
Shin Yoo | COINSE@KAIST

Testing Deep Neural Networks
CS453 Automated Software Testing

Caveat Emptor

• Today’s topic is the bleeding edge: I myself probably have more questions
than answers.

• The field is moving extremely fast.

• I will also assume that everyone has the very basic knowledge of Deep Neural
Networks (who doesn’t these days?) but will cover elementary facts :)

Course Re-cap

public class Triangle {
 public enum TriangleType {
 INVALID, SCALENE, EQUALATERAL, ISOCELES
 }

 public static TriangleType classifyTriangle(int a, int b, int c) {
 // Sort the sides so that a <= b <= c
 if (a > b) {
 int tmp = a;
 a = b;
 b = tmp;
 }

 if (a > c) {
 int tmp = a;
 a = c;
 c = tmp;
 }

 if (b > c) {
 int tmp = b;
 b = c;
 c = tmp;
 }

 if (a + b <= c) {
 return TriangleType.INVALID;
 } else if (a == b && b == c) {
 return TriangleType.EQUALATERAL;
 } else if (a == b || b == c) {
 return TriangleType.ISOCELES;
 } else {
 return TriangleType.SCALENE;
 }
 }
}

Testing is really about sampling inputs.

• 32bit integers: between -231 and
231-1, there are 4,294,967,295
numbers

• The program takes three: all
possible combination is close to
828

• Approximated number of stars in
the known universe is 1024

• Not. Enough. Time. In. The.
Whole. World.

우주 전체의 별 갯수(추정):
약 10의 24승개

프로그래밍 초보도 만들 수 있는 프로그램의
가능한 모든 입력값: 약 8의 28승개Number of

stars in the universe
Number of

inputs for a program

that can be the coursework

for Programming 101

Testing is really about sampling inputs.
(from a huuu-u-u-g-eee space)

We can break down complex inputs down
to clearly defined primitives.

@given(st.lists(st.integers()))

@given(st.tuples(st.booleans(), st.text()))

Examples are from
input generator annotations of Hypothesis,

a kind-of Python implementation of Quickcheck.

https://hypothesis.readthedocs.io/en/latest/quickstart.html

We now have very sophisticated sampling methods.

T3

SUSHI

Statement ConditionLoop
Boundary

Branch

LCSAJ

MC/DC

Compound
Condition

All Paths

Condition/
Decision

Boundary
InteriorGenerally impractical

Practical

Testers like coverage (… but why?🧐)

(Borrowed from Dr. Gregory Gay)

“What’s a good code coverage to have?” by Harm Pauw
https://www.scrum.org/resources/blog/whats-good-code-coverage-have

““I expect a high level of coverage.
Sometimes managers require one. There
is a subtle difference.”

https://www.scrum.org/resources/blog/whats-good-code-coverage-have

Q: what do the programmers and the monkeys have in common

when it comes to programming?

A: they write buggy code.

Programmers are pretty competent.

Test oracles are important.

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ !) GðwÞ

and ~D is probabilistically complete iff

GðwÞ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015

E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, May 2015.

Moving onto the DNN world…

Artificial Neural Network

Activation: aj(t)

Threshold: θ

Activation function: aj(t + 1) = f(aj(t), pj(t), θ)

jpj

Output function: oj(t) = fout(aj(t))

Propagation: pj(t) = ∑
i

oj(t)wij

https://en.wikipedia.org/wiki/Artificial_neural_network#/media/
File:Colored_neural_network.svg

https://en.wikipedia.org/wiki/Sigmoid_function#/media/
File:Logistic-curve.svg

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#/media/
File:Rectifier_and_softplus_functions.svg

Deep Neural Networks

Hardware parallelism (GPUs), advances in back-propagation methods,
and other innovations made DNNs surprisingly effective.

DL systems are being adopted in safety critical domains.

Umm, shouldn’t we test these?

“Tesla said shortly after the accident that the car’s sensors failed to
recognize the white truck against the bright sky.”

https://www.siliconvalley.com/2016/07/26/feds-driver-in-fatal-tesla-autopilot-crash-was-speeding/

Traditional Code DL System

Specification Training Data

Logic as
Control Flow

Logic as
Data Flow

Written Trained

Tested Tested

For Faults Faults?

Patched Retrained?

Outputs are not exactly discrete 😨

if (a + b <= c) {
 return TriangleType.INVALID;
} else if (a == b && b == c) {
 return TriangleType.EQUALATERAL;
} else if (a == b || b == c) {
 return TriangleType.ISOCELES;
} else {
 return TriangleType.SCALENE;
}

σ(z)i =
ezi

∑K
j=1 ezj

 for i = 1,…, K and z = (z1, …, zK) ∈ ℝK

vs.

Inputs are more complicated, perhaps even stochastic 😨

vs.

int x = 42;
a du path

if(x == 42){…

Li
gh

tin
g

W
ea

th
er

D
irt

Se
ns

or

Can we (randomly) sample these inputs? 😨

https://www.technologyreview.com/the-download/611380/researchers-have-released-the-largest-
self-driving-car-data-set-yet/

• Space of possible MNIST images (28
by 28): 2784

• Space of meaningful digit images:
size unknown, but much smaller than
2784

• We do not know how to sample only
from the manifold of meaningful
digits

• In fact, DNNs perform well exactly
because they approximate this
manifold well

Semantic Manifold Conundrum 😨

Very little to cover, at least structurally 😨

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
 activation='relu',
 input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

Training seems less competent than programmers 😨😨

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427–436, 2015.

Training seems less competent than programmers 😨😨😨

We will have to learn to reason about probabilistic oracles 😨

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ !) GðwÞ

and ~D is probabilistically complete iff

GðwÞ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ !) GðwÞ

and ~D is probabilistically complete iff

GðwÞ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015

Deterministic Probabilistic

E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, May 2015.

Yes.

“Tesla said shortly after the
accident that the car’s sensors
failed to recognize the white
truck against the bright sky.”

https://www.siliconvalley.com/2016/07/26/feds-driver-in-fatal-tesla-autopilot-crash-was-speeding/

Adversarial Examples

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

Mantra of this course

• AKA things I went on and on and on about:

• Oracle is a mechanism that decides whether the observed behaviour is as
expected….

• Exhaustive testing is not possible, so we rely on adequacy criteria…

• Testing is really all about input sampling….

• Are these still all true with DNNs?

Oracle may not be deterministic 😨

• Logical behaviours are no longer discrete. Unlike branches and equivalence
partitions, there is no clear boundary between decision outcomes of DNNs.

• Inputs are, to some extent, stochastic. Imagine a crossing, for which an
autonomous car is supposed to stop after recognising it. Depending on
sensor status, the same scene can be processed as different bits.

Going Metamorphic

Metamorphic testing is a surprisingly effective conceptual tool

for testing DNNs (at least so far).

Given that DNN() produces the output “car”,

 MT suggests that DNN() should also produce the output “car”.

Input MR: images are perceptively identical to human eyes.

Output MR: class labels should be identical.

Probabilistic Oracles are harder to reason about

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ !) GðwÞ

and ~D is probabilistically complete iff

GðwÞ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ !) GðwÞ

and ~D is probabilistically complete iff

GðwÞ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 5, MAY 2015

Deterministic Probabilistic

E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE
Transactions on Software Engineering, 41(5):507–525, May 2015.

So how do we estimate the
quality of testing?

• With traditional software, the
code embodies the logic of the
program. Which is why structural
coverage can work as an
adequacy for testing: more code
being executed is correlated with
more diverse logical behaviours
being explored.

• DNN code DOES NOT embody
the logic. In fact, hardly anything
to explore.

Adequacy Criteria

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-
level-apis-in-tensorflow-2-0-bad2b04c819a

Test Adequacy for DNNs

• Given two sets of inputs, how do we know which one is better for testing
DNNs?

• The more diverse one.

DeepXplore (SOSP 2017)

NCov(T, x) =
|{n |∀x ∈ T, out(n, x) > t} |

|N |

Neuron Coverage

Intuition: inputs that activate more nodes above a given threshold

are using wider and different parts of the network, and therefore

making use of a wider range of learnt features.

K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, pages 1–18, New York, NY, USA, 2017. ACM.

DeepGauge (ASE 2018)

KMNCov(T, k) =
∑n∈N {Sn

i |∃x ∈ T : ϕ(x, n) ∈ Sn
i }

k × |N |

k Multi-section Neuron Coverage (kMNC)

UpperCornerNeuron = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (highn, + ∞)}

Neuron Boundary Coverage (NBC)

 LowerCornerNeuron = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (−∞, lown)}

NBCov(T) =
| UpperCornerNeuron | + | LowerCornerNeuron |

2 × |N |

SNACov(T) =
| UpperCornerNeuron |

|N |

Strong Neuron Activation Coverage (SNAC)

For (machine) learners, what
is a good test of their
knowledge?

“I want to write good

test questions”

“Good questions should

challenge learner’s knowledge

in diverse ways”

“So I am going to take

a brain MRI while the

learner is taking the exam!”

“The more areas light up,

the more diverse my questions are,

and the better they are too!”

• There is some truths in the
argument, but:

• The correlation between diversity
and neuron activation is very ad-
hoc, and uninterpretable.

• You can only ever compare sets
of inputs: given two individual
inputs, which one is better?

Obvious Limits

• Our argument: “A good exam
question is one that is
reasonably surprising to the
(machine) learner: it should be
sufficiently different from
exercises in the textbook, but
not so much as to be irrelevant
to the course."

Surprise Adequacy (ICSE 2019)

Caveats

• Unlike academic exams, the concept of “reasonably different” is hard to
quantify for ML inputs. More importantly, automating that judgement is even
harder.

• So it turns out we cannot completely escape the MRI-like nature of our
testing approach. That is, we do access the internals of DNNs.

Car

Face

hedge

vedge

...

Nose

Eyes

Wheel

...

...

...

(0.4 0.1 0.2 0.7 0.6 0.5 0.1)

Activation Trace

Summarisation

(KDE or point-cloud)

Learnt Knowledge

(from training data)

Quantitative Surprise Measure of New Input

Against the Summarisation

More surprising questions

are harder to answer correctly.

Trick questions (=adversarial

examples) are very surprising.

What are the actual benefits?

• In the ML context, the actual model correctness for an input is a given
concept - you compare it to the label.

• In the SE context, the actual model correctness for an input is EXPENSIVE,
as you have to manually label any new input!

• SA has been successfully applied to semantic object segmentation (for
autonomous driving) or NLP tasks such as question answering: both are
tasks that require high labelling cost.

What about input sampling?

Input Sampling/Search

• In many cases, interesting applications of DNNs handle sensory input (image
and audio) or highly unstructured input (natural language).

• What is a random scene on a road? How do we sample it?

• What is a random sentence? What is a neighbour of that sentence?

• Random sampling is not so easy now. Many benchmarks are manually
generated (not only labels!).

Taming Dimensionality

(3, 3, 5)

(3, 5, 5)

(3, 4, 4)

(3, 4, 6)

(2, 4, 5)

(4, 4, 5)

Less Light?

Raining?

Fewer cars?

More
Pedestrians?

Different
Traffic Light?

Different
Curve?

(3, 4, 5)

Primitive Type Neighbourhood Perceptive Input Neighbourhood

Extreme Sparsity in Input Space

• MNIST dataset of handwritten digits contains 28 by 28 black and white pixels
(784 pixels).

• The number of all possible inputs: 2784

• The number of all recognisable digit images: ? but probably much smaller
than 2784

• What will happen if we ignore the manifold of meaningful images?

Deep Neural Networks are Easily Fooled: 
High Confidence Predictions for Unrecognizable Images (CVPR 2015)

Use Genetic Algorithm to generate an imagethat is classified with high confidence

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427–436, 2015.

DeepTest (ICSE 2018)

A neighbour of a clear weather road scene

is the same road in a rainy day.

In other words, DeepTest uses weather condition effects

(photoshopped) as a metamorphic relationship on inputs.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 2018. ACM.

DeepRoad (ASE 2018)

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based metamorphic testing and input validation framework for
autonomous driving systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, pages 132–142, New York, NY, USA, 2018. ACM.

We really had this coming: they apply GAN to mimic weather condition.

So far…

• Right or wrong (oracle) is not clear, and

• We do not know which adequacy criteria to target, and

• Searching for input is not as easy as with simpler data.

• Any good news?

Everything becomes a number

• All internal states are numbers.

• Execution path can be captured as a numeric vector.

• Concepts like distance and similarity become much easier to handle against
all types of inputs.

Occlusion

Darken

Different
Weather Condition

Seed

Boundary of correct
functional behaviour

How can we more freely
navigate this space?

Variational Auto-Encoders (VAEs)

Encoder

m
ean

std. dev.

sam
pled latent
vector

Decoder

Our genotype!

• Representation: a latent vector
that fits our VAE

• Fitness: Surprise Adequacy of
the image decoded from a
candidate solution (i.e., a latent
vector)

• We visualise the search
trajectory using Activation Trace
(i.e., the output of a specific layer
of the DNN) and PCA

VAE + GA = Search Based Input
Data Generation

• Search in the latent space using
VAE

• Fitness is the difference in results
between a stupidnet and a
properly trained ResNet

• Start from the original image,
search for the modified image

Search-based Differential Testing

• DNNs require total rethinking of
how we test software.

• Despite a very fast moving
research landscape, we are still
in a very early stage, with many
open questions.

• If you are interested in applied
AI/ML, from a very unique angle,
perhaps…? 🧐

Summary

