
Shin Yoo

Metaheuristic
CS454 AI-Based Software Engineering

Teacher:

add numbers from 1 to 100!

Young Gauss:

 1 + 2 + ... + 50

+ 100 + 99 + … + 51

= 101 + 101 + … + 101

= 101 * 50 = 5050

Computer: Is it 782?

Teacher: Nope.

Computer: Is it 783?

Teacher: Nope.

….

Computer: Is it 5050?

Teacher: Yes (finally…)

Let’s start with terms.

Meta-heuristic

• Strategies that guide the search of the acceptable solution

• Approximate and usually non-deterministic

• Not problem specific

• Smart trial and error

Let’s play Super Mario Bros.

http://arxiv.org/pdf/1203.1895v3.pdf

http://arxiv.org/pdf/1203.1895v3.pdf

• Read the game manual to see
which button does what.

• Google the level map and get
familiar with it.

• Carefully, very carefully, plan
when to press each button, for
how long.

• Grab the controller and execute
the plan.

Player A

• Grab the controller.

• Play.

• Die.

• Repeat until level is cleared.

Player B

Intelligence lies in how differently you die next time.

• You make small changes to your
last attempt (“okay, I will press A
slightly later this time”).

• You combine different bits of
solutions (“Okay, jump over here,
but then later do not jump over
there”).

• You accidentally discover new
parts of the map (“Oops, how
did I find this secret passage?”)

Mario analogy goes a long way

Eight Queens Problem

Place 8 queens on a chessboard so that no pair attacks each other.

Eight Queens Problem

Perfect solution: score 0

Eight Queens Problem

Two attacks: score -2

Eight Queens Problem

Eight Queens Problem

Three attacks: score -3

Two Approaches

Build an algorithm
that produces a
solution to the

problem by placing
one piece at a time

Build an algorithm
that compares two

solutions to the
problem; try

different solutions,
keep the better one,
until you solve the

problem

Does it scale?

44 Queens Problem

Place 44 Queens on the board with no attack.

1012 Queens Problem

Place 1012 Queens on the board with no attack.

Intelligence in General

AI: All Types of
Machine

Intelligence

Problems to Solve

Logical
Reasoning

Learning

Planning NLP

Perception

Motion

Machine Learning

Approaches

Symbolic

Statistical

Soft
computing

ANN

GA

Meta-
heuristic Deep Neural

Networks

Supervis
ed

Unsupervi
sed

RL

Trial and Error…
…as a general perspective on how to make machines smart

• Abundance of computational resources means many domains are adopting
(knowingly or not) a similar approach.

• Corpus-based NLP

• Go (the only competitive AI players are based on Monte-Carlo Method)

• Many application of machine learning

ProblemCandidate
Solution

Did we do
better?

yes

Maintain
Direction

Find a New
Direction

no

Machine
Learning

ProblemCandidate
Weights

Is the loss
smaller?

yes

Maintain
Gradient

Find a New
Gradient

no

Key Ingredients of Metaheuristic Approaches

• What are we going to try this time? (representation)

• How is it different from what we tried before? (operators)

• How well did we do this time? (fitness/objective function)

• Minor (but critical) ingredients: constraints

• Representation: 8 by 8 matrix

• Operators: generate one valid
board position from the current
position, following the rule about
Queen’s movement

• Fitness function: number of
attacks (to be minimised)

8 Queens Problem

• Representation: a list of
(button, start_time,
end_time)

• Operators: change button type
in one tuple, increase/decrease
start_time or end_time

• Fitness function: the distance
you travelled without dying

Super Mario Bros.

Universal Viewpoint

• There are many algorithms in computational intelligence; you do need to learn
individual algorithms in detail.

• However, I also want to communicate a frame of thinking, not only individual
algorithms.

• The tuple of (representation, operators, fitness function) can be a universal
platform to understand different classes of algorithms.

• We will revisit individual algorithms, using this tuples.

Design dictates solution

• Incorrect representation: what happens if we use (button,
pressed_time) instead?

• Using wrong operators: what happens if we decrease/increase start_time
and end_time by 5 seconds?

• Missing constraints: what happens if we swap the order of two tuples?

• Measuring the wrong fitness: what happens if we use the time elapsed until
death? Or the final score?

Exploitation vs. Exploration

• Exploitation: if a candidate solution looks promising, optimisation should
focus on that particular direction. However,

• Exploration: unexplored solution space may contain something *much better*.

• How to balance these two is critical to all learning/optimisation algorithms.

Machines are Dumb and Lazy

• Like human, they will do the minimum work that passes your criteria, i.e.
design of the optimisation problem.

• Not because of their work ethic, but because of the fact that, usually,
minimum work is the easiest to find solution.

Case Study: GenProg

• GenProg uses stochastic optimisation to modify existing faulty software code,
until it passes all tests.

• We can only tell it to try until it passes all tests, not until the program is
correct.

Anecdotes borrowed from Wes Weimer’s SSBSE 2013 Keynote: https://www.cs.virginia.edu/~weimer/p/weimer-ssbse2013.pdf

https://www.cs.virginia.edu/~weimer/p/weimer-ssbse2013.pdf

Things GenProg Did…

• nullhttpd: test case for POST function failed; GenProg removed the entire
functionality.

• sort: test required output to be sorted; GenProg’s fix was to always output
an empty set.

• Tests compared output.txt to correct_output.txt; GenProg deleted
correct_output.txt and printed nothing.

Targets of our optimization
the concrete vs. the abstract

• Some objectives are concrete and tangible

• E.g., value of input x that will take me to a specific branch in my code

• Some objectives are abstract and subjective

• E.g., design of my system that is highly cohesive and low in coupling

What we mean and what we “really” mean

• Metric-based optimisation (where fitness equals an existing SE metric) is
starting to be criticised. Compare the following two papers:

• M. Harman and J. Clark. Metrics are fitness functions too. In 10th
International Software Metrics Symposium (METRICS 2004), pages 58–69,
Los Alamitos, California, USA, Sept. 2004. IEEE Computer Society Press.

• C. Simons, J. Singer, and D. R. White. Search-based refactoring: Metrics
are not enough. In M. Barros and Y. Labiche, editors, Search-Based
Software Engineering, volume 9275 of Lecture Notes in Computer Science,
pages 47–61. Springer International Publishing, 2015.

Semantic vs. Syntactic

• We are living in an interesting time, because there is a new technology in town
that claims to “understand” human semantic better.

• Well, not really “understand” - but interesting emergent behaviour
nonetheless.

• Always remember Chinese Room Experiment by John Searle

Expected Learning Outcome

• Understand basic metaheuristic algorithms; learn how to implement and
adapt one to a given problem.

• Embrace metaheuristic optimisation as a valid tool for software engineers.

• Gain knowledge of the literature; learn case studies for various software
development lifecycle stages.

A Sneak Peek Ahead

• What do people do with this metaheuristic in software engineering?

• Given the definition of the task, basically anything for which you need a
good-enough solution :)

Problem Domains

Structural Testing

• Take CS453 Automated Software Testing:)

• Intuitively: define the input constraints required to achieve structural
coverage; solve the constraints using optimisation.

• Symbolic execution + constraints solver

• Dynamic analysis + metaheuristic optimisation

• Either way, huge advances in the last decade.

• Clearly defined fitness function, industry demand (at least on achieving
coverage)

Oracle Problem

• Coverage is not enough: “was the last execution correct?”

• Test oracle tells you whether the observed execution was correct or not

• Formal specification can serve as one; manual inspection by human can serve
as one. But how do we automatically generate oracles?

• We want to test the code; we automatically generate test from the code; we
want to check whether the test passed; we automatically generate test oracle
from the co… wait a minute!

• This is a very hard problem; one which the state of the art does not know how
to solve.

Testing non-functional properties

• Worst-Case Execution Time Analysis: strictly necessary for certain embedded
systems (e.g. airbag controller), very hard to do statically; genetic algorithm
has been very successful.

• J. Wegener and M. Grochtmann. Verifying timing constraints of real-time
systems by means of evolutionary testing. Real-Time Systems, 15(3):275 –
298, 1998.

Requirements Engineering

• Next Release Problem: given cost and benefit (expected revenue) for each
features, what is the best subset of features to be released for budget B?

• 0-1 Knapsack (NP-complete)

• But release decisions are more political than NP-complete.

• Sensitivity Analysis: requirements data are usually estimates; which
estimation will have the largest impact on the project, if it is off by X%?

Project Management & Planning

• Quantitatively simulate and measure the communication overhead (linear?
logarithmic?)

• Robust planning: search for the tradeoff between overrun risk, project
duration, and amount of overtime assignment

Design/architecture/refactoring

• Cluster software models to achieve certain structural properties (cohesion/
coupling).

• Ironically, SBSE has also been used to analyse refactoring metrics: metric A
and B both claim that they measure the same concept - optimising for A
resulted in worse value of B, and vice versa :)

Genetic Improvement

• Given a source code, can we automatically improve its non-functional properties (such as
speed)?

• Genetic Programming has been successfully applied to make genome-sequencing software
70 times faster. 70!

• W. Langdon and M. Harman. Optimizing existing software with genetic programming.
Transactions on Evolutionary Computation, 19(1):118–135, 2015.

• Evolve a specialised version of MiniSAT solver for problem classes.

• J. Petke, M. Harman, W. B. Langdon, and W. Weimer. Using genetic improvement and
code transplants to specialise a C++ program to a problem class. In proceedings of the
17th European Conference on Genetic Programming, volume 8599 of LNCS, pages 137–
149. Springer, 2014.

Code Transplantation

• Software X has feature A, which you want to have in software Y. Can we
automatically extract and transplant feature A from X to Y?

• E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke. Automated
software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages 257–269.

Summary

• Key ingredients to metaheuristics: representation, operators, fitness function.

• Design dictates solutions - machines are dumb.

• Applications across all software development lifecycle activities, and beyond.

SBSE Repository

• http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

