) = 0.5

0.1 o.
005 |

L
oe I
0 0.1 0.2 03 o4 0.5 0.6 0.7 038 09 1

e (Classifier is quite certain that it is one of the two
classes, i.e., p,o = 0.9,p,; = 0.1

Figure 3: Distribution of ¢ for 2-class problem. X-Axis: the
probability that a test input belongs to one of the two classes.

. 5(1‘) —] — (()92 + ()12) — (0.18 Y-Axis: the value of .

A Big Challenge

* For traditional software, inputs can be either randomly sampled, searched, or
synthesised

 For DL systems that interface with the real physical world, inputs have to be
collected from the real world

* You can try random sampling or search, but would it be relevant?

Sampling Inputs for DNNs

(Apart from physically collecting them, that is...)

 Model Based Approaches: think of this as a simple parametric generative
model - useful for simpler domains.

o Latent Space Approaches: we can exploit latent space embedding - navigate
the space while decoding the vectors

 Generative Model Approaches: more sophisticated models such as Stable
Diffusion are being explored as the bleeding edge...

Model Based Input Sampling

DeepdJanus - Riccio & Tonella, FSE 2020

* For evaluating MNIST, an image classifier for hand-written digits, one can
design a model of each digits.

* For evaluating steering angle regression model for automous driving, one can
design a model of a road (= test input)

100 : @ 100

1. start_point = (9.0, 20.85) 80, 80

2. BezierSegment(n 5
c1=(9.0, 20.22), W
c2=(10.22, 17.30), ©

end_point=(11.70, 14.38))

201 il 20
Bitmap SVG Model

Figure 2: Bitmap and vector image; model representation of -0 0 20

the image returned by Potrace

Figure 3: The model of a road and the corresponding road

Latent Space Approaches
SINVAD - Kang & Yoo, SBST 2020

* Auto-encoders learn the latent space distribution of a domain by encoding
and decoding.

 Once we have an autoencoder, we can decode any point in the latent space
(l.e., the encoded space)

Figure 1: Diagram of SINVAD. SINVAD uses the VAE encoder (E) to encode images into a latent space (bars). Search-based
optimization is performed not on raw pixels, but on latent representations. A representation is transformed back to an image
using the VAE decoder (D). The use of VAE networks before and after keeps search within the subset of plausible images.

Latent Space Approaches
SINVAD - Kang & Yoo, SBST 2020

* |t means that we can interpolate
IN the latent space, and decode
each step, to get “intermediate”
Images!

 Compare the transition from 4 to
9, using interpolation in 1) latent
space, and 2) image space, the
original domain.

VAE[tz/f/f/Q??
Raw (/.('/ ;‘y' ???

Trajectory of AT through interpolation

red: 9
—— Raw
0o —&— VAE

-10

-15

-15 -10 -5 0 5 10

(b)

Figure 5: Trajectories of interpolated images projected into
the PCA space.

Diffusion Model as an Exploration of Latent Space

* \We simply perturb, or interpolate, the
latent vector given to the diffusion
model

 For example, synthesize a series of
iImages that transition from a
pingpong ball to a golf ball...

Diffusion Model as an Exploration of Latent Space

e Or from a cat to a fruit...!

Summary

 Major categories of DNN related testing work so far:
* Robustness Testing (mainly focused on the idea of adversarial examples)

* Jest Adequacy (mainly focused on the idea of finding more interesting
iInputs)

* |nput Generation (mainly focused on how to automatically synthesize
interesting inputs)

» All face the same challenge of having to define what a DNN bug is

