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• Comparison itself is not as 
straightforward as comparing 
two scalar values.


• There is no reference point, as 
the true Pareto front is usually 
not known.

Comparing Pareto Fronts



Empirical Evaluation

• Empirical evaluation of different MOEAs becomes a meta-comparison: it is 
not only about the domain-specific quality, but it is also about the quality of 
the front itself.


• Properties that we want to evaluate:


• Closeness to the true Pareto front


• Diversity of the solutions on the Pareto front



Closeness to true front

• There are cases where the true Front is known:


• for example, benchmark optimisation problems.


• For cases where the true front is not known, we use what’s called “reference 
front”:


• Collect all known solutions from all MOEAs involved.


• Extract a single Pareto front from the collected solutions.


• Reference Pareto Front will include solutions contributed by different MOEAs.



Generational Distance (GD) and Inverted Generational Distance (IGD)

• GD: average distance from each solution to its closest reference point.


• IGD: average distance from each reference point to its closest solution


• The smaller, the better.



Weaknesses of GD
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Pareto non-compliant misleading results can be obtained from some other perfor-
mance indicators. 

For example, Zitzler et al. [26] clearly illustrated that misleading results can be ob-
tained from the generational distance (GD) indicator [21] using a simple example of a 
two-objective minimization problem in Fig. 1 with a reference point set Z = {(1, 0), (0, 
10)} and three solution sets A = {(2, 5)}, B = {(3, 9)} and C = {(10, 10)}. GD is the 
average distance from each solution to its closest reference point. Thus the solution set 
B = {(3, 9)} is evaluated as being the best since (3, 9) has the minimum distance to its 
nearest reference point among the three solution sets (i.e., A, B and C). However, it is 
clear from Fig. 1 that A = {(2, 5)} is the best among the three solution sets since (3, 9) 
in B and (10, 10) in C are dominated by (2, 5) in A. A similar example of a two-
objective minimization problem was used in Schütze et al. [18], which is shown in Fig. 
2 with a reference point set Z = {(0, 1), (10, 0)} and two solutions sets A = {(5, 2)} and 
B = {(11, 3)}. In this example, the solution set B is evaluated as being better than the 
solution set A by the GD indicator whereas (11, 3) is dominated by (5, 2). 

 

       

Fig. 1. Example 1 (Zitzler et al. [26])               Fig. 2. Example 2 (Schütze et al. [18]) 

These misleading results are not obtained by the hypervolume indicator since it is 
Pareto compliant [24]. One difficulty of the hypervolume indicator is its heavy  
computation load. Recently evolutionary many-objective optimization has attracted 
increasing attention [12]. Test problems with ten or more objectives are used for per-
formance evaluation in recent studies on evolutionary many-objective optimization 
[7], [9], [10], [23]. The use of the hypervolume indicator for those test problems is 
often impractical from a viewpoint of computation time whereas its fast calculation 
[17], [22] as well as its efficient approximation [1] has been actively studied. Among 
other indicators, the inverted generational distance (IGD [4], [19]) is most frequently 
used for performance evaluation of EMO algorithms in evolutionary many-objective 
optimization studies [7], [9], [23]. IGD is the average distance from each reference 
point to its nearest solution. When a set of well-distributed reference points over the 
entire Pareto front is used, a small value of the IGD indicator suggests the good con-
vergence of solutions to the Pareto front and their good distribution over the entire 
Pareto front. 
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B has the shortest distance to its closest reference point, 
but arguably A is a better solution.

Modified Distance Calculation in Generational Distance and Inverted Generational Distance, Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, 
Yusuke Nojima, EMO 2015.
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In the above-mentioned examples in Fig. 1 and Fig. 2, the solution set A is correct-
ly evaluated as being the best by the IGD indicator. Whereas IGD looks a more ap-
propriate indicator than GD in Fig. 1 and Fig. 2, both are Pareto non-compliant. Let us 
consider another solution set D = {(2, 1)} in Fig. 3. It is clear from Fig. 3 that the 
solution set D is evaluated as being the best among the four solution sets A, B, C and 
D by the GD indicator. However, the solution set A = {(2, 5)} is evaluated as being 
better than D by the IGD indicator with the Euclidean distance in Fig. 3 as follows: 

 

 5.24,    (1) 

 5.32.    (2) 

 
In Fig. 4, we show another example of a two-objective minimization problem with 

Z = {(0, 10), (1, 6), (2, 2), (6, 1), (10, 0)}, A = {(2, 4), (3, 3), (4, 2)} and B = {(2, 8), 
(4, 4), (8, 2)}. In Fig. 4, each solution in the solution set B is dominated by at least 
one solution in the solution set A. Thus we can say that A is better than B in the sense 
of Pareto dominance. The solution set A is also evaluated as being better than B by the 
GD indicator in Fig. 4. However, if we use the IGD indicator, the solution set B is 
evaluated as being better than A as follows: 

 

3.71,    (3) 

2.59.    (4) 

 

        

Fig. 3. Example 3 with a new solution set D       Fig. 4. Example 4 with misleading IGD 

In this paper, first we discuss why these misleading results are obtained by the GD 
and IGD indicators. Then we propose an idea of modifying the distance calculation 
between a solution and a reference point in the GD and IGD indicators by taking into 
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IGD is more sensitive to gaps.
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Modified Distance Calculation in Generational Distance and Inverted Generational Distance, Hisao Ishibuchi, Hiroyuki Masuda, Yuki Tanigaki, 
Yusuke Nojima, EMO 2015.



• When the shape of the true Front is 
known as a continuous function: 
reference Pareto front, i.e. a set of 
points, is sampled from the function.


• How you sample can affect 
distances


• For 11 reference points, IGD(Z, A) 
< IGD(Z, B)


• For 21 reference points, IGD(Z, A) 
> IGD(Z. B)

Weaknesses of GD/IGD

H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Difficulties in specifying 
reference points to calculate the inverted generational distance for many-objective 
optimization problems. In Computational Intelligence in Multi-Criteria Decision-
Making (MCDM), 2014 IEEE Symposium on, pages 170–177, Dec 2014.



• When using collected reference 
front, different MOEAs will 
contribute solutions with different 
characteristics:


• some may show strong 
convergence


• others may show greater 
diversity


• Again, this may results in sampling 
bias when evaluating an MOEA.

Weaknesses of IGD

H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. Difficulties in specifying 
reference points to calculate the inverted generational distance for many-objective 
optimization problems. In Computational Intelligence in Multi-Criteria Decision-
Making (MCDM), 2014 IEEE Symposium on, pages 170–177, Dec 2014.



Epsilon

• Binary indicator, Iε(A, B): intuitively, the amount of “shift” required to change B 
so that it is weakly dominated by A (i.e. A is not worse than B in all 
objectives).

I✏(A,B) = inf
✏2R

{8z2 2 B9z1 2 A : z1 �✏ z
2}



• Intuitively, hypervolume 
measures the area (space) 
dominated by a given Pareto 
front.


• An unary indicator: does not 
need a reference front.


• Can be thought to measure both 
convergence and diversity.

Hypervolume



Scaling and Normalisation

• The concept of Pareto optimality itself is independent from scale and 
normalisation: it is strictly based on partial order only.


• For quality indicators, normalisation may be necessary:


• so that multiple objectives contribute equally to the indicators.



Simple Linear Scaling

• … may be applicable, if the bounds are known.


• If not, there are other normalisation methods.


• … which leads into the next topic :)

z0i =
zi � zmin

i

zmax
i � zmin

i


