
Shin Yoo

Overview of SBSE
CS454 AI-Based Software Engineering

Search-Based Software Engineering

• Application of all the optimisation techniques we have seen so far, to the
various problems in software engineering.

• Not web search engines :(

• Not code search :(

SBSE is a methodology

• Looking at everything from a methodology point of view has its own pros and
cons

• Cons: when you have a hammer, everything looks like a nail.

• Pros

• You find yourself trying to justify why two very different things are both
nails, i.e., sometimes you see a cross-cutting theme in different
domains :)

• A better hammer makes everything easier (as long as they are nails)

Capture
Requirements

Generate
Tests

Explore
Designs

Maintain/
Evolve

Regression
Testing

M
in

im
is

e
M

ax
im

is
e

Cost
Development Time

Satisfaction
Fairness

Capture
Requirements

Generate
Tests

Explore
Designs

Maintain/
Evolve

Regression
Testing

M
in

im
is

e
M

ax
im

is
e

of test cases
Execution Time

Code Coverage
Fault Detection

Capture
Requirements

Generate
Tests

Explore
Designs

Maintain/
Evolve

Regression
Testing

M
in

im
is

e
M

ax
im

is
e

Coupling

Cohesion

Capture
Requirements

Generate
Tests

Explore
Designs

Maintain/
Evolve

Regression
Testing

M
in

im
is

e
M

ax
im

is
e

Coupling

Cohesion

Capture
Requirements

Generate
Tests

Explore
Designs

Maintain/
Evolve

Regression
Testing

M
in

im
is

e
M

ax
im

is
e

of Test Cases
Execution Time

Coverage
Fault Coverage

Good Starting Points

• M. Harman. The current state and future of search based software
engineering. In FOSE ’07: 2007 Future of Software Engineering, pages 342–
357,2007.

• M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Computing Surveys,
45(1):11:1–11:61, December 2012.

Cost Estimation

• Evolve mathematical functions (symbolic regression) that would predict the
project development effort based on various input variables.

• J. J. Dolado. A validation of the component-based method for software size
estimation. IEEE Transactions on Software Engineering, 26(10):1006–1021,
2000.

Project Planning

• Team allocation to project work packages, including the possibility of
abandonment (i.e. work no longer needed/practical) and rework (i.e. additional
work needed).

• G. Antoniol, M. Di Penta, and M. Harman. A Robust Search-based
Approach to Project Management in the Presence of Abandonment,
Rework, Error and Uncertainty. In Proceedings of the 10th International
Symposium on the Software Metrics (METRICS ’04), pages 172–183,
Chicago, USA, 11-17 September 2004. IEEE Computer Society.

• Find the ideal set of requirements that
balances customer requests, resource
constraints, and interdependencies
between requirements.

• A. Bagnall, V. Rayward-Smith, and I.
Whittley. The next release problem.
Information and Software Technology,
43(14):883–890, Dec. 2001.

• Y. Zhang, M. Harman, and S. A.
Mansouri. The Multi-Objective Next
Release Problem. In GECCO ’07:
Proceedings of the 2007 Genetic and
Evolutionary Computation Conference,
pages 1129–1136. ACM Press, 2007.

Next Release Problem

Optimising Source Code

• Random sampling of code transformation to find compiler optimisation

• K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced
code space using genetic algorithms. In Proceedings of the ACM SIGPLAN
1999 Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES‘99), volume 34.7 of ACM SIGPLAN Notices, pages 1–9, NY, May 5
1999. ACM Press.

• Automated Parallelisation

• K. P. Williams. Evolutionary Algorithms for Automatic Parallelization. PhD
thesis, University of Reading, UK, Department of Computer Science, Sept.
1998.

Test Data Generation

• Many, many different approaches and ideas; too many to list all:

• P. McMinn. Search-based software test data generation: A survey. Software
Testing, Verification and Reliability, 14(2):105–156, June 2004.

• Pareto-efficient Test Suite Minimisation:

• S. Yoo and M. Harman. Pareto efficient multi-objective
test case selection. In Proceedings of International
Symposium on Software Testing and Analysis, pages
140–150. ACM Press, July 2007.

• Test Case Prioritisation:

• Z. Li, M. Harman, and R. M. Hierons. Search Algorithms
for Regression Test Case Prioritization. IEEE
Transactions on Software Engineering, 33(4):225–237,
2007.

• Multi-objective Prioritisation:

• M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke.
Empirical evaluation of pareto efficient multi- objective
regression test case prioritisation. In Proceedings of the
2015 International Symposium on Software Testing and
Analysis, ISSTA 2015, pages 234–245, New York, NY,
USA, 2015. ACM.

Regression Testing

• Module Clustering: assign modules to
clusters based on their relationships

• B. S. Mitchell and S. Mancoridis. On
the automatic modularization of
software systems using the bunch
tool. IEEE Transactions on Software
Engineering, 32(3):193–208, 2006.

• K. Praditwong, M. Harman, and X.
Yao. Software module clustering as a
multi-objective search problem. IEEE
Transactions on Software
Engineering, 37(2):264–282, March-
April 2010.

Maintenance & Reverse
Engineering

Deep Parameter Optimisation

• Reveal a property hidden in software as a parameter for tuning.

• F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke. Deep parameter optimisation. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pages 1375–1382,
2015.

• J. Sohn, S. Lee, and S. Yoo. Amortised deep parameter optimisation of GPGPU work group size for
OpenCV. In F. Sarro and K. Deb, editors, Proceedings of the 8th International Symposium on Search Based
Software Engineering, volume 9962 of Lecture Notes in Computer Science, pages 211–217. Springer
International Publishing, 2016.

Exposing hidden parameter: Deep Parameter Optimisation2

� For cases where parameter that controls the performance is hidden
� Expose ‘deep’(previously hidden) parameter to be explicitly controlled
� Our case,

� Local work group size for GPGPU module of OpenCV controls the performance
Î Should be exposed to be explicitly controlled for optimisation of the performance

function

CPU

GPU Local work
group size

?

?Local work
group size

!

2Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1375{1382. GECCO '15, ACM, New York, NY,
USA (2015)

Code Transplantation

- E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke. Automated software transplantation. In Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015, pages 257–269, New York, NY, USA,
2015. ACM.

- A. Marginean, E. Barr, M. Harman, and Y. Jia. Automated transplantation of call graph and layout features into kate. In
M. Barros and Y. Labiche, editors, Search-Based Software Engineering, volume 9275 of Lecture Notes in Computer
Science, pages 262–268. Springer International Publishing, 2015.

• Most of the papers published on
SBSE, stored and categorised
online:

• http://crestweb.cs.ucl.ac.uk/
resources/sbse_repository/

SBSE Repository

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

How about other (classical) ML techniques?

• Many SE techniques are about automation, so ML is not new to SE.

• SE techniques naturally benefit from any advances in ML (or SE is a good
application area for any serious ML technique):

• Clustering, predictive modelling, recommendataion system…

Clustering

• Clustering is one of the representative form of unsupervised learning

• Whenever you suspect there are internal patterns in a problem, you can
attempt clustering to reveal and exploit the pattern

Maintenance & Reverse Engineering

• Module Clustering: assign modules to clusters based on their relationships

• B. S. Mitchell and S. Mancoridis. On the automatic modularization of
software systems using the bunch tool. IEEE Transactions on Software
Engineering, 32(3):193–208, 2006.

• K. Praditwong, M. Harman, and X. Yao. Software module clustering as a
multi-objective search problem. IEEE Transactions on Software
Engineering, 37(2):264–282, March-April 2010.

Test Case Prioritisation

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Multi−dimensional Scaling of Test Case Profiles: space

D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In Proceedings of the IEEE
International Symposium on Software Reliability Engineering (ISSRE 2003), pages 442–456. IEEE Computer Society Press, November 2003.

Case-Based Reasoning

• P. Tonella, P. Avesani, and A. Susi.
Using the case-based ranking
methodology for test case
prioritization, ICSME 2006

• Human testers make pairwise
comparison between test cases

• CBR learns to put priority scores to
test cases, based on human examples

• Effective, but human comparison is
extremely expensive

Interleaved Clusters Prioritisation

T1

T3

T2

T5

T6

T4

Cluster

Intra-cluster Prioritisation

Inter-cluster Prioritisation

Interleaving Clusters

S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases to achieve effective & scalable prioritisation
incorporating expert knowledge. In Proceedings of International Symposium on Software Testing and Analysis, ISSTA
2009, pages 201–211. ACM Press, July 2009.

Classification/Prediction

• To identify to which of a set of categories a new example belongs

• Defect Prediction / Fault Localisation: Is this statement/method/file (likely to
be) faulty or not?

• Hypotheses

• “If a file goes through an unusually high number of changes, it is more
likely to be faulty”

• “If a file is modified by an unusually high number of developers, it is more
likely to be faulty”

Defect Prediction

• Collect past test history as well as
various features leading up to the test
results

• Train a classification model

• Before a large project moves into the
testing stage, feed the collected data to
see which file is more likely to be faulty

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change metrics and static code attributes for defect prediction. In 2008
ACM/IEEE 30th International Conference on Software Engineering, pages 181–190, May 2008.

Information Retrieval

• IR is also used to perform fault localisation

• Given a bug report, the program element responsible for the observed failure
is the part of the source code that is lexically the most similar to the bug
report

• See for example: R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry.
Improving bug localization using structured information retrieval. In
Automated Software Engineering (ASE), 2013.

Recommendation System

• You buy X from Amazon, and give it five star. Amazon gives you “people who
bought (and liked) this also bought…”

• Similarly, we can think of bug-triaging (i.e., the question of who should handle
the new bug report) as:

• You fix bug X from Project Z, and does the job well. The project gives you
“people who successfully fixed bugs like this may also do well on…”

There is a new bandwagon in town: LLMs
(and we are expanding into this, to live up to the course name :p)

There is a new bandwagon in town: LLMs
(and we are expanding into this, to live up to the course name :p)

Initial Surveys

• Large Language Models for Software Engineering: Survey and Open
Problemsm, Fan et al., (https://arxiv.org/abs/2310.03533) <— yours truly :)

• Large Language Models for Software Engineering: A Systematic Literature
Review, Hou et al., (https://arxiv.org/abs/2308.10620)

• Software Testing with Large Language Model: Survey, Landscape, and Vision,
Wang et al., (https://arxiv.org/abs/2307.07221)

https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2307.07221

Emerging Topics

• Code synthesis is a primary application, as LLMs can generate code

• Automating testing using LLMs is also big, as writing test code is often
perceived as boring and repetitive

• There are other sub-areas of software engineering where natural language
processing power appears to be critically important, but remain relatively
unexplored

• Requirement Engineering

A Million Dollar Question

• How do we validate the LLM outputs?

• So, it is testing again, after all.

• Bright side: we have been doing automated testing so long, we should
know how to do this…

• Down side: oracle still depends on humans…

• More details when we reach the LLM lecture.

