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Caveat Emptor

• Today’s topic is the bleeding edge: I myself probably have more questions 
than answers.


• The field is moving extremely fast.


• I will also assume that everyone has the very basic knowledge of Deep Neural 
Networks (who doesn’t these days?) but will cover elementary facts :)



Course Re-cap



public class Triangle {
    public enum TriangleType {
        INVALID, SCALENE, EQUALATERAL, ISOCELES
    }

    public static TriangleType classifyTriangle(int a, int b, int c) {
        // Sort the sides so that a <= b <= c
        if (a > b) {
            int tmp = a;
            a = b;
            b = tmp;
        }

        if (a > c) {
            int tmp = a;
            a = c;
            c = tmp;
        }

        if (b > c) {
            int tmp = b;
            b = c;
            c = tmp;
        }

        if (a + b <= c) {
            return TriangleType.INVALID;
        } else if (a == b && b == c) {
            return TriangleType.EQUALATERAL;
        } else if (a == b || b == c) {
            return TriangleType.ISOCELES;
        } else {
            return TriangleType.SCALENE;
        }
    }
}

Testing is really about sampling inputs.



• 32bit integers: between -231 and 
231-1, there are 4,294,967,295 
numbers


• The program takes three: all 
possible combination is close to 
828


• Approximated number of stars in 
the known universe is 1024


• Not. Enough. Time. In. The. 
Whole. World.

우주 전체의 별 갯수(추정):
약 10의 24승개

프로그래밍 초보도 만들 수 있는 프로그램의
가능한 모든 입력값: 약 8의 28승개Number of


stars in the universe
Number of


inputs for a program

that can be the coursework


for Programming 101

Testing is really about sampling inputs.
(from a huuu-u-u-g-eee space)



We can break down complex inputs down  
to clearly defined primitives.

@given(st.lists(st.integers()))

@given(st.tuples(st.booleans(), st.text()))

Examples are from 
input generator annotations of Hypothesis, 

a kind-of Python implementation of Quickcheck.

https://hypothesis.readthedocs.io/en/latest/quickstart.html



We now have very sophisticated sampling methods.
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Practical

Testers like coverage (… but why?🧐 )

(Borrowed from Dr. Gregory Gay)



“What’s a good code coverage to have?” by Harm Pauw  
https://www.scrum.org/resources/blog/whats-good-code-coverage-have 

““I expect a high level of coverage. 
Sometimes managers require one. There 
is a subtle difference.”

https://www.scrum.org/resources/blog/whats-good-code-coverage-have


Q: what do the programmers and the monkeys have in common

when it comes to programming?

A: they write buggy code.

Programmers are pretty competent.



Test oracles are important.

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ ! ) GðwÞ

and ~D is probabilistically complete iff

GðwÞ ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.
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E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE 
Transactions on Software Engineering, 41(5):507–525, May 2015.



Moving onto the DNN world…



Artificial Neural Network

Activation: aj(t)

Threshold: θ

Activation function: aj(t + 1) = f(aj(t), pj(t), θ)

jpj

Output function: oj(t) = fout(aj(t))

Propagation: pj(t) = ∑
i

oj(t)wij

https://en.wikipedia.org/wiki/Artificial_neural_network#/media/
File:Colored_neural_network.svg

https://en.wikipedia.org/wiki/Sigmoid_function#/media/
File:Logistic-curve.svg

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#/media/
File:Rectifier_and_softplus_functions.svg



Deep Neural Networks

Hardware parallelism (GPUs), advances in back-propagation methods, 
and other innovations made DNNs surprisingly effective.



DL systems are being adopted in safety critical domains.

Umm, shouldn’t we test these?



“Tesla said shortly after the accident that the car’s sensors failed to 
recognize the white truck against the bright sky.”

https://www.siliconvalley.com/2016/07/26/feds-driver-in-fatal-tesla-autopilot-crash-was-speeding/



Traditional Code DL System

Specification Training Data

Logic as  
Control Flow

Logic as  
Data Flow

Written Trained

Tested Tested

For Faults Faults?

Patched Retrained?



Outputs are not exactly discrete 😨

if (a + b <= c) {
  return TriangleType.INVALID;
} else if (a == b && b == c) {
  return TriangleType.EQUALATERAL;
} else if (a == b || b == c) {
  return TriangleType.ISOCELES;
} else {
  return TriangleType.SCALENE;
}

σ(z)i =
ezi

∑K
j=1 ezj

 for i = 1,…, K and z = (z1, …, zK) ∈ ℝK

vs.



Inputs are more complicated, perhaps even stochastic 😨

vs.

int x = 42;
a du path

if(x == 42){…
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Can we (randomly) sample these inputs? 😨

https://www.technologyreview.com/the-download/611380/researchers-have-released-the-largest-
self-driving-car-data-set-yet/



• Space of possible MNIST images (28 
by 28): 2784


• Space of meaningful digit images: 
size unknown, but much smaller than 
2784


• We do not know how to sample only 
from the manifold of meaningful 
digits


• In fact, DNNs perform well exactly 
because they approximate this 
manifold well

Semantic Manifold Conundrum 😨



Very little to cover, at least structurally 😨

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
                 activation='relu',
                 input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))



Training seems less competent than programmers 😨😨

Safety verification of deep neural networks, 
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940


A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence 
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 427–436, 2015.

Training seems less competent than programmers 😨😨😨



We will have to learn to reason about probabilistic oracles 😨

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ ! ) GðwÞ

and ~D is probabilistically complete iff

GðwÞ ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.
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probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ ! ) GðwÞ

and ~D is probabilistically complete iff

GðwÞ ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.
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Deterministic Probabilistic

E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE 
Transactions on Software Engineering, 41(5):507–525, May 2015.



Yes.

“Tesla said shortly after the 
accident that the car’s sensors 
failed to recognize the white 
truck against the bright sky.”

https://www.siliconvalley.com/2016/07/26/feds-driver-in-fatal-tesla-autopilot-crash-was-speeding/



Adversarial Examples

Safety verification of deep neural networks, 
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940


Mantra of this course

• AKA things I went on and on and on about:


• Oracle is a mechanism that decides whether the observed behaviour is as 
expected….


• Exhaustive testing is not possible, so we rely on adequacy criteria…


• Testing is really all about input sampling….


• Are these still all true with DNNs?



Oracle may not be deterministic 😨

• Logical behaviours are no longer discrete. Unlike branches and equivalence 
partitions, there is no clear boundary between decision outcomes of DNNs.


• Inputs are, to some extent, stochastic. Imagine a crossing, for which an 
autonomous car is supposed to stop after recognising it. Depending on 
sensor status, the same scene can be processed as different bits.



Going Metamorphic

Metamorphic testing is a surprisingly effective conceptual tool

for testing DNNs (at least so far).

Given that DNN( ) produces the output “car”,

 MT suggests that DNN( ) should also produce the output “car”.

Input MR: images are perceptively identical to human eyes.

Output MR: class labels should be identical.



Probabilistic Oracles are harder to reason about

probabilistic test oracle can model the case where the test
oracle is only able to efficiently offer a probability that
the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.

Our formalism combines a language-theoretic view of
stimulus and response activities with constraints over those
activities; these constraints explicitly capture specifications.
The high-level language view imposes a temporal order on
the activities. Thus, our formalism is inherently temporal. The
formalism of Staats et al. captures any temporal exercising of
the SUT’s behavior in tests, which are atomic black boxes for
them [174]. Indeed, practitioners write test plans and activi-
ties, they do not oftenwrite specifications at all, let alone a for-
mal one. This fact and the expressivity of our formalism, as
evident in our capture of existing test oracle approaches, is
evidence that our formalism is a good fitwith practice.

2.3 Soundness and Completeness
We conclude this section by defining soundness and com-
pleteness of test oracles.

In order to define soundness and completeness of a test
oracle, we need to define a concept of the “ground truth”, G.
The ground truth is another form of oracle, a conceptual
oracle, that always gives the “right answer”. Of course, it
cannot be known in all but the most trivial cases, but it is a
useful definition that bounds test oracle behaviour.

Definition 2.6 (Ground Truth). The ground truth oracle, G,
is a total test oracle that always gives the “right answer”.

We can now define soundness and completeness of a test
oracle with respect to G.

Definition 2.7 (Soundness). The test oracleD is sound iff

DðaÞ ) GðaÞ:

Definition 2.8 (Completeness). The test oracle D is complete
iff

GðaÞ ) DðaÞ:

While test oracles cannot, in general, be both sound and
complete, we can, nevertheless, define and use partially cor-
rect test oracles. Further, one could argue, from a purely
philosophical point of view, that human oracles can be
sound and complete, or correct. In this view, correctness
becomes a subjective human assessment. The foregoing def-
initions allow for this case.

We relax our definition of soundness to cater for probabi-
listic test oracles:

Definition 2.9 (Probablistic Soundness andCompleteness).
A probabilistic test oracle ~D is probabilistically sound iff

P ð ~DðwÞ ¼ 1Þ > 1

2
þ ! ) GðwÞ

and ~D is probabilistically complete iff

GðwÞ ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
ciently better than flipping a fair coin, which for a binary
classifier maximizes entropy, that we can achieve arbitrary
confidence in whether the test sequence w is valid by repeat-

edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS

The term “test oracle” first appeared in William Howden’s
seminal work in 1978 [99]. In this section, we analyze the
research on test oracles, and its related areas, conducted
since 1978. We begin with a synopsis of the volume of publi-
cations, classified into specified, derived, implicit, and lack
of automated test oracles. We then discuss when key con-
cepts in test oracles were first introduced.

3.1 Volume of Publications
We constructed a repository of 694 publications on test
oracles and its related areas from 1978 to 2012 by conduct-
ing web searches for research articles on Google Scholar and
Microsoft Academic Search using the queries “software + test
+ oracle” and “software + test oracle”2, for each year.
Although some of the queries generated in this fashion may
be similar, different responses are obtained, with particular
differences around more lowly-ranked results.

We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.
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probabilistic test oracle can model the case where the test
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the test case is acceptable, or for other situations where
some degree of imprecision can be tolerated in the test
oracle’s response.
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The high-level language view imposes a temporal order on
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2.3 Soundness and Completeness
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pleteness of test oracles.
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DðaÞ ) GðaÞ:
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GðaÞ ) DðaÞ:
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P ð ~DðwÞ ¼ 1Þ > 1

2
þ ! ) GðwÞ

and ~D is probabilistically complete iff

GðwÞ ) P ð ~DðwÞ ¼ 1Þ > 1

2
þ !

where ! is non-negligible.

The non-negligible advantage ! requires ~D to do suffi-
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edly sampling ~D on w.

3 TEST ORACLE RESEARCH TRENDS
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+ oracle” and “software + test oracle”2, for each year.
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We classify work on test oracles into four categories:
specified test oracles (317), derived test oracles (245),
implicit test oracles (76), and no test oracle (56), which han-
dles the lack of a test oracle.

Specified test oracles, discussed in detail in Section 4,
judge all behavioural aspects of a system with respect to a
given formal specification. For specified test oracles
we searched for related articles using queries “formal +
specification”, “state-based specification”, “model-based
languages”, “transition-based languages”, “assertion-based
languages”, “algebraic specification” and “formal + confor-
mance testing”. For all queries, we appended the keywords
with “test oracle” to filter the results for test oracles.

Derived test oracles (see Section 5) involve artefacts from
which a test oracle may be derived—for instance, a previous
version of the system. For derived test oracles, we searched
for additional articles using the queries “specification
inference”, “specification mining”, “API mining”,
“metamorphic testing”, “regression testing” and “program
documentation”.

An implicit oracle (see Section 6) refers to the detection of
“obvious” faults such as a program crash. For implicit test
oracles we applied the queries “implicit oracle”, “null
pointer + detection”, “null reference + detection”, “deadlock
+ livelock + race + detection”, “memory leaks + detection”,
“crash + detection”, “performance + load testing”, “non-
functional + error detection”, “fuzzing + test oracle” and
“anomaly detection”.

There have also been papers researching strategies for
handling the lack of an automated test oracle (see Section 7).
Here, we applied the queries “human oracle”, “test

2. We use + to separate the keywords in a query; a phrase, not inter-
nally separated by +, like “test oracle”, is a compound keyword, quoted
when given to the search engine.
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Deterministic Probabilistic

E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software testing: A survey. IEEE 
Transactions on Software Engineering, 41(5):507–525, May 2015.



So how do we estimate the 
quality of testing?



• With traditional software, the 
code embodies the logic of the 
program. Which is why structural 
coverage can work as an 
adequacy for testing: more code 
being executed is correlated with 
more diverse logical behaviours 
being explored.


• DNN code DOES NOT embody 
the logic. In fact, hardly anything 
to explore.

Adequacy Criteria

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-
level-apis-in-tensorflow-2-0-bad2b04c819a



Test Adequacy for DNNs

• Given two sets of inputs, how do we know which one is better for testing 
DNNs?


• The more diverse one.



DeepXplore (SOSP 2017)

NCov(T, x) =
|{n |∀x ∈ T, out(n, x) > t} |

|N |

Neuron Coverage

Intuition: inputs that activate more nodes above a given threshold

are using wider and different parts of the network, and therefore


making use of a wider range of learnt features.

K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th 
Symposium on Operating Systems Principles, SOSP ’17, pages 1–18, New York, NY, USA, 2017. ACM.



DeepGauge (ASE 2018)

KMNCov(T, k) =
∑n∈N {Sn

i |∃x ∈ T : ϕ(x, n) ∈ Sn
i }

k × |N |

k Multi-section Neuron Coverage (kMNC)

UpperCornerNeuron = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (highn, + ∞)}

Neuron Boundary Coverage (NBC)

 LowerCornerNeuron  = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (−∞, lown)}

NBCov(T ) =
|  UpperCornerNeuron  | + |  LowerCornerNeuron  |

2 × |N |

SNACov(T ) =
|  UpperCornerNeuron  |

|N |

Strong Neuron Activation Coverage (SNAC)



For (machine) learners, what 
is a good test of their 
knowledge?



“I want to write good

test questions”

“Good questions should

challenge learner’s knowledge


in diverse ways”

“So I am going to take

a brain MRI while the 


learner is taking the exam!”

“The more areas light up,

the more diverse my questions are,


and the better they are too!”



• There is some truths in the 
argument, but:


• The correlation between diversity 
and neuron activation is very ad-
hoc, and uninterpretable.


• You can only ever compare sets 
of inputs: given two individual 
inputs, which one is better?

Obvious Limits



• Our argument: “A good exam 
question is one that is 
reasonably surprising to the 
(machine) learner: it should be 
sufficiently different from 
exercises in the textbook, but 
not so much as to be irrelevant 
to the course."

Surprise Adequacy (ICSE 2019)



Caveats

• Unlike academic exams, the concept of “reasonably different” is hard to 
quantify for ML inputs. More importantly, automating that judgement is even 
harder.


• So it turns out we cannot completely escape the MRI-like nature of our 
testing approach. That is, we do access the internals of DNNs.



Car

Face

hedge

vedge

...

Nose

Eyes

Wheel

...

...

...

(0.4  0.1  0.2  0.7  0.6  0.5  0.1)

Activation Trace

Summarisation

(KDE or point-cloud)

Learnt Knowledge

(from training data)

Quantitative Surprise Measure of New Input

Against the Summarisation



More surprising questions

are harder to answer correctly.

Trick questions (=adversarial

examples) are very surprising.



What are the actual benefits?

• In the ML context, the actual model correctness for an input is a given 
concept - you compare it to the label.


• In the SE context, the actual model correctness for an input is EXPENSIVE, 
as you have to manually label any new input!


• SA has been successfully applied to semantic object segmentation (for 
autonomous driving) or NLP tasks such as question answering: both are 
tasks that require high labelling cost.



What about input sampling?



Input Sampling/Search

• In many cases, interesting applications of DNNs handle sensory input (image 
and audio) or highly unstructured input (natural language).


• What is a random scene on a road? How do we sample it?


• What is a random sentence? What is a neighbour of that sentence?


• Random sampling is not so easy now. Many benchmarks are manually 
generated (not only labels!).



Taming Dimensionality

(3, 3, 5)

(3, 5, 5)

(3, 4, 4)

(3, 4, 6)

(2, 4, 5)

(4, 4, 5)

Less Light?

Raining?
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Different 
Traffic Light?

Different 
Curve?

(3, 4, 5)

Primitive Type Neighbourhood Perceptive Input Neighbourhood



Extreme Sparsity in Input Space

• MNIST dataset of handwritten digits contains 28 by 28 black and white pixels 
(784 pixels).


• The number of all possible inputs: 2784


• The number of all recognisable digit images: ? but probably much smaller 
than 2784


• What will happen if we ignore the manifold of meaningful images?



Deep Neural Networks are Easily Fooled: 
High Confidence Predictions for Unrecognizable Images (CVPR 2015)

Use Genetic Algorithm to generate an imagethat is classified with high confidence

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence 
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 427–436, 2015.



DeepTest (ICSE 2018)

A neighbour of a clear weather road scene

is the same road in a rainy day.


In other words, DeepTest uses weather condition effects

(photoshopped) as a metamorphic relationship on inputs.

Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of the 
40th International Conference on Software Engineering, ICSE ’18, pages 303–314, New York, NY, USA, 2018. ACM.



DeepRoad (ASE 2018)

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based metamorphic testing and input validation framework for 
autonomous driving systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 
2018, pages 132–142, New York, NY, USA, 2018. ACM.

We really had this coming: they apply GAN to mimic weather condition.



So far…

• Right or wrong (oracle) is not clear, and


• We do not know which adequacy criteria to target, and


• Searching for input is not as easy as with simpler data.


• Any good news?



Everything becomes a number

• All internal states are numbers.


• Execution path can be captured as a numeric vector.


• Concepts like distance and similarity become much easier to handle against 
all types of inputs.



Occlusion

Darken

Different  
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Seed

Boundary of correct  
functional behaviour

How can we more freely 
navigate this space?



Variational Auto-Encoders (VAEs)

Encoder

m
ean

std. dev.

sam
pled latent 
vector

Decoder

Our genotype!



• Representation: a latent vector 
that fits our VAE


• Fitness: Surprise Adequacy of 
the image decoded from a 
candidate solution (i.e., a latent 
vector)


• We visualise the search 
trajectory using Activation Trace 
(i.e., the output of a specific layer 
of the DNN) and PCA

VAE + GA = Search Based Input 
Data Generation



• Search in the latent space using 
VAE


• Fitness is the difference in results 
between a stupidnet and a 
properly trained ResNet


• Start from the original image, 
search for the modified image

Search-based Differential Testing



• DNNs require total rethinking of 
how we test software.


• Despite a very fast moving 
research landscape, we are still 
in a very early stage, with many 
open questions.


• If you are interested in applied 
AI/ML, from a very unique angle, 
perhaps…? 🧐

Summary


