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Given a finite set of solutions, X :

Neighbourhood: let N : X → 2X be the neighbourhood
function.

Fitness: let f : X → R be the fitness function.

A landscape is a triple (X ,N, f ): the candidate solution set, the
neighbourhood function that imposes connectivity, and the fitness
function that assigns value to each point.

In the lecture, we focus on regular and symmetric landscapes.
For discussions of non-symmetric and non-regular
neighbourhoods (which are more complicated), see Barnes et
al. [?].

The following proof is a summary of Chicano et al. [?].
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Definition 1

Laplacian ∆ of graph G is A− D, where A is the adjacency
matrix of G and D is the diagonal degree matrix of G :

Axy = { 1 if y ∈ N(x)
0 otherwise

Dxy = { |N(x)| if x == y
0 otherwise

(for regular and symmetric landscape, D = dI , where d is the
degree of the neighbourhood graph)
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Laplacian matrix on function f :

∆f =


∑

y∈N(x1)
(f (y)− f (x1))∑

y∈N(x2)
(f (y)− f (x2))∑

y∈N(x3)
(f (y)− f (x3)) . . .∑

y∈N(x|X |)
(f (y)− f (x|X |))


The component for solution x is:

(∆f )(x) =
∑

y∈N(x)

(f (y)− f (x)) (1)
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Definition 2

Elementary Landscape: Let (X ,N, f ) be a landscape, and ∆ be
the Laplacian of N. Function f is elementary if there exists a
constant b and eigenvalue λ of −∆ s.t. (−∆)(f − b) = λ(f − b).

The f is originally the fitness function, f (x). However, we can
capture the fitness function as a vector of length |X |: the ith
member of vector f is f (xi ), xi ∈ X .

What is the implication??
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Proposition 1 (Elementary Properties)

1 If f is a constant function, i.e. f (x) = b,∀x ∈ X , then
(−∆)f = 0 and f is eigenfunction of −∆ with eigenvalue
λ = 0.

2 If f is elementary for N with eigenvalue λ, then there exists a
constant b such that:

Ey∈N(x)(f (y)) = f (x) +
λ

d
(b − f (x)) (2)
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Elementary Properties.

For the first property, we use Eq ?? and write:

(−∆f )(x) =
∑

y∈N(x)

(f (x)− f (y)) =
∑

y∈N(x)

(b − b) = 0

∴ (−∆f )(x) = 0 and f is eigenfunction of −∆ with eigenvalue
λ = 0.
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Elementary Properties (Cont.)

For the second property, start from Eq ??:

(∆f )(x) =
∑

y∈N(x)

(f (y)− f (x)) =
∑

y∈N(x)

f (y)− df (x)

Divide with d :

1

d
(∆f )(x) =

1

d

∑
y∈N(x)

f (y)− f (x) = Ey∈N(x)(f (y))− f (x)
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Elementary Properties (Cont.)

Since f is elementary, there exists a constant b such that
−∆(f − b) = λ(f − b). Dividing this with d , we get:

1

d
(∆(f − b))(x) = −λ

d
(f (x)− b)

Using the first elementary property, we can lose b from the left hand side
(since it is a constant function and therefore (−∆)b = λb with λ = 0):

1

d
(∆(f − b))(x) =

1

d
(∆f )(x)

The right hand side is Ey∈N(x)(f (y))− f (x) in the previous slide.

Ey∈N(x)(f (y))− f (x) = −λ
d

(f (x)− b)

∴ Ey∈N(x)(f (y)) = f (x) +
λ

d
(b − f (x))

This is not so helpful yet, as we do not know b.
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Lemma 1

Let N be a symmetric neighbourhood over X , and ∆ its Laplacian.
If f is an eigenvector of −∆ with λ 6= 0, then f̄ = 0.

Proof.

Two eigenvectors of a symmetric matrix with different eignevalues
are orthogonal. Any constant function is an eigenvector of −∆
with λ = 0 (Prop. ??). So, if λ 6= 0, f is orthogonal to any
constant function, including (1, 1, . . . , 1). Consequently:

f̄ =
1

|X |
∑
x∈X

f (x) =
1

|X |
(1, 1, 1, . . . , 1) · f = 0
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Theorem 1 (Grover’s Wave Equation)

Let (X ,N, f ) be a landscape where N is regular and symmetric.
Then, f is elementary if and only if there exists a constant λ such
that the following expression holds:

Ey∈N(x)(f (y)) = f (x) +
λ

d
(f̄ − f (x)), ∀x ∈ X (3)

AND λ is the eigenvalue of f for its Laplacian.
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Proof.

→: If N is regular and symmetric, and f is elementary,
Equation ?? from Proposition ?? holds: we only need to show
that the constant b is f̄ . Also, from Proposition ??,
(−∆)(f − b) = λ(f − b). If we let g = f − b, g is an
eigenvector of −∆ with eigenvalue λ. If λ = 0, Equation ??
trivially holds. If λ 6= 0, Lemma ?? states that ḡ = 0,
therefore, f̄ = ḡ + b = b, so Equation ?? holds.

←: If Eq. ?? holds, multiplying it by d yields∑
y∈N(x) f (y) = df (x) + λ(f̄ − f (x)). In vector form,

−∆f = λ(f − f̄ ). Since −∆f̄ = 0, we can write
−∆(f − f̄ ) = λ(f − f̄ ). ∴ f is elementary.
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Elementary landscape: what is the implication?

We can get the average fitness of neighbouring solutions of
x ∈ X (i.e. Ey∈N(x)(f (y))) just by knowing the average

fitness of all solutions (i.e. f̄ ) and the fitness of the current
solution (i.e. f (x)).

Wait, usually there are too many solutions in X : how are we
supposed to know f̄ if we haven’t evaluated all solutions in X?
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Compositional View: an alternative approach to the elementary
landscape. This is best given by Whitley et al. [?].
Intra/intercomponents: in most practical elementary landscapes,
the fitness function for a candidate solution is a linear combination
of a subset of a collection of components, C , such as edge weights
in TSP. Then there exists Cx ⊂ C s.t.:

f (x) =
∑
c∈Cx

c

We refer to Cx as the intracomponents of solution x ; C − Cx as
the intercomponents of x .
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Building Neighbours with Components: when a local search
algorithm moves from x to y ∈ N(x), a subset of intracomponents
cout ⊂ Cx is removed, and a subset of intercomponents,
cin ⊂ C − Cx is added. That is:

f (y) = f (x)−
∑
c∈cout

c +
∑
c∈cin

c

If we fix x and let y be a uniformly random neighbour-move, we
can compute the exepected value of f (y):

E[f (y)] = E[f (x)−
∑
c∈cout

c +
∑
c∈cin

c]

= f (x)− E[
∑
c∈cout

c] + E[
∑
c∈cin

c]
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TSP under 2-OPT: Now, let’s see if TSP under 2-OPT forms an
elementary landscape. First, what is the average fitness of a TSP
problem with n cities?

There are n(n−1)
2 edges, out of which we choose n to form a

tour. Consequently,

f̄ =
∑
ei,j∈E

wi ,j
n

n(n − 1)/2
=

2

n − 1

∑
ei,j∈E

wi ,j
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Intracomponents: under 2-OPT, two edges change in each
neighbour. That is, two intracomponents go out for each
neighbour. There are n edges in the current solution (i.e. a tour).
Consequently, the probability of one intracomponent being
removed is 2

n , while the sum of intracomponents is simply f (x)
(again, the current tour). As a result, the expected value of
intracomponents that go out is:

E[
∑
c∈cout

c] =
2

n
f (x)
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Intercomponents: The sum of intercomponents is simpy the sum
of all edges minus the sum of all the intracomponent:∑

ei,j∈E wi ,j − f (x). There are n(n−1)
2 − n = n(n − 3)/2

intercomponents (i.e. edges that are not part of the current
solution), out of which we choose 2 to add. As a result, the
expected value of the intercomponents that come in is:

E[
∑
c∈cin

c] =
2

n(n − 3)/2
(
∑
ei,j∈E

wi ,j − f (x))

Note that f̄ = 2
n−1

∑
ei,j∈E wi ,j . That is,

∑
ei,j∈E wi ,j = n−1

2 f̄
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E[f (y)] = f (x)− 2

n
f (x) +

2

n(n − 3)/2

∑
ei,j∈E

wi ,j − f (x)


= f (x)− 2

n
f (x) +

2

n(n − 3)/2

(
n − 1

2
f̄ = f (x)

)
= . . .

= f (x) +
n − 1

n(n − 3)/2
(f̄ − f (x))

= f (x) +
k

d
(f̄ − f (x))

It is elementary, Watson.
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Observations on Elementary Landscape: Codenotti and
Margara [?] state that:

if f (x) < f̄ then f (x) < E[f (y)] < f̄ .

if f (x) = E[f (y)] then f (x) = f̄ = f (y).

if f (x) > f̄ then f (x) > E[f (y)] > f̄ .

That is, all the local minima lie below f̄ and all the local optima lie
above f̄ . There is also an interesting observation about plateau in
Whitley et al. [?] that we will not go into during the lecture.
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Evaluation of Partial Neighbourhood: Suppose M ⊆ N(x) is a
subset of the neighbour of x . Expected fitness of r uniformly
randomly drawn from the remaining neighbours in N(X ) is:

E[f (r)] =
1

d − |M|

 ∑
z∈N(x)

f (z)−
∑
z∈M

f (z)


=

1

d − |M|

(
d

(
f (x) +

k

d
(f̄ − f (x))

)
−
∑
z∈M

f (z)

)

We can even compute the expected improvement from M!
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Expected value of remaining neighborhood
Average value of partial neighborhood
Expected value over entire neighborhood

(0.9177)n (0.9106)n
(0.8965)n

(0.8222)n

(0.8351)n

(0.8194)n

f(x1) = (0.8095)n f(x2) = (0.8804)n

x1

x2

Figure 5: A stylized sketch of partial and whole
neighborhood relationships for two solutions x1 and
x2. The average evaluation of the partial neighbor-
hood of x1 is worse than x2; the expected evalua-
tion of remaining neighbors of x1 are better than
those of x2. Numerical data were generated us-
ing two random solutions from (normalized) 17-city
TSP gr17.tsp instance.

of the neighborhoods of x1 and x2. If r1 and r2 are ran-
domly drawn elements from the remaining neighborhoods
N(x1) − M1 and N(x2) − M2, then we can compute the
expected values of r1 and r2 above and the expected im-
provement D(r1; x1) and D(r2; x2) for each.

It is clearly more promising to continue expanding the
neighborhood corresponding to the better of the two ex-
pected improvements (i.e. smallest, if we are minimizing):
this is more likely to yield a better change in value. This idea
is illustrated in Figure 5 where the partial neighborhood that
results in an average value worse than the expected value of
the entire neighborhood yields a better expected value over
the remaining neighborhood.

On an elementary landscape, neighborhoods can be con-
sidered rather localized. From the component point of view,
neighbors are very similar in structure to the current incum-
bent solution. Neighbors also have similar objective function
values (on average). The neighborhood does not support any
mechanism that allows sampling in more distant parts of the
search space. This makes local search on these landscapes
fundamentally myopic. It should be pointed out this is not
true of all forms of local search. The neighborhoods used by
Gray- and binary-coded representation of parameter opti-
mization problems do a better job of systematically globally
sampling in distant parts of the search space. These neigh-
bors are used by many forms of genetic algorithms. Pattern
Search is also better at systematically globally sampling in
distance parts of the search space.

Stadler [13] showed that a landscape (with a symmetric
neighborhood operator) is elementary if and only the time
series generated by a random walk on the landscape us-
ing transitions defined by the neighborhood operator is an

AR(1) process: an observation that was later generalized
by Dimova et al. [7]. This observation, along with Grover’s
results about local extrema lying above or below the mean
solution value, imply that elementary landscapes describe a
class of relatively smooth and structured problems.

When compared to other conventional combinatorial prob-
lems, the TSP will be comparatively well-behaved. As Equa-
tion (1) predicts, candidate solutions in the TSP will have a
constant relationship with the average neighborhood value
(with respect to the mean). This is not necessarily a perva-
sive feature in commonly studied combinatorial problems.

Consider the mean-centered ratio between the evaluation
of an arbitrary solution x and its average neighborhood
value.

R(x) =
f(x) − f̄

(1/d)
P

y∈N(x) f(y) − f̄
(5)

Suppose x lies on an elementary landscape. Equations (1)
and (2) give us

Relem(x) =
f(x) − f̄

f(x) + k
d
(f̄ − f(x)) − f̄

=
d

d − k

Thus the ratio is constant for landscapes that obey Equation
(1).

To contrast this relationship empirically with other com-
binatorial problems, we selected an instance of the permu-
tation flowshop scheduling problem (FSP) under the shift
neighborhood [15], and the asymmetric (ATSP) under the
exchange neighborhood. On each landscape, we generated
100 random solutions and calculated the value of R(x), Equa-
tion (5), for each solution x. The values are plotted in Figure
6 for car3.fsp: a 12 × 5 flowshop problem instance origi-
nally published by Carlier [4] and contained in the online
OR-LIBRARY2. the pr152.tsp and ali535.tsp (symmet-
ric) TSP instances and the ft53.atsp ATSP instance from
TSPLIB. The ratio is constant for the TSP problems, but
varies dramatically for the ATSP and FSP problems.

We can therefore assume that search algorithms that per-
form competitively on TSP are likely to be exploiting the
partial decomposability of the landscape. On the one hand,
this implies that such an algorithm may easily be adaptable
to other well known elementary problems. On the other
hand, search algorithms that are benchmarked on elemen-
tary problem classes may not generalize well to composite,
non-elementary landscapes.

5. CONCLUSION
The elementary property of certain landscapes introduces

several interesting constraints on the behavior of local search
algorithms. Landscapes with this property tend to be rela-
tively smooth when contrasted to other combinatorial opti-
mization problems with well-studied local move operators.

In this paper we have explained the elementary property
in terms of neighborhood sampling and observed some of
its consequences on real world instances. The constraints
imposed by the wave equation precludes the existence of
certain plateau structures, and forces certain relationships
between local optima with the same evaluation. The ele-

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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