
Random Search
Shin Yoo 
CS454 AI-Based Software Engineering



Random Search

• The polar opposite to the deterministic, examine-everything, search.


• Within the given budget, repeatedly generate a random solution, compare its 
fitness to the known best, and keep the best one.



Pros and Cons

• VERY easy to implement, inherently automatable, no bias at all.


• Depending on the problem, it may be extremely effective.


• No guidance at all: depending on the problem, it may take forever to obtain a 
meaningful solution.



Usage of Random Search

• The lack of any guidance provides two useful scenarios.


• First, random search should always be the default sanity check against your 
own search methodology: if it does not no better than random search, you are 
doing something wrong.



Usage of Random Search

• Somewhat ironically, random search is effective when the underlying problem 
does not give any guidance to begin with. For example:


• “Search for the input to program A that will result in program crash”


• In general, given an arbitrary program, you cannot measure the distance 
between the current program state and a crash!



Fuzz Testing / Fuzzing

• Infinite Monkey Theorem: “Thousand monkeys at a thousand typewriters will 
eventually type out the entire works of Shakespeare"


• Basic idea: provide a stream of random input to the program, until it crashes 
(=our Shakespeare).


• Either a stream of really random bits (naive), or


• Well-formed input randomly mutated (more effective)



Seeding / Pooling

• Being completely random may harm you, especially if you are trying to 
construct a sophisticated solutions from parts 

• If there is any reason to believe that you have a partial solution, store the parts 
into a pool to be used as a future seed


• Later, randomly sample from the pool instead of a uniform distribution



But how random?
(An overlooked question)

• We typically imagine uniform random distributions when we say random.


• But random sampling can be from any arbitrary distribution.


• If you have any useful domain knowledge, you can try to bias the distribution.


• In fact, we will see advanced algorithms in the form of extreme bias :)


