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No Free Lunch Theorem

If an algorithm performs well on a certain class of problems
then it necessarily pays for that with degraded performance
on the set of all remaining problems.

Wolpert & Macready, No free lunch theorems for optimization,
IEEE Transactions on Evolutionary Computation, 1997[1].
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Let X be the search space, and Y be the finite space of fitness
values (e.g. the space of 32bit or 64it floating point numbers).

o Fitness function f is of type f : X — ).

e Space of all problems: F = )%, the finite size of which is
|V[I¥! (i.e., each solution has the choice of |)| fitness values).

A search can be represented as a time ordered sample of m visited
points in the search space. We denote such samples as

dm = {(d%(1), din(1)),. .., (d%(m), dm(m))}. Think of this as a
search trajectory. Here, dX (i) indicates the X’ value of the ith
successive element in the sample of size m, and d},(i) is the
corresponding fitness value. The space of all samples of size m is
Dm= (X xY)™.
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NFL

We make a probabilistic argument. Let P(d|f, m, a) be the
conditional probability of obtaining a particular fitness value dp,
when running algorithm a against fitness fucntion f using m
samples (i.e. fitness evaluations). Then

Theorem 1 (No Free Lunch Theorem for Optimisations)

For any pair of algorithm a; and ay,
> P(dhlfim a) = P(dy|f, m, a)
f f

where m is the number of fitness evaluation used by a; and ay, f is
the fitness(objective function).

V.

In other words, aggregated over all fitness functions, algorithm a;
and a» have the same probability to obtain d7,.
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Intuitively, the proof simply shows that >, P(C|f, m, a) has no dependence on
a. The proof is based on induction on m, of which we only present a sketch
here.

@ When m = 1: the sample is di = {(df, f(df))}. The only possible value
for dy is f(dy). As such, for an arbitrary value d”, the fitness function
either returns d” (i.e., P(d”|f, m,a) = 1), or not (i.e., P(d”|f, m,a) = 0).
Consequently,

S OP(H|f,m=1,a)=> 5(d, fu(x1))
f f

where ¢ is the Kronecker delta function (i.e., only returns 1 when two
arguments are equal to each other). Again, summing over all possible
cost functions f, 6(dy, f(x1)) is 1 only for those functions which have
fitness of d? at point d. There are |V|'*I=! such functions (i.e., out of
|X| solutions, one has a fixed fitness value, and |X — 1| solutions have
the choice of || fitness values), therefore:

S P(d|f,m=1,a) = [y|I¥I?
f

which is not dependent on a.
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@ For m+1:

> P(dhalf,m+1,8) = ﬁ > P(dylf, m, a)
f

f

Intuitively, each f at m samples have |)| choices of fitness values for
m + 1 sample size, and we are only interested in one of them, d,’;ﬂ,

hence the division. Please see Wolpert and Mcready [1] for full detail.
O

v
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No Free Lunch Theorem

Does it mean that we can just use whatever favourite optimisation
algorithm for whatever problem?

@ No. The proof was ade against all problems, i.e., the entire
set of |V|I¥] fitness functions. For a specific fitness function,
there can be meaningful differences between algorithms.

e Furthermore, additional knowledge into f (i.e., the fitness
landscape), will give us competitive edge. We have already
seen such a case: elementary landscape.
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