
Shin Yoo

Structural Testing
CS454 AI-based Software Engineering: Tutorial for SBST



What is structural testing?

• Structural testing measures the quality of testing based on the internal 
structure of the code. For example,


• we can ask “have I tested all variable declarations?”


• but can’t ask “have I tested all functionalities in the requirement 
documentation?”


• It is most relevant to unit testing, where your view of the entire system is at 
the code level



What does it really mean?



In industry at the time of writing

• Organisations strive to reach less than 100% coverage (if they care at all)


• Statement and branch coverage are used widely


• Certain industry, e.g. avionics, legally require 100% coverage


• Over 75% is practically regarded as good enough, but research claims that you need 
at least over 90% for satisfactory fault detection:


• Hutchins, Foster, Goradia and Ostrand, ‘Experiments on the Effectiveness of 
Dataflow- and Controlflow-Based Test Adequacy Criteria’, Proc. 16th Int’l 
Conference on Software Engineering (ICSE-16), 1994


• Many tools exist to measure coverage of all kinds described here



Test Data Generation

• Very active research area in automatically generating test input to achieve these 
criteria during the last 10 years; mature enough to get a big break


• The big question: can we generate a test suite that achieves (branch/statement/All 
Path) coverage automatically?


• Traditional tools:


• You. Think and write down.


• Random: generate random inputs until you cover everything (not very likely in 
some cases)


• User session: but they weren’t testing really



Cutting Edge Techniques

• Search-Based Testing can cover an arbitrary statement/branch you want - 
repeat until you reach 100%


• Dynamic Symbolic Execution (aka Concolic Testing) achieves path coverage 
(the former CS453 was big on this topic: there is a CS492 Special Topic in CS 
taught by Prof. Moonzoo Kim)


• Both techniques are based on what we call Path Conditions



Path Condition

• A collection of predicates that leads the 
program execution down to a specific 
path

x=1

if

z=1

x=2

y=50

while

z=z+1

y=0

E

if

What is the path condition?

y > 13 && w == 4

if(y > 13) x=1; else x=2; 
y = 50; 
if(w == 4) z = 1; 
else{ 
 while(...) 
 z = z + 1; 
} 
y = 0;



Path Condition

• If you obtain a set of input values that satisfies a given path condition, you 
cover the corresponding path


• Search-Based Testing converts the path condition into a fitness function and 
uses meta-heuristic search to find the values


• DSE uses constraint solvers to find the values



Search-Based Testing

• General Idea


• Convert path conditions into a mathematical fitness function


• Use meta-heuristic search algorithms to maximise/minimise this function


• start with one or more random input values


• essentially, you try slightly different solutions every time and pick the one that 
is fitter


• repeat with the fitter solution


• When the goal is met, you have your test input values



Search-Based Testing

• Fitness function for branch coverage = [approach level] + normalise([branch 
distance])


• For a target branch and a given path that does not cover the target:


• Approach level: number of un-penetrated nesting levels surrounding the 
target


• Branch distance: how close the input came to satisfying the condition of 
the last predicate that went wrong



Branch Distance

• If you want to satisfy the predicate x == y, you convert this to branch 
distance of b = |x - y| and seek the values of x and y that minimise b to 0


• then you will have x and y that are equal to each other


• If you want to satisfy the predicate y >= x, you convert this to branch 
distance of b = x - y + K and seek the values of x and y that minimise b 
to 0


• then you will have y that is larger than x by K


• Normalise b to 1 - 1.001^(-b)



Branch Distance

Predicate f minimise until..

a > b b - a + K f < 0

a >= b b - a + K f <= 0

a < b a - b + K f < 0

a <= b a - b + K f <= 0

a == b |a - b| f == 0

a != b -|a - b| f < 0

B. Korel, “Automated software test data generation,” IEEE Trans. 
Softw. Eng., vol. 16, pp. 870–879, August 1990. 



Fitness Function

if(c >= 4)

if(c <= 10)

if(a == b)

target

Test input (a, b, c), K = 1

(11, 2, 1)

Falseapp. lvl = 2 
b. dist = 4 - c +1 

f = 2 + (1 - 1.001^-4) = 2.004

False

True

False

True

True

(11, 2, 11)
app. lvl = 1 

b. dist = c - 10 + 1 
f = 1 + (1 - 1.001^-2) = 1.001 

(11, 2, 9)
app. lvl =0 

b. dist = |11 - 2| 
f = 0 + (1 - 1.001^-9) = 0.009 

(2, 2, 9)

app. lvl =0 
b. dist = |2 - 2| 

f = 0 + (1 - 1.001^0) = 0


