Random Search

Shin Yoo
CS454 Al-Based Software Engineering



Random Search

* [he polar opposite to the deterministic, examine-everything, search.

* Within the given budget, repeatedly generate a random solution, compare its
fitness to the known best, and keep the best one.



Pros and Cons

 VERY easy to implement, inherently automatable, no bias at all.
 Depending on the problem, it may be extremely effective.

 No guidance at all: depending on the problem, it may take forever to obtain a
meaningful solution.



Usage of Random Search

* The lack of any guidance provides two useful scenarios.

* First, random search should always be the default sanity check against your
own search methodology: if it does not no better than random search, you are
doing something wrong.



Usage of Random Search

 Somewhat ironically, random search is effective when the underlying problem
does not give any guidance to begin with. For example:

» “Search for the input to program A that will result in program crash”

* |In general, given an arbitrary program, you cannot measure the distance
between the current program state and a crash!



Fuzz Testing / Fuzzing

* |Infinite Monkey Theorem: “Thousand monkeys at a thousand typewriters will
eventually type out the entire works of Shakespeare”

 Basic idea: provide a stream of random input to the program, until it crashes
(=our Shakespeare).

* Either a stream of really random bits (nhaive), or

* Well-formed input randomly mutated (more effective)



Seeding / Pooling

 Being completely random may harm you, especially if you are trying to
construct a sophisticated solutions from parts

* |f there is any reason to believe that you have a partial solution, store the parts
iInto a pool to be used as a future seed

e |ater, randomly sample from the pool instead of a uniform distribution



But how random?

(An overlooked question)

* We typically imagine uniform random distributions when we say random.
 But random sampling can be from any arbitrary distribution.
* |f you have any useful domain knowledge, you can try to bias the distribution.

* |n fact, we will see advanced algorithms in the form of extreme bias :)



