
Shin Yoo

Introduction
CS454 AI-Based Software Engineering

• Shin Yoo

• PhD at King’s College London, UK

• Assistant Professor at University
College London, UK

• COINSE (Computational Intelligence for
Software Engineering) Lab

• Research interest: SBSE, regression
testing, automated debugging,
evolutionary computation, information
theory, program analysis…

• shin.yoo@kaist.ac.kr

Me

mailto:shin.yoo@kaist.ac.kr

• Reading materials will be either
linked or provided on the page

• http://coinse.github.io/teaching/
2024/cs454/

• Still being updated - sorry!

Course Webpage

http://coinse.github.io/teaching/2024/cs454/
http://coinse.github.io/teaching/2024/cs454/

Course Evaluation

• Assignments (70%)

• Four Individual Courseworks, each with slightly different weighting (to be announced)

• Each assignment is a scaled down real SE problem that you need to solve with optimization/AI
techniques. We will grade based on the following criteria:

• Quality of the solution

• Performance of the solution

• Quality of the implementation & SE practices

• Participate in Slack discussion + Q&A

• Late submission: 0.7 weight if submitted within a week. Submission will not be accepted if it is
late more than a week.

Course Evaluation
New this year!

• Project (30%): put the knowledge you obtained during the class to actual
use.

• Proposal presentation: outline your idea, get feedback.

• Final report: submit your implementation and empirical evaluation.

• Teams of four: start talking about teams right now, I will set up a Google
Sheet where you can register your team members.

• No Exam!

Textbook & reading material

• No textbook (we will read up to the bleeding edge)

• Lectures contain strongly recommend reading lists

• Supplementary books:

• Introduction to Evolutionary Computing, A. E. Eiben & J. E. Smith, Springer

• A Field Guide to Genetic Programming, Ricardo Poli, William B. Langdon, &
Nicholas McPhee (freely available online at http://www.gp-field-
guide.org.uk)

http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Communication

• We will use Slack for all class communication. Invitations will be sent by email
from KLMS, so watch out.

• Join the workspace, no excuse.

Why AI and SE?

(wait, before that…)

What is SE?

Science: intellectual and practical activity
encompassing the systemic study of the structure
and behaviour of the physical and natural world

Mathematics: abstract science of number, quantity, and
space, either as abstract concepts or as applied to

other disciplines

Engineering: branch of science and technology
concerned with the design, building, and use of

engines, machines, and structures

Software as science

- Precise computation and algorithm

- Study of truth

- Simplicity of theory

Software as engineering

- Consideration of adequate cost

- Study of utility

- Scalability of theory

Science of sorting

#precise #theory #O(nlogn) #provable

Engineering the scalability of sorting
from “History of massive-scale sorting experiments at Google”

https://cloud.google.com/blog/products/gcp/history-of-massive-scale-sorting-experiments-at-google

• Tuning cluster
configuration

• Changing the file system
entirely + new encoding
to reduce write amount

• Hardware tuning (I/O
block size + SSD)

• Correctness check only
came in 2010 :)

Science

• Is the theory correct?

Engineering

• Is the implementation correct?

• If it is not, how do we find out?

• How can we commit fewer mistakes
while implementing?

• How can N members collaborate
effectively and efficiently?

• How can we reduce the development
cost?

• How can we maintain quality when
team members change?

• As long as there were no
machines, programming was no
problem at all; when we had a
few weak computers,
programming became a mild
problem, and now we have
gigantic computers,
programming has become an
equally gigantic problem. —
Edsger Dijkstra, The Humble
Programmer, Communications of
the ACM, 1972

Software Crisis

NATO conference 1968

• …concluded that software engineering should use the philosophies and
paradigms of established engineering disciplines, to solve the problem of
software crisis.

In other “established engineering principles”…

• Things that can help you build the real product:

• Theory

• Modelling / Simulation / Optimization

Let’s say we want to build a steel
bridge.

• When does a steel beam break?

• Stress: force per unit area

• Tensile strength: the maximum
stress a material can resist

Theory

• Given the physical laws as the
foundation, it is possible to build
simulations.

Modelling/Simulation

• Note that in all other engineering
fields, computing now provides
the means of modeling,
simulation, and optimization

• Because, otherwise, these
activities become too expensive
and time consuming

Role of Computation

VS.

But in our case, computation is the ingredients!
(Plus we lack unified theory of how software is supposed to work)

Bridge

Building

Theory Modelling Simulation Product

Real

WorldAbstract Computation Computation

Software

Engineering ComputationBest

Practices ? ?

Essential Properties of SW
as pointed out by Brooks Jr. in 1987

• Complexity

• More complex than any other human constructs for their size (no two parts
are identical, because we would factor them out)

• Scaling up does not mean making the same thing larger

• Conformity

• Physicists firmly believe that there is a unified theory of things

• Most of complexity in SW is arbitrary - SW has to conform to countless
many things (institutions, systems, users, regulations…)

Essential Properties of SW
as pointed out by Brooks Jr. in 1987

• Changeability

• Compared to other engineering products, SW is more frequently pressured to change

• If a software system is useful, people will try new edge cases at the borderline of the
original domain

• A successful software can outlive the underlying hardware, and therefore has to adapt

• Invisibility

• SW cannot be easily embedded in space and therefore has no useful geometric
representation

• Without visual representation, communication and design becomes much more difficult

Modelling / Simulation in SE is not new

• We have had numerous attempts to
invent a thoroughly expressive
modeling language for software
(UML, anyone?)

• To start with abstract models,
gradually refine and transform them
into lower layers, until we have
implementations —> the holy grail of
model driven software engineering

• Why did this not work…? :)

Search-Based Software Engineering

• A large movement(?) that seeks to apply various optimisation techniques to
software engineering problems (NOT search engines or code search) - still
relatively young (by academic standards), as it started in early 2000s

• Turns the notion of modeling/simulation upside down

• Other fields: physical product —> model in computation —> optimization —>
find solution —> build in physical world

• SE: product in computation —> directly optimize —> product in computation

• We are perhaps the only engineering field where the ingredients for real product
and its computation model is… the same (i.e., code).

Code, in production AND in modeling

• We can apply all known computational optimization techniques directly to our
product. Here are examples that will not work in other engineering field:

• We can repeatedly execute our code (millions of times), to find a test input
that will break the code (can you do crash test with million cars?)

• We can automatically find patches for bugs, so that all test cases pass (can
you automatically correct a flaw in a building by actually applying different
candidate patches in real world?)

SBSE is about application of optimization to SW

• A major part of CS454 is to understand this approach

• Learn the underlying algorithms (mainly because no other course teaches them)

• Look at individual application areas in SE related tasks

• Why do we want to look at SE tasks as optimization problems?

• Automate SE tasks (either fully, or at least until human engineers can attend to the
issue)

• Gain insights into complicated problem domain that are either too large or too
complicated for humans to understand

• Unbiased decision support that is data-driven

Another Important Angle

• CS454 is named AI-based Software Engineering, Initially, this meant that we
use AI based techniques to solve SE problems (AI for SE).

• Increasingly, we need to solve SE problems in AI (SE for AI). Most importantly,
there is an urgent need to test machine learning modules in larger
systems.

• Very early stage, but we are going to look into this.

What about that AI?

• We are typically interested in problems that cannot be easily modeled
mathematically. E.g.,

• What is the expected speed-up in program execution if I add 10 to the value
of this variable?

• Will I get closer to executing this function if I change my input value by 2?

• When your problem defy any model, the only way of measuring what works
and what does not is to actually try.

• Metaheuristics is an art of trial and error (we will see more about this next time)

• We stand at the intersection of
computational intelligence and
software engineering.

• Pragmatic application has
stimulated theoretical results in
computational intelligence, and
vice versa.

• Course: about 40% on
optimisation techniques, 60% on
applications on SE

Our Stance

