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Software Engineering & Artificial Intelligence

* AI4SE: using Al to assist and automate SE tasks

o Search-Based Software Testing (metaheuristic optimization for test
generation), Defect Prediction (machine learning for predicting whether a
commit may be faulty or not), LLM-based code generation (generative
language model for programming and/or testing)...

 SE4AIl: using SE technigques to improve and utilize Al
» Testing robustness of DNN models/LLM-based agents...



SE4Al: what can SE do for Al? ;)



Al/ML as Computation Method

* We often talk about Al/ML as the next generation computing paradigm, but
what do we exactly mean?

* [raditionally, software means something written by humans - we may not
have done it very well, but we did it our way nonetheless.

ML as a software component - what are the implications for testing?



Traditional Code
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Outputs are not exactly discrete

if (a + b <= ¢) {
return TriangleType.INVALID;

} else 1f (a == b && b == ¢c) {
return TriangleType.EQUALATERAL;

} else if (a == b || b == ¢c) {
return TriangleType.ISOCELES;

} else {
return TriangleType.SCALENE;
}
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Inputs are more complicated, perhaps even stochastic &

42) ..




Can we (randomly) sample these inputs?

https://www.technologyreview.com/the-download/611380/researchers-have-released-the-largest-
self-driving-car-data-set-yet/



Very little to cover, at least structurally ©
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Training seems less competent than programmers
(behaviour are not discrete)

automobile to bird automobile to frog ~ automobile to airplane automobile to horse
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Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Safety verification of deep neural networks,
laowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)



https://arxiv.org/abs/1610.06940

Training seems less competent than programmers @9

(behaviour are not discrete)
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, i Figure 4. Directly encoded, thus irregular, images that MNIST
“ DNNs believe with 99.99% confidence are digits 0-9. Each col-
e — = e umn is a digit class, and each row is the result after 200 generations

Figure 1. Evolved images that are unrecognizable to humans, of a randOm]y Se]eCted, independent run of evolution.
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (fop) or indirectly (bottom) encoded.

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427—-436, 2015.




Going Metamorphic

Metamorphic testing is a surprisingly effective conceptual tool
for testing DNNs (at least so far).

Given that DNN( ) produces the output “car”,

) should also produce the output “car”.

Input MR: images are perceptively identical to human eyes.
Output MR: class labels should be identical.



Existing work on DNN Testing

 Coverage Criteria/Test Adequacy: given sets of inputs, or pairs of inputs, tries
to quantify how effective they are for testing, i.e., is set/input A more likely to
reveal unexpected behaviour than set/input B?

* Test Input Generation/fuzzing: typically tries to transform valid inputs into
adversarial examples (note: sampling from the scratch is hard)

 Mutation Testing: can we do better testing via mutation? But what does it
mean to mutate an DNN model?



Adequacy Criteria



Adequacy Criteria

 With traditional software, the
code embodies the logic of the
program. Which is why structural
coverage can work as an
adeqguacy for testing: more code
being executed is correlated with
more diverse logical behaviours
being explored.

* DNN code DOES NOT embody
the logic. In fact, hardly anything
to explore.

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
Xx_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential(]|
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(6.2),

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

]

model.compile(optimizer="adam"',
loss="sparse_categorical_crossentropy’,
metrics=["accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-
level-apis-in-tensorflow-2-0-bad2b04c819a



Test Adequacy for DNNs

* (Given two sets of inputs, how do we know which one is better for testing
DNNs?

e The more diverse one.



Structural Adequacy Criteria
DeepXplore (SOSP 2017), DeepGuage (ASE 2018)

Neuron Coverage k Multi-section Neuron Coverage (kMNC)

ZneN ‘ {S{‘l dx e T: ¢pX,n) € Sl”} ‘
{n|Vx e T,out(n,x) > t}| KMNCov(7, k) = kx [N

| V]

NCov(T,x) =

Neuron Boundary Coverage (NBC)

UpperCornerNeuron = {n € N|3x € T : ¢(x,n) € (high,, + o)}
Intuition: inputs that activate more nodes above a given threshold
are using wider and different parts of the network, and therefore LowerCornerNeuron = {n eN|dxeT:¢pXx,n) e (—oo, lown) }
making use of a wider range of learnt features.

| UpperCornerNeuron | + | LowerCornerNeuron |

NBCov(T) = T 1N
K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox X | |
testing of deep learning systems. SOSP 2017.
Strong Neuron Activation Coverage (SNAC)
L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and | UpperCanerNeuron |

Y. Wang. Deepgauge: Multi-granularity testing criteria for deep learning systems. ASE 2018. SNACov(T) —

|V



Distribution Aware Adequacy Criteria
Surprise Adequacy (ICSE 2019)

 Our argument: “A good exam qguestion is one that is reasonably surprising to
the (machine) learner: it should be sufficiently different from exercises in the

textbook, but not so much as to be irrelevant to the course.”

* This notion depends on the existence of training data, as well as the similarity
between the given input and the training data distribution.
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More surprising questions
are harder to answer correctly.

Trick questions (=adversarial
examples) are very surprising.



What are the actual benefits?

* |n the ML context, the actual model correctness for an input is a given
concept - you compare it to the label.

* |n the SE context, the actual model correctness for an input is EXPENSIVE,
as you have to manually label any new input!

* SA has been successfully applied to semantic object segmentation (for
autonomous driving) or NLP tasks such as question answering: both are

tasks that require high labelling cost.



Input Generation / Fuzzing



DNN Fuzzing under Metamorphic Oracles

 Can we break the metamorphic relationship within e-boundary? That is, if
M(i1) = o0, does M(i + €) = o also hold?

 Many domain specific variations on the theme exist, but most existing
approaches are centered around this idea: oracle problem is difficult to beat.



The problem is not ONLY the oracle...

* |n many cases, interesting applications of DNNs handle sensory input (image
and audio) or highly unstructured input (natural language).

 What is a random scene on a road”? How do we sample it?
 What is a random sentence? What is a neighbour of that sentence?

« Random sampling is not so easy now. Many benchmarks are manually
generated (not only labels!).



Extreme Sparsity in Input Space

 MNIST dataset of handwritten digits contains 28 by 28 black and white pixels
(784 pixels).

 The number of all possible inputs: 2784

 The number of all recognisable digit images: 7?7 but probably much
smaller than 2784

 What will happen if we ignore the manifold of meaningful images?



Recall: DNNs are Easily Fooled

Use Genetic Algorithm to generate an imagethat is classified with high confidence
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Figure 1. Evolved images that are unrecognizable to humans, of a randOm]y Se]eCted, independent run of evolution.
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (fop) or indirectly (bottom) encoded.

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427—-436, 2015.




Seed Input + (Adversarial) Mutation

This way, we can tame the dimensionality a bit.

Less Light”

1 Different
(3! 3! 5) Traffic Light?

Fewer cars”?

/
l \(3, 4, 6) Different l
(3, 5, 5) Curve?

More
Pedestrians?

Raining?

Primitive Type Neighbourhood Perceptive Input Neighbourhooa



Domain Specific Manipulation as Input Mutation
DeepTest (ICSE 2018) and DeepRoad (ASE 2018)

1.1 original 1.2 with added rain (a) Snow (b) Rain
Figure 1: A sample dangerous erroneous behavior found by
DeepTest in the Chauffeur DNN. Figure 2: Snowy and rainy scenes synthesized by DeepRoad
A neighbour of a clear weather road scene We really had this coming: applying GAN to mimic weather
Is the same road In a rainy day. condition.

In other words, DeepTest uses weather condition effects
(photoshopped) or noises as a metamorphic relationship on inputs.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. DeepRoad: Gan-
based metamorphic testing and input validation framework for autonomous

Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated testing of deep- driving systems. ASE 2018

neural-network-driven autonomous cars. ICSE 2018



Model-based Input Generation for DNNs
DeepdJanus (FSE 2020)

100 . 100
Parameterised model that produce test inputs for DNNs 50 80
—> super efficient if your domain supports such a model! H
o 50
..’,.... '..... '...‘..
40 Ly 40
1. start_point = (9.0, 20.85)
2. BezierSegment( o 'y o
c1=(9.0, 20.22),
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end_point=(11.70, 14.38)) 0 ®: 0
-20 0 20

Bitmap SVG Model

Figure 2: Bitmap and vector image; model representation of

the image returned by Potrace Figure 3: The model of a road and the corresponding road

V. Riccio and P. Tonella. Model-based exploration of the frontier of behaviours for deep learning system
testing. FSE 2020.



Can we go beyond MR based input search/generation?

 How do we map the semantic space How can we more freely
of inputs to something we can easily . navigate this space”
navigate, and sample from? e
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Variational Auto-Encoders (VAES)

A type of generative model that maps inputs to a latent space

true label: 0 true label: 0

Decoder fum AN

10109A :
juaje| pojdwes %

L )
“
* *
*
0..“

Our genotype (i.e., representation to manipulate)!



VAE + GA = Search Based Input Data Generation

 Representation: a latent vector
that fits our VAE

Fithess: Surprise Adequacy of
the image decoded from a
candidate solution (i.e., a latent
vector)

We visualise the search
trajectory using Activation Trace

(i.e., the output of a specific layer
of the DNN) and PCA

Blue trajectory movement of AT
25

20
15

10

Deceiving Humans and Machines Alike: Search-Based Test
Input Generation for DNNs Using Variational Autoencoders,
Kang, S., Feldt, R. and Yoo, S., ACM Transactions on Software
Engineering Methodologies, 32(4):1-24.



Finding the nearest pairs to the border

Minimise the given fithess function...

... to generate really ambiguous yet realistic-looking images

00 N (i) = N (io)

i) = '
|E(i) — E(ip)| else & ’j a + ) 5

Fig. 6. Ambiguous images generated through GA optimization using Eq. 1 as the fitness function.



Cutting Edge: Diffusion-based Generative Models
Exploring space between two labels (Work in Progress@COINSE)

Minimum distance Following Bezier curve
between two latent points between two patent

Pingpong to golf ball



Mutation lesting of DNNs




How does CPH translate to DNN?

Competent Programmer Hypothesis

« Remember that DNNSs are trained, not (entirely) written.

* Regarding the written part, there are social/human aspects: software
engineers may not be ML experts, resulting in almost correct model
architecture.

 Regarding the trained part, the specification (in the form of training data) may
be almost complete - but it may be missing some outliers!



What about coupling effects?

* Trickier to interpret: what are complex faults for DNNs”? Essentially their
behavior are not interpretable...

 However, there WILL be couplings, as DNN models have wider margin for
mistakes - once while you are designing the model, once again while you are
training :)



How should we ground the mutation ops?
Taxonomy of real faults in DNN (ICSE 2020)

* Mining GitHub repositories &
StackOverflow posts + Developer
Interviews

 Then manually organised them into a
taxonomy of “things that can go
wrong when you build a DNN model

Taxonomy of Real Faults in

Deep Learning Systems

MODEL GPU USAGE API (20+0)
(29+45) (10+1)
missing incorrect wrong missing wrong tensor || GpU tensor is d ted wrong usage ||| wrong usage missing
Model Type & destination state reference to ||| transfer of transferto || used instead of eprAegla & of image ||| of placeholder || argument
: GPU device sharing GPU device ||| data to GPU GPU CPU tensor decoding API|||[restoration API scoping
Properties (6+20) o Pl o o 1400 10 (120} o (1:0) 120)
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TRAINING
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Training Data
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sample size || defined input|| defined ||input & output|| oot S| layer || neurons In the || in convolutional | dimensions data features tra|n|0n1g1data t"a'"'or‘%data tralnén%data training dat categories feature features
for linear layer shape output shape shape layer (140) layer layer mismatch (1+12) (1+6) o 08 O 'a‘"('.?f’.) ata (0+1) {0+2) (0+2)
640 2+0) @+1) 40 (1+1) (0+6) (0+1) ©+9)
Training Process Preprocessing of Training
(0+14) Data (13+37)

wrong tensor
. shape (wrong || wrong tensor | \tensor shape
shape (missing sh.ape (wrong output shape (other) mismatcr?
squeeze) indexing) padding) (13+3) (0+2)
(5+0) (2+0) (1+0)

wrong tensor || Wrong tensor

. wrong input || wrong format
wrong input format for of passed

format ANN weights
(1+5) (2+0) (1+0)

incompatible
tensor type
(1+0)

wrong shape ||wrong shape

of input data

for a method
(6+0)

of input data

for a layer
(16+2)

wrong type

of input data

for a method
(4+0)
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of input data
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(1+0)

wrong shape

of input data
(0+5)

wrong type
of input data
©+3)

wrong )
management of referenr_:e_for rr_\o_del too _tng to missing data redundant
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memory memory augmentation .
resources checkpoint ©+3) augmentation
(0+4) 0+ ©9 (0+1)
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N Loss Function step (subsampling, : y
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function low calculation to zero loss function o) ¢ fling,
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Pre-training Mutation
DeepCrime (ISSTA 2021)

* Design mutation operators that mimic the human mistakes in the taxonomy!
* Your “test” dataset should be able to distinguish the mutated model.
* But there are issues:

 Each mutant needs to be not only compiled but trained —> serious cost.

 What does it mean to kill (distinguish) a mutated model? If we are talking
about “differences in model performance”, should it be statistical? This
incurs further cost (training of multiple instances, etc)



Table 1: Mutation operators implemented in DEEPCRIME. Column “ST” indicates the type of search used to find killable con-
figurations (B = binary; EL = exhaustive on list; EU = exhaustive on user provided values).)

Group Operator ID Mutation Parameters ST
. label — ticular label t tat -
Change labels of training data TCL avet — a pattelial aber 1o Htate :
percentage — a percentage of data for the given label to mutate B
Remove portion of training data TRD | percentage — a percentage of training data to delete B
Training Data Unbalance training data TUD | Percentage — aope.:rcentage of training data of underrepresented/selected labels to remove in order to un- B
balance the training data
Add noise to training data TAN | percentage — a percentage of training data to mutate B
Make output classes overlap TCO | percentage — a percentage of training data to mutate B
Change batch size HBS | new batch size — new batch size to be used to train the system under test EU
Decrease learning rate HLR | new learning rate — new learning rate to be used to train the system under test B
Hyperparameters Change number of epochs HNE | new number of epochs — new number of epochs to be used to train the system under test B
Disable data batching HDB | — -
Change activation function ACH layer — .the .number .of a layer With nqn-linear .activation function to mutate. EL
new activation function — new activation function for the layer under mutation EL
L. : Remove activation function ARM | layer — the number of a layer to mutate EL
Activation Function ——— — .
. : layer — the number of a layer with linear activation function to mutate EL
Add activation function to layer AAL . : . . :
new activation function — new activation function for the layer under mutation EL
Add weights regularisation RAW layer —.the number.of a layer with no Weights regularisz.atio.n to mutate | EL
new weights regularisation — the type of weights regularisation to be added for the layer under mutation EL
Change weights regularisation RCW layer —.the number.of a layer with existing .Weights regl.llar%sation to mutate | EL
new weights regularisation — the type of weights regularisation to be added for the layer under mutation EL
Regularisation Remove weights regularisation RRW | layer — the number of a layer with existing weights regularisation to mutate EL
l — th ber ofad tl EL
Change dropout rate RCD aer © MUMIDEL OF & Gropout fayer :
new dropout rate — new dropout rate for the layer under mutation EU
Change patience parameter RCP | new patience value — new value for the patience parameter of the EarlyStopping callback B
: e e l — th fal EL
Change weights initialisation WCI aer .t © numb ob O a YLt to mutate e 1 :
new weights initialisation — new type of kernel initialiser for the layer under mutation EL
Weights Add bias to a layer WAB | layer — the number of a layer with no bias to mutate EL
Remove bias from a layer WRB | layer — the number of a layer with bias to mutate EL
Loss function Change loss function LCH | new loss function — new loss function to be used to train the system under test EL
Ootimisation Funct Change optimisation function OCH | new optimisation function — new optimisation function to be used to train the system under test EL
PHITHISALION Fuiction Change gradient clipping OCG | new gradient clipping — new value to be used for gradients clipping EU
Validation Remove validation set VRM | — —




Post-training Mutation
MuFF (https://arxiv.org/abs/2501.09846)

 What is the final impact of pre-training mutation? It results in a different set of
DNN weights.

 What if we mutate the weights directly?
* Pros and Cons
* +: Significantly faster!

» - mutation —> slightly changed decision boundaries —> need better (i.e.,
closer-to-boundary) inputs —> can we justify? what do the mutants mean?


https://arxiv.org/abs/2501.09846

Al4SE: How does Al help SE?

Answer: in so many different ways... but here we focus on the recent applications of LLMSs.



“What do you expect from an LLM?”



Let’s go back to 2012

Hindle et al., ICSE 2012

* One of my favourite papers: On Naturalness of Software (https://dl.acm.org/
doi/10.5555/2337223.2337322)

* “Programming languages, in theory, are complex, flexible and powerful, but
the programs that real people actually write are mostly simple and rather
repetitive, and thus they have usefully predictable statistical properties that
can be captured in statistical language models and leveraged for software
engineering tasks.”

e But what is “naturalness”?


https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322

John: Hi, nice to meet you. How are you?

Mary: I’'m , . ?

a) fine, thank you. And you?

b) okay, | guess. But why?



What about code?

* |tis not “natural”, in the sense that we have artificially created the grammar
for programming languages.

 Programming languages do evolve, but how?
* Intentionally”? New grammars, language consortiums, etc...

* (GGradually? Languages do affect each other, a newer and more popular
style eventually gets accepted, etc...



Python: for Java: for

a) 1inrange a) iin range

b) (inti=0; b) (inti=0;



Statistical Language Model

» Given a set of tokens, &, a set of possible utterances, & *, and a set of actual
utterances, & C J *, a language model is a probability distribution p over utterances

se &, ie., Vse &0 < pls) < 1/\2p(s)=1

seES

» An utterance (or a sentence) is a sequence of tokens (or words). Suppose we have N
tokens, a,, a,, ..., ay that consist s. What is p(s)?

« p(s) = play)p(a, | al)P(Clg, | a, . a,)p(ay | ay, ,, 613)- - -P(aN‘ 611---51]\7_1)

 But these conditional probabilities are hard to calculate: the only feasible approach
would be count each utterance that qualifies, but & is too big, let alone I *.



N-Grams

 Assumes a Markovian property, I.e., the next token is influenced only by those
came immediately before (say, within the window of n tokens)!

» p(a;|ay...a;_y) = pla;|a;_za;,_»a;_;)
e This is now much more tractable:
count(a;_,,a;_»,a;_1,a;)
. pla; | a;_30;_o0;_1) = DN
count(a;,_z,a;_»,a;_1, ™)

* (Given some context, we can now compute the probability of the candidate
token that comes next. In other words, we can predict the next token!



Large Language Model

(really, a very large and powerful statistical language model)

 Mainly Transformer-based DNNSs that are trained to be an auto-regressive

language model, i.e., given a sequence of tokens, it repeatedly tries to predict
the next token.

* They seem to get the semantics of the code and work across natural and
programming language, which is unprecedented!

 But they are inherently restricted as a statistical language model.

 No memory/state, no background/domain knowledge...



Code is a unique artefact because it executes.
(And we’ve been doing dynamic analysis for a long time)

Candidates

NL + LLM P|pel|ne PPPPPP +{ LLM > \_ | L | Answer

B e 1

Factchecking
i‘ ®

Isn’t this testing? :)

PL/NL + LLM Pipeline Promet UM >




Execution-Based Filtering of LLM Output
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)

* Any test that does not
_LPrompt [ : et | fail in the buggy version
® crampte _ el @ are filtered out!
g |- | =i
xamp le 0 o ek ! o .
Bug Report e Test : Q . Q _@1‘_;‘:[_: : Fallure type and error
: el mesSsages are
: O considered when
o (A) Prompt 0 ol BLLM [ <>_(C) Post- _o: [ Selecﬁon“; . Clusterlng tests —>
Engineering Querying processing : & Ranking : Iarger CIUSterS are mOre

--------------- reliable
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LLMs will generate incorrect comments. But...
Kang, Milliken & Yoo (https://arxiv.org/pdf/2406.14836)

EI’II’OHGOUS IDOCume!ntS by Lll—M All Inaccurate Comments from GPT-3 (58)

StarCoder |—> etc. (2) (see supplementary)
BN Clearly Wrong Halluci- |Hallucinating

Suspected Right Intent (7) (10) Mischaracterization (20)

B Clearly Right

GPT-4

i i | |
0.0 0.2 0.4 0.6 0.8 1.0 Difficult context required to avoid error Less context necessary to avoid error

Figure 1: Comment factual accuracy by generating LLM. Figure 2: Diagram of error taxonomy for GPT-3 comments.

Evaluating code comment quality is notoriously hard. We tell LLMs to synthesise test cases
based on comments —> if generate test cases fail, comments are not good.


https://arxiv.org/pdf/2406.14836

Test Pass Rates Correlates with Doc Quality
Kang, Milliken & Yoo (https://arxiv.org/pdf/2406.14836)

Test Pass Rate

(a) Pass rate by accuracy, with 95% (b) ROC graph of correctness esti-
mator with actual correctness.

Test Pass Rate by
Document Accuracy

Inacc. Behavior Inacc.

Accurate
Document is...

confidence intervals.

Figure 4: Relationship between comment accuracy and sug-

gested indicators.

True Positive Rate

Correctness Estimator Predicts

Behavioral Correctness

1.0

0.8 -

0.6 1

0.4 1

0.2 1

/

+—— Estimator (AUC = 0.67)

’
¢ ==: Chance level (AUC =0.5)

0.0

0.0

02 04 06 0.8
False Positive Rate

1.0

Average Precision

ROC-AUC

DocChecker
Deep-JIT
GPT-3-NoCoT
GPT-3-CoT
BLEU
SentenceBERT
CodeT5
CodeBERT
CID
DocTesting

0.7

Figure 5: ROC-AUC and AP values compared with baselines.
For our approach (blue), we present the mean value from five
runs, along with its 95% confidence interval.

If we then tell LLMs to synthesise test cases based on comments
—> the pass rate of generated tests correlates with comment quality.


https://arxiv.org/pdf/2406.14836

Zero-shot Automated Debugging

Kang et al., EMSE 2025 (https://arxiv.org/abs/2304.02195)

Pipeline (A-E)

<
Construct Hypothesize Observe Conclude
Prompt via LLM via execution via LLM
Annotated Run (1-10) N - Y . e e ____________________
1
----------------------------- Hypothesis: The input 8 iS even. : I
S Y Perhaps the condition on line 5 is !
clentiftic classifying the input as odd. ' I Conclusion: The
Debugging Prediction: n%2==0 will be false. i Observation: True | hypothesis is rejected.
Explanat'ion Experiment: b debugging.py:5 ;; c : I
;i p (n%2==0)" ! |
............................. I 1
The LLM makes a hypothesis The debugger verifies The LLM judges the
Debugging about what the bug is, and an by performing the hypothesis (here, to
Problem experiment to run. experiment. be incorrect).
Description
e ' :
1
was REJECTED. Perhaps the I ;
1 def f(n): condition.. is classifying the : I )
2 # Evaluate if n can be input as less than or equal to 8. L —3| opservation: False L ﬁ°“°1E319“-_The g
3 # written as the sum of 4 Prediction: n>8 will be false. : : ypothesis 1s supported.
4 # positive even numbers. Experiment: 'b debugging.py:5 ;; ¢ | |
5 return n%2==0 and n>8 . >g)" I
;5 p (n>8) ! ,
1

fails on the test
assert f(8) == True, f(8)

with the error message

AssertionError: False

Append to prompt
after generation

Solid boxes: generated by
debugger / test execution

The prior hypothesis was
rejected; the LLM suggests
n>8 is problematic.

This time, the
debugger confirms the
prediction.

The LLM deems the
hypothesis correct.

______l______.l

was SUPPORTED. Perhaps it should
be changed to n>=8.

Prediction: If the condition on

line 5 is changed to n>=8, the
test will pass.
Experiment: "REPLACE(5, "n>8",

"n>=8") AND RUN

The LLM generates a custom

command to fix the code and
execute the failing test.

Observation:
[No exception triggered]

|

Due to the fix, the

failing test passed.

Conclusion: The
hypothesis is supported.
<DEBUGGING DONE>

1
1
1
!

The LLM signals that

debugging is done
(<DEBUGGING DONE>).

54

def f(n):
return (n%2==0 and
n>=8)

Fix is generated;
the developer may
check the process
(steps 1-9)
on request.

It hypothesise about the
bug, but then can also
validate its own hypotheses
dynamically using
debugger.


https://arxiv.org/abs/2304.02195

Dynamic Feedback enables Autonomy
Yoon et al., ICST 2024 (https://arxiv.org/abs/2311.08649)

-

: & Working Memory (Short-term Memory) £ Widget Knowledge Memory (Spatial Memory)
(T 7

, GUI State , o C l : | Widget-wise observations

— . urrent GUIl State |1 Previous GUI State
: Describer } T : —— ouch | | ,
"""""""" | |
Current action || observation || action observation | — | o :
—— Task +critique scroll [ |
[New Task] Create a new flashcard in coun

the "My Deck" deck

T

[ACTION] Fill a textfield that has content_desc
"Front" with "What is the capital city of France?"

[OBSERVATION] [...] has been filled with the text
“What is the capital city of France?” 1 e ~

- : —— ' self-
[ACTION] Fill a textfield [...] with “Paris ACtOI‘

[ Widget Retriever ]

critique J Task

Termination

Task
Initiation

Reflector

Planner

~

|
|
Observer !
|

—
[Task Result] Person X successfully

created a new flashcard in the "My Deck"
deck with the question]...]

[Reflection] The app provides a
dropdown field to select the deck]...]

T —

[New Task] Attach a photo to the
flashcard

Retrieve

T

Summary of Task 2

[Reflection] The app allows users to add
(Failure)

images, audio, and advanced|...]

Initial Knowledge [ Summary of Task 1 ][

. New Task
(Success)

Summary

@ Virtual User Profile

[New Task] Attach an audio clip to the
flashcard]...]

M of [PERSONAJ’

Ultimate Goal of [PERSONA]

[PERSONA] started [APP_NAME]

~

Task Reflection 1

Task Reflection 2

Task Reflection 3

Task Reflection 1
Task Reflection 2

Task Reflection 3

Task Reflection 1
Task Reflection 2

Task Reflection 3

Fig. 1. Overview of DROIDAGENT with a task example.



https://arxiv.org/abs/2311.08649

LLMs for Software Engineering

So many things happening all around us, but for now | would say:

« “Chat” may not be an ideal platform to iteratively refine your solution: you
need additional information source, ideally dynamic feedback from concrete

executions

 “Agents” seem to be the next wave of change: LLMs will drive the problem
solving “strategy” while various external parts are providing information.

 Even multi-agent architecture: a single application, inside which multiple
LLMs are doing a range of sub-tasks, collaborating with each other.

 We need to learn how to build these agents well, not to mention test <— very
little known so far.



We are still in the Chinese room

John Searle, “Mind, Brains, and Programs” in 1980

* Suppose we have a computer program that
behaves as if it understands Chinese
language.

* You are in a closed room with the Al program
source code.

« Someone passes a paper with Chinese
characters written on it, into the room.

* You use the source code as instruction to
generate the response to the input, and sends
the response out of the room.

* Do you understand Chinese language, or not?

B N A TR T ayy
N W W R — -

T W W . S— — 2 o o—

. W WS, oA R, que | TR S S S R
————— -“w_ =
-—-m - R — ‘»aﬂ/z\’?




Summary

* Al/ML model as part of larger software system will be the future - but this calls
for very new approach towards testing.

 |LLMs are THE topic right now, but there are also so much hype:



Using Large Language Models

Language Models are Autocomplete Machines

goling

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

(image from thegradient.pub)
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Using Large Language Models

Formulating bug reproduction as autocomplete

Listing 1: Example prompt without examples.

# NaN 1in "equals” methods

## Description

In "MathUtils"”, some "equals” methods will return true if both argument
are NaN.

Unless I'm mistaken, this contradicts the IEEE standard.

If nobody objects, I'm going to make the changes.

## Reproduction
>Provide a self-contained example that reproduces this 1issue.

o ...

public void test

The first part of the prompt presents the bug report.

14



Using Large Language Models

Formulating bug reproduction as autocomplete

Listing 1: Example prompt without examples.

# NaN 1in "equals” methods

## Description

In "MathUtils"”, some "equals” methods will return true if both argument
are NaN.

Unless I'm mistaken, this contradicts the IEEE standard.

If nobody objects, I'm going to make the changes.

## Reproduction
>Provide a self-contained example that reproduces this 1issue.

o ...

public void test

The second part increases the likelihood of a bug-reproducing test

(from a language distribution perspective).

15



Using Large Language Models

LLMs are known to benefit with examples

>Provide a self-contained exanple that reproduces this issue,

public void testNumberutils () {
assertEqualsilong.valueOf (6x80000000L), NumberUtils.createNumber(*0x80000060" ) );
}

# #1067 Incorrect date parsed when week and month used together
#¢ Description
I have Tollowing code snippet

DateTimeFormatter dtT = DateTimeFormat. forPattern( "xXxxxMM'w'ww" ) ;
DateTime dt = dtf.parseDateTine("201101w01");
System.out.printin(dt);

t should print 2011-01-63 but it is printing 2010-01-04.
r B -
Please et me know AT 1 am doing something wrong heéere

#¢ Reproduction
>Provide a self-contained example that reproduces this 1ssue,

public void testlIssueld7() {
DateTimeFormatter dtf = DateTimeFormat. forPattern( "xXxxxMM'w'ww");
DateTime dt = dtf.parseDateTime(*2011601wO1*);
assertbEquals(2011, dt.getYear());
assertEquals(l, dt.getMonthOfYear());
assertEquals(3, dt.getDay0ofMonth());

# {{title})}

## Description

i{content}}

## Reproduction

>Provide a self-contained example that reproduces this 1issue.

public void test
{{endon}}:

A prompt template we used for experiments.

Note the example answers (highlighted).

16



Using Large Language Models

Given a prompt, sample N candidate tests.

o
[

Bug Report

Report

LLM

LLM-portion of LIBRO algorithm - note the prompt and N samples.

(in our case, we sampled N=50 tests as default.)

17



Postprocessing LLM Results

Showing 50 tests 1s infeasible

Etestl {
: filler;

 filler2;

1 test37 {
1+ filler;
! filler2;

test2 {
+ filler:;

filler2;

: test3 {
. filler;

filler2;

: testd |
+ filler;

 filler2;

' :testh {

 testS {
. filler;

. filler2;

! test6 {
. filler;
1 filler2;

i test7 {
¢ filler;
¢ filler2;

Etest8 {
: filler;
1+ filler2;

: 5 test9 {

. filler;

! filler?;

ﬁller
ﬁller2

testl] {
¢ filler;
L filler2;

ftest]2 |
1 filler;
¢ filler2;

Etestl3 {
¢ filler;
1 filler2;

E Etestl4 {

: filler;

' filler2;

i testl5 {
¢ filler;
5 . filler2;

1 testl6 {
filler;
Lt filler2;

: ftestl7 {
¢ filler;
¢ filler2;

: test18 {
. ¢ filler;
L filler2;

- testl9 |
1 filler;
¢ filler2;

i i test20

ﬁller

 filler2;

1 test2] {
¢ filler;
L filler2;

1 test22 |
1 filler;
L1 filler2;

Etest23 {
¢ filler;
L filler2;

E Etest24 {

» filler;
: filler2;

! test25 {
¢ filler;
¢ filler2;

test26 {
: filler;

| filler2;

test27 {
ﬁller
ﬁller2

i test38 {
¢ filler;
L filler2;

Etest28 {
¢ Ailler;
1 filler2;

: :test29 { : Etest39 {

. filler;
ﬁller2

L ! test30 {
¢ filler;
L1 filler2;

: test3 1 {
. filler;
.+ filler2;

1 test32 {
¢ filler;
! filler2;

i test33 {
+ filler;
-1 filler2;

: 5 test34 {

: filler;
: filler2;

ﬁller
ﬁller2

= : test35 {

1 test36 {
¢ filler;
L1 filler2;

: filler;

- filler2:

i test40 {
¢ filler;
5 : filler2;

test4l {
: filler;

| filler2;

test42 {
ﬁller
ﬁller2

Etest48 {
+ filler;
1 filler2;

Etest43 {
¢ filler;
1 filler2;

' :test44 { Etest49 {

. filler;
ﬁller2

L ! test45 {
¢ filler;
L ¢ filler2;

! test46 {
. filler;
o filler2;

i testd7 {
. filler;
! filler2;

: filler;
: filler2;

ﬁller
ﬁller2

;  test50 {
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;testl {
. filler;
. filler2;
&

test6 {
filler;
filler2;

test2 {
filler;
filler2;

. filler;
. filler2;

Etest3 {
. filler;
. filler2;
5

Etest4 {
. filler;
filler2;

 testS {
. filler;
. filler2;

Etest8 {
: filler;
filler2;
i)

¢ filler;
! filler2;

filler;
filler2;

)

testl10 ¢

Postprocessing LLM Results

Some might not even compile!

: test3 1 {
. filler;
. filler2;

testl] {
. filler;
. filler2;

1 test]2 {
1 filler;
¢ filler2;

1 testl6 {
filler;
Lt filler2;

: ftestl7 {
1 filler;
¢ filler2;

testl3 {
filler;
filler2;

testl8 ¢
filler;
filler2;

: test14 {
1 filler;
! filler2;

EtestIS {
. filler;

. filler2;
¥

Etest19 {
1 filler;
1 filler2;
)

test20 {
filler;
filler2;

)

1 test2] {
¢ filler;
L filler2;

1 test22 |
1 filler;
L1 filler2;

Etest23 {
+ filler:;
filler2;

test24 {
filler;
filler2;

Etest25 {
. filler;

: filler2;
)

. filler;
. filler2;
g

test27 {
filler;
filler2;

Etest28 {
¢ Ailler;
1 filler2;
__________________ SN
Etest29 {
¢ filler;
1 filler2;
)

L ! test30 {
¢ filler;
L1 filler2;
B

: filler;
L filler2;

i test33 {
+ filler;
filler2;
i)

test34 {
filler;
filler2;

Etest35 {
. filler;

. filler2;
By

test36 {
filler;
filler2;

;

test37 {
filler;
filler2;

- test38
¢ filler;

: filler2;
By

 test39 {
. filler;
L filler2;

| testd0 |
¢ filler;
1 filler2;
B

! test46 {
. filler;
o filler2;

. filler;
. filler2;
:

i testd7 {
. filler;
! filler2;

filler;
filler2;
)

test43 {
filler;
filler2;

Etest44 {
¢ filler;
1 filler2;
¥

! test45 {
¢ filler;

L ¢ filler2;
By

Etest48 {
+ filler;
+ filler2;

1 testd9 {
! filler;
L ! filler2;

test50 {
filler;
filler2;

b
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LIBRO’s post-processing in three steps

A Bug 2 @1
.......... : DT
T T ¥ ' E
e T i Tl 12 Tl T1 I
T3 S vt R NN BN SV I 0 B PRSP (-
'''''''' T — R —» ™
: ‘e Pt wE e semmmmnat
; PR : SR
_______ e T3E Tn | @

Raw LLM Outputs Execute and Cluster Decide 1f Results Reliable
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Postprocessing LLM Results

Injecting to target files

Listing 2: Example LLM result from the bug report described
in Table II.

public void testEquals() {
assertFalse(MathUtils.equals(Double.NaN, Double.NaN));
assertFalse(MathUtils.equals(Float.NaN, Float.NaN));

}

Select the file with greatest lexical similarity and inject the test; add import statements for unmet dependencies.

filel file2 file3 ... fileN




LIL.M-made
test

Execute Tests. Four results possible:

Compiler

Postprocessing LLM Results

¢

Compile
failures

Compilable
Tests

Execution

©

Passing in
Buggy

Failing-in-

Buggy
(FIB)

o

Inspect

Non-

reproducing

Reproducing
test

4
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Postprocessing LLM Results

Cluster FIB tests with error message

Execute on buggy program

-

Failure Output 1
Failure Output 2

Failure Output 3 Discard

Passing Tests
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Postprocessing LLM Results

Show results only 1f cluster size large enough

Failure Output 1
Failure Output 2

Cluster Size: 3

Accept the generated test set when
maximum cluster size > THRESHOLD

Failure Output 3
T49
T29

Cluster Size: 2

Cluster Size: 1

24



Postprocessing LLM Results

Ranking tests with three heuristics (1)

Q. Which test is more likely to be a correct bug reproducing test?

A1l. (Matching w/ Bug Report) When test outputs include exception type or
observed value that have appeared in the bug report

High
Priority

output matched w/ bug report

not matched

25



Postprocessing LLM Results

Ranking tests with three heuristics (2)

A2. (Consensus level) Tests from larger output cluster are prioritized

High

CLUS SIZE=3 CLUS_SIZE =2
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Recap

Prompt e
o Clusters
. Example |
‘ . Report LLM Testing @""} .
B | :
Bug Report o Test ____ :

. (A) Prompt - . (B) LLM ~ ad (C)Post- | = _ | (D)Selection | _
Engineering Querying processing & Ranking
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Results




Evaluating the Technique

RQI: Efficacy

RQ2: Efficiency

RQ3: Generality

How many bugs reproduced? (D41J) How much resources are required? Are results similar on held-out data?

29



RQ1: Efficacy

Setting reproduced FIB
No Example (n=10) 24 440
One Example (n=10) 166 417
One Example from Source Project (n=10) 52 455
One Example with Constructor Info (n=10) 167 430
Two Examples (n=10, 5th percentile) 61 386
Two Examples (n=10, median) 73 409
Two Examples (n=10, 95th percentile) 184 429
Two Examples (n=50) 251 570
One Example, Crash Bugs (n=10) 69 153
One Example with Stack, Crash Bugs (n=10) 84 155

RQI-1: One-third of all bugs were successfully reproduced.

(a) JCP&D4) Bugs
(all crashes)

(b) JCP/D4J Projects
(with noncrashes)

Crash 19 Paste evo- B ) Paste
14 3 5 Crash® 14~ 11
14 80
LIBRO LIBRO

RQI1-2: LIBRO significantly outperforms baselines.
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RQ2-2: Time cost of each component

TABLE V: The time required for the pipeline of LIBRO

Prompt API Processing  Running Ranking  Total

Single Run <l pus  5.85s 1.23s 4.00s - 11.1s
50-test Run <l us 2925 34.8s 117s 0.02s 4445

The API call and actual execution of the test took the longest amount of time.
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RQ2-3: Selection performance

ROC curve of reproducing bugs selection threshold to precision w/ number of bugs

., 10 . — . s
-— a4 i ook 4
© ]
= 2400 2 o
- 5.6 = # of reproduced bugs O
= E # of all bugs 'O°7-8
3 0.4 o | —— Precision -
a 0. 4 200 0.6
g |

0.2 | .
= ~ —— ROC curve (area = 0.82) e

0. , . ‘ | 0+ . : : =3

%.O 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40
False Positive Rate Threshold

Fig. 4: ROC curve of bug selection (Lett), Effect of thresholds
to the number of bugs selected and precision (Right)

Selecting by counting the failing-in-buggy tests was effective;
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R(Q2-3: Ranking performance

TABLE VI: Ranking Perftormance Comparison between LI-
BRO and Random Baseline

Defects4)

GHRB

accQn (precision)

wefQngggq

accQn (precision)

wefQngggq

[.LIBRO random

[LIBRO random

[LIBRO random

[LIBRO random

QO =i

-]

149 (0.43)
184 (0.53)
199 (0.57)

116 (0.33)
172 (0.49)
192 (0.55)

201 (0.57)
539 (1.54)
797 (2.28)

234 (0.67)
099 (1.71)
874 (2.5)

6 (0.29)
7 (0.33)
8 (0.38)

4.8 (0.23)
6.6 (0.31)
7.3 (0.35)

Our within-FIB ranking technique was better than the random baseline.

15 (0.71)
42 (2.0)
60 (2.86)

16.2 (0.77)
44.6 (2.12)
64.3 (3.06)
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RQ3: Generality

Project rep/total | Project rep/total | Project rep/total
Assert] 3/5 | Jackson 0/2 | Gson 47
checkstyle 0/13 | Jsoup 2/2 | sslcontext 1/2

RQ3-1: LIBRO demonstrating 1t works outside of its (potential) training data.

output cluster size distribution (Defects4)) output cluster size distribution (GHRB)

0.61 |

reproduced 0.257 reproduced
- not reproduced C 0.20- not reproduced
Q0.4 o
4+ -
S 5 0.15
Q Q
S 0.2 2 0.10]
0.051@m & = I
0.0 T : = : : - - ——p |
0 10 20 30 40 50 0-00570 20 30 40 50
output cluster size output cluster size

RQ3-2: LIBRO selection and ranking heuristics generalize to novel data as well.




Successful Example

DateTimeZone.forOffsetHoursMinutes
cannot handle negative offset <1 hour

DateTimeZone.forOffsetHoursMinutes(h,
m) cannot handle negative offset < 1 hour

like -0:30 due to argument range
checking. I used forOffsetMillis ()
instead.

This should probably be mentioned 1n the
documentation or negative minutes be

accepted.

Bug Report: Joda-Time BUG #8

»

»

public void testlssue() {
DateTimeZone tz

DateTimeZone. forOffsetHoursMinutes (0, -30);
assertNotNull (tz);

A test generated by LIBRO

public void testForOffsetHoursMinutes int int() {

assertEquals (DateTimeZone.forID("-00:15"),
DateTimeZone. forOffsetHoursMinutes (0, -15));

A developer-written test



Examples and Failure Analysis

When failures happened, we find that

32.5% are due to a need of complex helper functions;

27.5% are due to low report quality;
20% are due to LLM misunderstanding of report;

15% are due to dependency on external resources;
7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

O O O O O

Need of Helper Definitions

Low Report Quality

Misidentifying the Expected Behavior
Dependency on External Resources
Insufficient LLM Synthesis Length
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Conclusion

Read our preprint!

4

We tackle the problem of
reproducing general bugs from reports.

We propose LIBRO, which combines LLMs and postprocessing
to effectively reproduce bug reports.

Our evaluation shows LIBRO successfully reproduces bugs,
and that its postprocessing heuristics work.

Contact us at sungmin.kang(@kaist.ac.kr / juyeon.yoon(@kaist.ac.kr
Find our preprint with the QR code above, or by searching for “Exploring LLM-based General Bug Reproduction™
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