
Shin Yoo | COINSE@KAIST

SE4AI + AI4SE w/ DNNs and 
LLMs
CS453 Automated Software Testing



Software Engineering & Artificial Intelligence 

• AI4SE: using AI to assist and automate SE tasks


• Search-Based Software Testing (metaheuristic optimization for test 
generation), Defect Prediction (machine learning for predicting whether a 
commit may be faulty or not), LLM-based code generation (generative 
language model for programming and/or testing)…


• SE4AI: using SE techniques to improve and utilize AI 


• Testing robustness of DNN models/LLM-based agents…



SE4AI: what can SE do for AI? :)



AI/ML as Computation Method

• We often talk about AI/ML as the next generation computing paradigm, but 
what do we exactly mean? 


• Traditionally, software means something written by humans - we may not 
have done it very well, but we did it our way nonetheless.


• ML as a software component - what are the implications for testing?



Traditional Code DL System

Specification Training Data

Logic as  
Control Flow

Logic as  
Data Flow

Written Trained

Tested Tested

For Faults Faults?

Patched Retrained?



Outputs are not exactly discrete 😨

if (a + b <= c) {
  return TriangleType.INVALID;
} else if (a == b && b == c) {
  return TriangleType.EQUALATERAL;
} else if (a == b || b == c) {
  return TriangleType.ISOCELES;
} else {
  return TriangleType.SCALENE;
}

σ(z)i =
ezi

∑K
j=1 ezj

 for i = 1,…, K and z = (z1, …, zK) ∈ ℝK

vs.



Inputs are more complicated, perhaps even stochastic 😨

vs.

int x = 42;
a du path

if(x == 42){…

Li
gh

tin
g

W
ea

th
er

D
irt

Se
ns

or



Can we (randomly) sample these inputs? 😨

https://www.technologyreview.com/the-download/611380/researchers-have-released-the-largest-
self-driving-car-data-set-yet/



Very little to cover, at least structurally 😨

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
                 activation='relu',
                 input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))



Training seems less competent than programmers 😨😨
(behaviour are not discrete)

Safety verification of deep neural networks, 
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940


A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence 
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 427–436, 2015.

Training seems less competent than programmers 😨😨😨
(behaviour are not discrete)



Going Metamorphic

Metamorphic testing is a surprisingly effective conceptual tool

for testing DNNs (at least so far).

Given that DNN( ) produces the output “car”,

 MT suggests that DNN( ) should also produce the output “car”.

Input MR: images are perceptively identical to human eyes.

Output MR: class labels should be identical.



Existing work on DNN Testing

• Coverage Criteria/Test Adequacy: given sets of inputs, or pairs of inputs, tries 
to quantify how effective they are for testing, i.e., is set/input A more likely to 
reveal unexpected behaviour than set/input B?


• Test Input Generation/fuzzing: typically tries to transform valid inputs into 
adversarial examples (note: sampling from the scratch is hard)


• Mutation Testing: can we do better testing via mutation? But what does it 
mean to mutate an DNN model?



Adequacy Criteria



• With traditional software, the 
code embodies the logic of the 
program. Which is why structural 
coverage can work as an 
adequacy for testing: more code 
being executed is correlated with 
more diverse logical behaviours 
being explored.


• DNN code DOES NOT embody 
the logic. In fact, hardly anything 
to explore.

Adequacy Criteria

https://medium.com/tensorflow/standardizing-on-keras-guidance-on-high-
level-apis-in-tensorflow-2-0-bad2b04c819a



Test Adequacy for DNNs

• Given two sets of inputs, how do we know which one is better for testing 
DNNs?


• The more diverse one.



Structural Adequacy Criteria
DeepXplore (SOSP 2017), DeepGuage (ASE 2018)

NCov(T, x) =
|{n |∀x ∈ T, out(n, x) > t} |

|N |

Neuron Coverage

Intuition: inputs that activate more nodes above a given threshold

are using wider and different parts of the network, and therefore


making use of a wider range of learnt features.

K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox 
testing of deep learning systems. SOSP 2017.

KMNCov(T, k) =
∑n∈N {Sn

i |∃x ∈ T : ϕ(x, n) ∈ Sn
i }

k × |N |

k Multi-section Neuron Coverage (kMNC)

UpperCornerNeuron = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (highn, + ∞)}

Neuron Boundary Coverage (NBC)

 LowerCornerNeuron  = {n ∈ N |∃x ∈ T : ϕ(x, n) ∈ (−∞, lown)}

NBCov(T ) =
|  UpperCornerNeuron  | + |  LowerCornerNeuron  |

2 × |N |

SNACov(T ) =
|  UpperCornerNeuron  |

|N |

Strong Neuron Activation Coverage (SNAC)

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li, Y. Liu, J. Zhao, and
Y. Wang. Deepgauge: Multi-granularity testing criteria for deep learning systems. ASE 2018.



Distribution Aware Adequacy Criteria
Surprise Adequacy (ICSE 2019)

• Our argument: “A good exam question is one that is reasonably surprising to 
the (machine) learner: it should be sufficiently different from exercises in the 
textbook, but not so much as to be irrelevant to the course.”


• This notion depends on the existence of training data, as well as the similarity 
between the given input and the training data distribution.



Summarisation

(KDE or point-cloud)

Car

Face

hedge

vedge

...

Nose

Eyes

Wheel

...

...

...

(0.4  0.1  0.2  0.7  0.6  0.5  0.1)

Activation Trace

Learnt Knowledge

(from training data)

Quantitative Surprise Measure of New Input

Against the Summarisation

More surprising questions

are harder to answer correctly.

Trick questions (=adversarial

examples) are very surprising.



What are the actual benefits?

• In the ML context, the actual model correctness for an input is a given 
concept - you compare it to the label.


• In the SE context, the actual model correctness for an input is EXPENSIVE, 
as you have to manually label any new input!


• SA has been successfully applied to semantic object segmentation (for 
autonomous driving) or NLP tasks such as question answering: both are 
tasks that require high labelling cost.



Input Generation / Fuzzing



DNN Fuzzing under Metamorphic Oracles

• Can we break the metamorphic relationship within -boundary? That is, if 
, does  also hold?


• Many domain specific variations on the theme exist, but most existing 
approaches are centered around this idea: oracle problem is difficult to beat.

ϵ
M(i) = o M(i + ϵ) = o



The problem is not ONLY the oracle…

• In many cases, interesting applications of DNNs handle sensory input (image 
and audio) or highly unstructured input (natural language).


• What is a random scene on a road? How do we sample it?


• What is a random sentence? What is a neighbour of that sentence?


• Random sampling is not so easy now. Many benchmarks are manually 
generated (not only labels!).



Extreme Sparsity in Input Space

• MNIST dataset of handwritten digits contains 28 by 28 black and white pixels 
(784 pixels).


• The number of all possible inputs: 2784


• The number of all recognisable digit images: ??? but probably much 
smaller than 2784


• What will happen if we ignore the manifold of meaningful images?



Recall: DNNs are Easily Fooled

Use Genetic Algorithm to generate an imagethat is classified with high confidence

A. M. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence 
pre- dictions for unrecognizable images. 2015 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 427–436, 2015.



Seed Input + (Adversarial) Mutation
This way, we can tame the dimensionality a bit.

(3, 3, 5)

(3, 5, 5)

(3, 4, 4)

(3, 4, 6)

(2, 4, 5)

(4, 4, 5)

Less Light?

Raining?

Fewer cars?

More  
Pedestrians?

Different 
Traffic Light?

Different 
Curve?

(3, 4, 5)

Primitive Type Neighbourhood Perceptive Input Neighbourhood



Domain Specific Manipulation as Input Mutation
DeepTest (ICSE 2018) and DeepRoad (ASE 2018)

A neighbour of a clear weather road scene

is the same road in a rainy day.


In other words, DeepTest uses weather condition effects

(photoshopped) or noises as a metamorphic relationship on inputs.

Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated testing of deep-
neural-network-driven autonomous cars. ICSE 2018

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. DeepRoad: Gan-
based metamorphic testing and input validation framework for autonomous 
driving systems. ASE 2018.

We really had this coming: applying GAN to mimic weather 
condition.



Model-based Input Generation for DNNs
DeepJanus (FSE 2020)

Model-Based Exploration of the Frontier of Behaviours for Deep Learning System Testing ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: Four pairs of elements in the frontiers of the con-
sidered DL systems. The !rst column shows two original
samples from the MNIST data set. The second and third
columns show the pairs in the frontier of system LQ; fourth
and !fth columns show the frontier pairs of system HQ

DL systems. Let us consider the frontiers of behaviours of two DL
systems that perform the same task but exhibit di!erent levels of
quality in terms of test accuracy (namely HQ: High Quality: LQ:
Low Quality). Both systems consist of a classi"er of handwritten
digits that predicts which digit is represented by an input image. In
a classi"cation problem such as this one, the frontier is represented
by pairs of similar inputs that are classi"ed di!erently (one correctly,
the other incorrectly).

To assess the di!erence between the frontiers of these two sys-
tems, we consider two images of handwritten digits taken from
the MNIST [28] dataset that are labeled correctly (i.e. as number
“5”) by both systems. They are shown in the "rst column of Fig.
1. Then, we apply slight changes to the shape of the two inputs.
This is achieved by "rst extracting a vector model of the digits and
then manipulating the control points of such model. The result
consists of two pairs of samples in the frontier of each system, i.e.
LQ (second and third column) and HQ (fourth and "fth column).

We can notice that the inputs in the frontier of LQ are very similar
to the original samples. Moreover, all the misclassi"ed inputs in its
frontier are still clearly recognisable as digit “5”. Instead, the frontier
of HQ contains inputs that are probably challenging to classify even
for humans. In particular, the "rst element of the "fth column has
the general shape of a "ve, but it could also be considered as a nine,
since the upper part of the "gure forms a circle. The second element
of the "fth column does not look like any reasonably classi"able
digit, despite its similarity with the corresponding member of the
pair on the other side of the frontier.

To summarise, the frontier of a low quality DL system is expected
to contain samples that are quite close to those that the system
is supposed to classify correctly, indicating a poor generalisation
capability. Di!erently, the frontier of a high quality DL system
includes cases that are di#cult or impossible to handle even for
humans, being outside the validity domain.

4 MODEL-BASED INPUT REPRESENTATION
We aim at generating inputs at the behavioural frontier of a DL sys-
tem and we want them to be realistic and representative. Therefore,
we adopt a model-based approach that produces test inputs starting
from a model representation of the input domain and enforces the
compliance with domain-speci"c constraints. This may require the

Figure 2: Bitmap and vector image; model representation of
the image returned by Potrace

transformation of a concrete input into an abstract model that can
be manipulated by the exploration algorithm, in case no domain
speci"c model of the input is available. The transformation from
models to concrete inputs is instead always required.

To illustrate how our approach works in practice, we consider
both an exemplary classi"cation problem and a regression problem.
The classi"cation problem consists of handwritten digit recognition,
while the regression problem is steering angle prediction for self-
driving cars. In the latter case, we focus on systems that perform
behavioural cloning, i.e. the DL component learns the lane keeping
behaviour from a human driver [7]. In detail, the DL system is
able to autonomously keep the lane since it contains a DNN that
is trained with images captured by the camera sensors of the car,
paired with the steering angles provided by a driver.

4.1 Image Classi!cation
We use the inputs available from the MNIST database [28] and
originally encoded as 28 x 28 images [28], with greyscale levels
that range from 0 to 255. We adopt Scalable Vector Graphics (SVG)1

as their model representation. SVG is an XML-based vector image
format for two-dimensional graphics that can represent shapes
as the combination of cubic and quadratic Bézier curves [20]. By
modelling handwritten digits as a combination of Bézier curves, we
ensure that the smoothness and curvature of handwritten shapes
is preserved and that images remain realistic even after (minor)
manipulation of the Bézier curve parameters.

To transform an original input image into its SVG model rep-
resentation, we use the Potrace algorithm [45]. This algorithm
performs a sequence of operations, including binarisation, despeck-
ling and smoothing, to produce a smooth vector image starting
from a bitmap. Figure 2 shows an MNIST image paired with its SVG
model and its description. The control parameters that determine
the shape of the modelled digit are: the start point, the end point
and the control points c1 and c2 that de"ne each Bézier segment.

In the other direction, we use rasterisation to transform a vector
model into a 28 x 28 grayscale image. This operation exploits the
functionality o!ered by LibRsvg2 and Cairo3, two popular open
source graphic libraries.

4.2 Steering Angle Prediction
We consider a self-driving car that is trained and tested in the
BeamNG [5] simulation environment. It features an accurate driving
physics engine and it is freely available and research-oriented.

1https://www.w3.org/Graphics/SVG/
2https://wiki.gnome.org/Projects/LibRsvg
3https://www.cairographics.org

878

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Vincenzo Riccio and Paolo Tonella

Figure 3: The model of a road and the corresponding road

Figure 4: A test case rendered by the BeamNG simulation
engine is composed by the road, the driving task, the envi-
ronment and the car

The input to the steering angle predictor is an image captured by
the onboard sensor camera in the simulated environment. Therefore,
the test input is determined by the scenario in which the car drives.
Such simulated scenario can be modelled as the composition of the
roads, the driving task (i.e., start point, end point and lane to keep),
and the environment, which includes the weather and lightness
conditions.

For the sake of simplicity, let us consider scenarios consisting of
single plain asphalt roads surrounded by green grass on which the
car has to drive keeping the right lane. The environment is always
set to a clear day without fog. The roads are composed of two lanes
with !xed width in which there is a yellow center line plus two
white lines that separate each lane from the non-drivable area.

Abstractedly, a road can be represented as a sequence of contigu-
ous points in a bi-dimensional space (assuming constant elevation).
To produce a smooth and realistic shape for the road beingmodelled,
we use Catmull-Rom cubic splines [8] and then we interpolate such
curves to obtain the 2D point sequence. Figure 3 shows the splines
that de!ne a road as well as its interpolated 2D points (marked as
grey dots). The control parameters that determine the shape of the
splines in Figure 3 are the coordinates of the control points of the
center line spline (marked as larger red dots).

The concrete representation of the driving scenario is strictly
dependent on the simulator. BeamNG exposes an intuitive API
for programmatically con!guring virtual roads and controlling the

simulations4. In BeamNG, a scenario is described by a JSON !le that
contains the set of points to render the roads. The simulation engine
renders the road by creating polygons starting from the points
provided in the scenario description and sets up the environment,
as shown in Figure 4.

To transform the abstract model into the road to be rendered in
the simulator, we calculate its points by exploiting the recursive
algorithm for the evaluation of Catmull-Rom cubic splines proposed
by Barry and Goldman [4] and the functionality o"ered by the
Shapely library for manipulation and analysis of planar geometric
objects5. We also enforce the following domain speci!c constraints:
(1) the start point and the end point of a driving task should be
di"erent, (2) the road should fall within a square bounding box of
!xed size, and (3) a road should not self-intersect.

5 THE DEEPJANUS TECHNIQUE
DeepJanus explores the behavioural space of a DL system to !nd
pairs of inputs at its frontier: one input on which the DL system
behaves as expected, and another similar input on which it misbe-
haves. By generating a pair of similar inputs that trigger di"erent
behaviours, we ensure that the failure-inducing inputs are close to
the validity domain and are likely to represent valid corner cases
on which the system misbehaves. Otherwise, by generating single
inputs that trigger misbehaviours, without staying close to corre-
sponding ones for which the system behaves well, it would have
been more likely to produce uninteresting test cases that are far
from the frontier and do not intersect the validity domain.

DeepJanus aims at exploring the frontier at large, i.e., as thor-
oughly as possible, so as to report a broad picture of the boundary
behaviours to developers. To perform such exploration, it aims at
producing inputs at the frontier of behaviours and at maximising
the diversity among the elements that are moved toward the fron-
tier, so as to achieve thorough frontier exploration. At the same
time, it also maintains high similarity within each pair of inputs
crossing the frontier. Therefore, the problem solved by DeepJanus

can be cast as a multi-objective search problem [19]. To obtain a
diverse set of solutions, we hybridise traditional multi-objective
search-based algorithms [12] with novelty search [36]. The idea is
to measure the diversity between the population being evolved and
the archive of the best individuals.

Algorithm 1 outlines the top level steps implemented in Deep-

Janus. Our algorithm is based on NSGA-II [12], a multi-objective
evolutionary search algorithm quite popular in search-based soft-
ware testing research [26, 34, 40, 50, 51], extended with: (1) hybridi-
sation with novelty search, achieved by de!ning a !tness function
that includes a measure of sparseness of the solutions (see Section
5.1.1); (2) use of an archive, to avoid cycling and to promote fron-
tier exploration at large (lines 5 and 15 of Algorithm 1); (3) use of
re-population, to escape from stagnation (line 13 of Algorithm 1).
Moreover, we de!ned domain speci!c mutation operators to evolve
the candidate solutions.

We implemented DeepJanus in Python on top of the DEAP
evolutionary computation framework (v. 1.3.0) [15]. The code of
DeepJanus is available online as open source [47].

4https://github.com/BeamNG/BeamNGpy
5https://github.com/Toblerity/Shapely

879

Parameterised model that produce test inputs for DNNs

—> super efficient if your domain supports such a model!

V. Riccio and P. Tonella. Model-based exploration of the frontier of behaviours for deep learning system
testing. FSE 2020.



Can we go beyond MR based input search/generation?

• How do we map the semantic space 
of inputs to something we can easily 
navigate, and sample from?


• Hint: DNNs see everything as 
numbers!

Occlusion

Darken

Different  
Weather Condition

Seed

Boundary of correct  
functional behaviour

How can we more freely 
navigate this space?



Variational Auto-Encoders (VAEs)
A type of generative model that maps inputs to a latent space

Encoder

m
ean

std. dev.

sam
pled latent 
vector

Decoder

Our genotype (i.e., representation to manipulate)!



• Representation: a latent vector 
that fits our VAE


• Fitness: Surprise Adequacy of 
the image decoded from a 
candidate solution (i.e., a latent 
vector)


• We visualise the search 
trajectory using Activation Trace 
(i.e., the output of a specific layer 
of the DNN) and PCA

VAE + GA = Search Based Input Data Generation

Deceiving Humans and Machines Alike: Search-Based Test 
Input Generation for DNNs Using Variational Autoencoders, 
Kang, S., Feldt, R. and Yoo, S., ACM Transactions on Software 
Engineering Methodologies, 32(4):1–24. 



Finding the nearest pairs to the border

Minimise the given fitness function…

… to generate really ambiguous yet realistic-looking images



Cutting Edge: Diffusion-based Generative Models
Exploring space between two labels (Work in Progress@COINSE)

Pingpong to golf ball Minimum distance

between two latent points

Following Bezier curve 
between two patent 



Mutation Testing of DNNs



How does CPH translate to DNN? 
Competent Programmer Hypothesis

• Remember that DNNs are trained, not (entirely) written.


• Regarding the written part, there are social/human aspects: software 
engineers may not be ML experts, resulting in almost correct model 
architecture.


• Regarding the trained part, the specification (in the form of training data) may 
be almost complete - but it may be missing some outliers!



What about coupling effects?

• Trickier to interpret: what are complex faults for DNNs? Essentially their 
behavior are not interpretable…


• However, there WILL be couplings, as DNN models have wider margin for 
mistakes - once while you are designing the model, once again while you are 
training :)



How should we ground the mutation ops?
Taxonomy of real faults in DNN (ICSE 2020)

Taxon
om

y
of

R
eal

F
au

lts
in

D
eep

L
earn

in
g
S
y
stem

s
IC
S
E
’20,M

ay
23–

29,2020,S
eou

l,S
ou

th
K
orea

F
ig
u
re

1
:F

in
al

T
ax

o
n
o
m
y

1116

• Mining GitHub repositories & 
StackOverflow posts + Developer 
Interviews


• Then manually organised them into a 
taxonomy of “things that can go 
wrong when you build a DNN model”



Pre-training Mutation
DeepCrime (ISSTA 2021)

• Design mutation operators that mimic the human mistakes in the taxonomy!


• Your “test” dataset should be able to distinguish the mutated model.


• But there are issues:


• Each mutant needs to be not only compiled but trained —> serious cost.


• What does it mean to kill (distinguish) a mutated model? If we are talking 
about “differences in model performance”, should it be statistical? This 
incurs further cost (training of multiple instances, etc)



DeepCrime: Mutation Testing of Deep Learning Systems Based on Real Faults ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: Mutation operators implemented in DeepCrime. Column “ST” indicates the type of search used to !nd killable con-
!gurations (B = binary; EL = exhaustive on list; EU = exhaustive on user provided values).)

Group Operator ID Mutation Parameters ST

Training Data

Change labels of training data TCL
label — a particular label to mutate
percentage — a percentage of data for the given label to mutate

-
B

Remove portion of training data TRD percentage — a percentage of training data to delete B

Unbalance training data TUD
percentage — a percentage of training data of underrepresented/selected labels to remove in order to un-
balance the training data

B

Add noise to training data TAN percentage — a percentage of training data to mutate B
Make output classes overlap TCO percentage — a percentage of training data to mutate B

Hyperparameters

Change batch size HBS new batch size — new batch size to be used to train the system under test EU
Decrease learning rate HLR new learning rate — new learning rate to be used to train the system under test B
Change number of epochs HNE new number of epochs — new number of epochs to be used to train the system under test B
Disable data batching HDB — -

Activation Function

Change activation function ACH
layer — the number of a layer with non-linear activation function to mutate
new activation function — new activation function for the layer under mutation

EL
EL

Remove activation function ARM layer — the number of a layer to mutate EL

Add activation function to layer AAL
layer — the number of a layer with linear activation function to mutate
new activation function — new activation function for the layer under mutation

EL
EL

Regularisation

Add weights regularisation RAW
layer — the number of a layer with no weights regularisation to mutate
new weights regularisation — the type of weights regularisation to be added for the layer under mutation

EL
EL

Change weights regularisation RCW
layer — the number of a layer with existing weights regularisation to mutate
new weights regularisation — the type of weights regularisation to be added for the layer under mutation

EL
EL

Remove weights regularisation RRW layer — the number of a layer with existing weights regularisation to mutate EL

Change dropout rate RCD
layer — the number of a dropout layer
new dropout rate — new dropout rate for the layer under mutation

EL
EU

Change patience parameter RCP new patience value — new value for the patience parameter of the EarlyStopping callback B

Weights

Change weights initialisation WCI
layer — the number of a layer to mutate
new weights initialisation — new type of kernel initialiser for the layer under mutation

EL
EL

Add bias to a layer WAB layer — the number of a layer with no bias to mutate EL
Remove bias from a layer WRB layer — the number of a layer with bias to mutate EL

Loss function Change loss function LCH new loss function — new loss function to be used to train the system under test EL

Optimisation Function
Change optimisation function OCH new optimisation function — new optimisation function to be used to train the system under test EL
Change gradient clipping OCG new gradient clipping — new value to be used for gradients clipping EU

Validation Remove validation set VRM — —

Table 2: Operators not yet implemented in DeepCrime

Group Operator ID
Training Data Remove data augmentation TRA

Change pooling amount LCP
Change the !lter size of a convolutional layer LCF
Change the padding for a convolutional layer LCD
Change the stride for a convolutional layer LCS
Change the number of neurons in a layer LCN
Remove layer LRM
Add layer LAD
Change layer type LCT
Change output shape of a layer LCO

Layers

Change skip connections LCC

operator duplicates the amount of data speci!ed by the parameter
percentage, taking it from the largest of the two classes, while using
the second class as the label. This recreates the situation where the
same or very similar training data elements have di"erent labels
assigned to them.

Add Noise to Training Data. This mutation operator introduces
low quality training data by adding some noise to the original data.
The mutation operator uses two parameters: standard deviation per-
centage and percentage. DeepCrime takes the vector representation
of the training data and calculates the standard deviations of its
components. It multiplies these standard deviations by the value
of the parameter standard deviation percentage and obtains a new
value for the standard deviations. Using this value and a mean of
zero, DeepCrime generates (by default Gaussian) noise to be added
to the training input vectors. The parameter percentage identi!es
what percentage of the inputs will be mutated.

3.2.2 Hyperparameters Operators. This group of operators simu-
lates the choice of suboptimal values for the hyperparameters.

Decrease Learning Rate. This mutation operator investigates the
consequences of a too small learning rate to train a model.

Change Number of Epochs. This operator changes the number of
epochs for which a model is trained.

Change Batch Size. This operator changes the number of samples
presented to a network for a single update of its weights.

Disable Data Batching. This operator mimics the setting where
no mini-batching is used to train the model under test.

3.2.3 Activation Function Operators. Mutation operators from this
group imitate wrong choices of activation function for speci!c
layers in a model.

Add Activation Function. This mutation operator operates on
layers with linear activation function and changes it to the one
speci!ed by the user. If the user does not specify any preference,
the choice is random.

Remove Activation Function. This operator substitutes the activa-
tion function of a layer from non-linear one with linear.

Change Activation Function. This mutation operator is applicable
to layers with non-linear activation functions. The new activation
(also non-linear) can be provided by the user or is chosen randomly.

3.2.4 Regularisation Operators. The !rst three operators of this
group manipulate the penalties imposed on layers’ kernels, while
the last twomanipulate two regularisation hyperparameters, dropout
rate and patience.

Add Weights Regularisation. This operator adds a regulariser to
layers where no regularisation is used.

Remove Weights Regularisation. This operator removes the regu-
larisation of layers where it was originally used.

71



Post-training Mutation
MuFF (https://arxiv.org/abs/2501.09846)

• What is the final impact of pre-training mutation? It results in a different set of 
DNN weights.


• What if we mutate the weights directly?


• Pros and Cons


• +: Significantly faster!


• - : mutation —> slightly changed decision boundaries —> need better (i.e., 
closer-to-boundary) inputs —> can we justify? what do the mutants mean?

https://arxiv.org/abs/2501.09846


AI4SE: How does AI help SE?
Answer: in so many different ways… but here we focus on the recent applications of LLMs.



“What do you expect from an LLM?”



Let’s go back to 2012
Hindle et al., ICSE 2012

• One of my favourite papers: On Naturalness of Software (https://dl.acm.org/
doi/10.5555/2337223.2337322)


• “Programming languages, in theory, are complex, flexible and powerful, but 
the programs that real people actually write are mostly simple and rather 
repetitive, and thus they have usefully predictable statistical properties that 
can be captured in statistical language models and leveraged for software 
engineering tasks.”


• But what is “naturalness”?

https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322
https://dl.acm.org/doi/10.5555/2337223.2337322


John: Hi, nice to meet you. How are  you?

Mary: I’m ____, _____ ___. ___ ___?

a) fine, thank you. And you?


b) okay, I guess. But why?



What about code?

• It is not “natural”, in the sense that we have artificially created the grammar 
for programming languages.


• Programming languages do evolve, but how?


• Intentionally? New grammars, language consortiums, etc…


• Gradually? Languages do affect each other, a newer and more popular 
style eventually gets accepted, etc…



Python: for _ __ _____ … Java: for _ ___ _ _ _ _ …

a) i in range


b) ( int i = 0;

a) i in range


b) ( int i = 0;



Statistical Language Model

• Given a set of tokens, , a set of possible utterances, , and a set of actual 
utterances, , a language model is a probability distribution  over utterances 

, i.e., 


• An utterance (or a sentence) is a sequence of tokens (or words). Suppose we have  
tokens,  that consist . What is ?


• 


• But these conditional probabilities are hard to calculate: the only feasible approach 
would be count each utterance that qualifies, but  is too big, let alone .

𝒯 𝒯*
𝒮 ⊂ 𝒯* p

s ∈ 𝒮 ∀s ∈ 𝒮[0 < p(s) < 1 ∧ ∑
s∈𝒮

p(s) = 1

N
a1, a2, …, aN s p(s)

p(s) = p(a1)p(a2 |a1)p(a3 |a1 . a2)p(a4 |a1, a2, a3)…p(aN |a1…aN−1)

𝒮 𝒯*



N-Grams

• Assumes a Markovian property, i.e., the next token is influenced only by those 
came immediately before (say, within the window of  tokens)!


• 


• This is now much more tractable:


• 


• Given some context, we can now compute the probability of the candidate 
token that comes next. In other words, we can predict the next token!

n

p(ai |a1…ai−1) ≃ p(ai |ai−3ai−2ai−1)

p(ai |ai−3ai−2ai−1) =
count(ai−3, ai−2, ai−1, ai)
count(ai−3, ai−2, ai−1, * )



Large Language Model
(really, a very large and powerful statistical language model)

• Mainly Transformer-based DNNs that are trained to be an auto-regressive 
language model, i.e., given a sequence of tokens, it repeatedly tries to predict 
the next token.


• They seem to get the semantics of the code and work across natural and 
programming language, which is unprecedented! 

• But they are inherently restricted as a statistical language model. 

• No memory/state, no background/domain knowledge…



Code is a unique artefact because it executes. 
(And we’ve been doing dynamic analysis for a long time)

Candidates

Human 
Factchecking

Prompt LLM
Answer

Answer

Answer

Answer

Candidates

Prompt LLM
Answer

Answer

Answer

Answer!

NL + LLM Pipeline

PL/NL + LLM Pipeline

Isn’t this testing? :)



Execution-Based Filtering of LLM Output
LLM-based Bug Reproduction (Kang, Yoon & Yoo, ICSE 2023)

51

Tn

T3T3
Example 
Test

Bug Report

T1

T2

T3

…

Tn

Test 
File
1

Test 
File
2

T1

Tn

T2

(A) Prompt 
Engineering

(B) LLM
Querying

(C) Post-
processing

(D) Selection 
& Ranking

Example
Report

Prompt

LLM Testing 1

2

Test 
Clusters

3

• Any test that does not 
fail in the buggy version 
are filtered out!


• Failure type and error 
messages are 
considered when 
clustering tests —> 
larger clusters are more 
reliable



LLMs will generate incorrect comments. But…
Kang, Milliken & Yoo (https://arxiv.org/pdf/2406.14836)

Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution

Figure 1: Comment factual accuracy by generating LLM.

Technique Welch’s t-test Point-Biserial Corr. [15]

DocChecker [5] 0.735 0.738
Deep-JIT [21] 0.207 0.246
GPT-3-NoCoT [17] 0.249 0.227
GPT-3-CoT 0.168 0.156
BLEU [22] 0.385 0.405
SentenceBERT [11] 0.177 0.163
CodeT5 [30] 0.669 0.657
CodeBERT [8] 0.254 0.275
CID [27] 0.747 0.748

Table 1: Statistical relationship (p-values) between existing
consistency models and factual accuracy of comments.

GPT-3, and a �fth of the comments from GPT-4 contained state-
ments that contradicted the written human intent of the method or
inaccurately described the behavior of the code. This shows it is
di�cult to entrust current-generation LLMs with comment genera-
tion at scale, as they are prone to inaccurately describing behavior
in a signi�cant portion of the generated comments.

Amanual evaluation of 540 LLM-generated comments shows they
are prone to generating inaccurate comments for Java methods.

2.2 Predicting Factual Accuracy of Comments
with Existing Work

In theory, code-comment consistency detection techniques should
be able to uncover a large portion of factual accuracy issues. To
test this, we measured whether there was a statistically signi�cant
relationship between the model output of nine di�erent baselines,
and the factual accuracy of GPT-3 generated comments which we
could unambiguously label (141 in total). The baselines are as fol-
lows: �rst, from code-comment consistency detection techniques,
we used Deep-JIT [21], DocChecker [5], and Li and Shin [17]. Deep-
JIT is a technique primarily focused on whether a comment should
be updated given a program patch, but they also report plain code-
comment consistency results in their ‘post hoc’ setting. As they do
not provide a trained model, we trained one anew with their public
code using their post hoc setting, and con�rm the accuracy is similar
to that reported within their paper. DocChecker is a recent state-of-
the-art technique that builds upon Deep-JIT. Li and Shin suggest
asking the LLM itself whether code and comments are inconsistent
(marked as GPT-3-NoCoT in Table 1); we additionally add a variant
of Li and Shin’s technique using Chain-of-Thought (CoT), which is
known to improve performance in LLM problem solving [31]. Sec-
ond, we evaluate whether similarity metrics can predict accuracy.

Figure 2: Diagram of error taxonomy for GPT-3 comments.

For the �rst two, BLEU [22] and SentenceBERT [23], we evaluate the
correlation between the generated comment accuracy and embed-
ding similarity of the human-written and generated comment. As
Haque et al. [11] �nd a correlation between SentenceBERT similar-
ity and ‘subjective’ correctness from humans, SentenceBERT allows
us to indirectly compare our ‘factual’ correctness labels with subjec-
tive correctness. For the latter two, CodeT5 [30] and CodeBERT [8],
we evaluate the correlation between the comment accuracy and
embedding similarity of the target method and generated comment,
as these models are trained on source code. Finally, we evaluate the
LLM-based inconsistency detection technique CID [27], which was
proposed to �nd inaccurate responses in question-answering tasks.

To check the signi�cance of the relationships, we use two tests.
First, we use the Welch’s t-test to evaluate whether a model’s out-
put is signi�cantly di�erent for accurate and inaccurate comments,
which would be a precondition for distinguishing accurate com-
ments. Second, we use the Point-Biserial correlation coe�cient,
which is a correlation metric used when one variable is dichoto-
mous (i.e. binary), as is the case in our accurate/inaccurate labels.

The results of this analysis are presented in Table 1. It is notable
that there was no statistically signi�cant relationship among the
multiple baselines that were tested. This suggests how di�cult it
is to automatically identify whether an LLM-generated comment
contains errors or not - none of the code-comment inconsistency
detection techniques, nor any of the LLM self-inspection techniques
proposed by the literature detected the problems, nor could existing
metrics such as BLEU and SentenceBERT reliably measure accuracy,
even with access to the ground truth document.

The output of existing techniques shows little relationship with
the factual accuracy of comments.

3 TAXONOMY AND EXAMPLES OF
INACCURACY PATTERNS

Until now, inaccurate comments have only been described in the
abstract. In this section, we detail the speci�c error patterns that
appear in LLM-generated comments by categorizing them, and
providing speci�c examples of erroneous comments to help un-
derstanding of this issue. In particular, we analyze the inaccurate
comments generated by GPT-3 labeled in the previous section. The
results of this analysis are presented in Figure 2, and are presented
in order of increasing severity of error.

The �rst type of error relates to inaccurately describing the
intent of the code, in which the intended use description of the
method is in con�ict with what the developer wrote. Accurately
generating comments that describe the intended use is particularly

Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution

Figure 1: Comment factual accuracy by generating LLM.

Technique Welch’s t-test Point-Biserial Corr. [15]

DocChecker [5] 0.735 0.738
Deep-JIT [21] 0.207 0.246
GPT-3-NoCoT [17] 0.249 0.227
GPT-3-CoT 0.168 0.156
BLEU [22] 0.385 0.405
SentenceBERT [11] 0.177 0.163
CodeT5 [30] 0.669 0.657
CodeBERT [8] 0.254 0.275
CID [27] 0.747 0.748

Table 1: Statistical relationship (p-values) between existing
consistency models and factual accuracy of comments.

GPT-3, and a �fth of the comments from GPT-4 contained state-
ments that contradicted the written human intent of the method or
inaccurately described the behavior of the code. This shows it is
di�cult to entrust current-generation LLMs with comment genera-
tion at scale, as they are prone to inaccurately describing behavior
in a signi�cant portion of the generated comments.

Amanual evaluation of 540 LLM-generated comments shows they
are prone to generating inaccurate comments for Java methods.

2.2 Predicting Factual Accuracy of Comments
with Existing Work

In theory, code-comment consistency detection techniques should
be able to uncover a large portion of factual accuracy issues. To
test this, we measured whether there was a statistically signi�cant
relationship between the model output of nine di�erent baselines,
and the factual accuracy of GPT-3 generated comments which we
could unambiguously label (141 in total). The baselines are as fol-
lows: �rst, from code-comment consistency detection techniques,
we used Deep-JIT [21], DocChecker [5], and Li and Shin [17]. Deep-
JIT is a technique primarily focused on whether a comment should
be updated given a program patch, but they also report plain code-
comment consistency results in their ‘post hoc’ setting. As they do
not provide a trained model, we trained one anew with their public
code using their post hoc setting, and con�rm the accuracy is similar
to that reported within their paper. DocChecker is a recent state-of-
the-art technique that builds upon Deep-JIT. Li and Shin suggest
asking the LLM itself whether code and comments are inconsistent
(marked as GPT-3-NoCoT in Table 1); we additionally add a variant
of Li and Shin’s technique using Chain-of-Thought (CoT), which is
known to improve performance in LLM problem solving [31]. Sec-
ond, we evaluate whether similarity metrics can predict accuracy.

Lacking Code Context 
(19)

Code 
Mischaracterization (20)

Hallucinating 
Reference 

(10)

Halluci-
nating 

Intent (7)

Less context necessary to avoid error

All Inaccurate Comments from GPT-3 (58)
etc. (2) (see supplementary)

Difficult context required to avoid error

Figure 2: Diagram of error taxonomy for GPT-3 comments.

For the �rst two, BLEU [22] and SentenceBERT [23], we evaluate the
correlation between the generated comment accuracy and embed-
ding similarity of the human-written and generated comment. As
Haque et al. [11] �nd a correlation between SentenceBERT similar-
ity and ‘subjective’ correctness from humans, SentenceBERT allows
us to indirectly compare our ‘factual’ correctness labels with subjec-
tive correctness. For the latter two, CodeT5 [30] and CodeBERT [8],
we evaluate the correlation between the comment accuracy and
embedding similarity of the target method and generated comment,
as these models are trained on source code. Finally, we evaluate the
LLM-based inconsistency detection technique CID [27], which was
proposed to �nd inaccurate responses in question-answering tasks.

To check the signi�cance of the relationships, we use two tests.
First, we use the Welch’s t-test to evaluate whether a model’s out-
put is signi�cantly di�erent for accurate and inaccurate comments,
which would be a precondition for distinguishing accurate com-
ments. Second, we use the Point-Biserial correlation coe�cient,
which is a correlation metric used when one variable is dichoto-
mous (i.e. binary), as is the case in our accurate/inaccurate labels.

The results of this analysis are presented in Table 1. It is notable
that there was no statistically signi�cant relationship among the
multiple baselines that were tested. This suggests how di�cult it
is to automatically identify whether an LLM-generated comment
contains errors or not - none of the code-comment inconsistency
detection techniques, nor any of the LLM self-inspection techniques
proposed by the literature detected the problems, nor could existing
metrics such as BLEU and SentenceBERT reliably measure accuracy,
even with access to the ground truth document.

The output of existing techniques shows little relationship with
the factual accuracy of comments.

3 TAXONOMY AND EXAMPLES OF
INACCURACY PATTERNS

Until now, inaccurate comments have only been described in the
abstract. In this section, we detail the speci�c error patterns that
appear in LLM-generated comments by categorizing them, and
providing speci�c examples of erroneous comments to help un-
derstanding of this issue. In particular, we analyze the inaccurate
comments generated by GPT-3 labeled in the previous section. The
results of this analysis are presented in Figure 2, and are presented
in order of increasing severity of error.

The �rst type of error relates to inaccurately describing the
intent of the code, in which the intended use description of the
method is in con�ict with what the developer wrote. Accurately
generating comments that describe the intended use is particularly

Evaluating code comment quality is notoriously hard. We tell LLMs to synthesise test cases 
based on comments —> if generate test cases fail, comments are not good.

https://arxiv.org/pdf/2406.14836


Test Pass Rates Correlates with Doc Quality
Kang, Milliken & Yoo (https://arxiv.org/pdf/2406.14836)Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution

(a) Pass rate by accuracy, with 95%
con�dence intervals.

(b) ROC graph of correctness esti-
mator with actual correctness.

Figure 4: Relationship between comment accuracy and sug-
gested indicators.

5.2 Evaluation Details
For our study, we focused onwhether GPT-3 (gpt-3.5-turbo-0125)
could be used to evaluate comments that it generated itself. Thus,
the 141 unambiguously labeled comments and methods from Sec-
tion 2 were used as subjects for our experiment. We did so because
we wanted to provide a proof of concept that documentation testing
could work with a single LLM, and that it would not require a com-
plex setup. Unless speci�ed otherwise, we repeated experiments
�ve times to verify that our approach works consistently.

For RQ1, we report the average test passing rate, to verify our
starting assumption made in Section 2, and also in assessing the ef-
fectiveness of our prompting technique. We also use the correctness
estimator from Equation (13) in RQ1 to RQ3. We evaluate metrics
on the basis of the p-values for the Welch’s t-test and Point-biserial
correlation, as well as the ROC-AUC and the average precision
(AP) value of our approach; the ROC-AUC value is commonly used
to evaluate binary classi�ers as a general measure of predictive-
ness [7], while AP is suggestedwhen the classes are unbalanced [35].
ROC-AUC is 0.5 for a random classi�er, while AP depends; for both,
higher values are better. For RQ1, we additionally report the pro-
portion of accurate comments within a given estimator score range.
For RQ2, we additionally report the percentage of comments for
which at least one executable test was generated, as an indication
of how e�ective the prompting techniques were in providing useful
information to generate tests.F = 100 was used in RQ1 and RQ2.

6 RESULTS
This section outlines the results of experiments performed.

6.1 RQ1: Predicting Inaccuracies
This research question relates to whether generating and execut-
ing tests from comments helps distinguish accurate and inaccurate
comments. We �rst verify our assumption that the test pass rate
would be higher for factually accurate comments (Equation (1)).
Figure 4a shows the test pass rate by document type, averaged
over the �ve runs that we did. As presented in the graph, there
is a substantial and statistically signi�cant (? = 0.002) di�erence
in pass rate between accurate and inaccurate documents. As men-
tioned in Section 3, however, document testing is a concept most

Figure 5: ROC-AUC and AP values compared with baselines.
For our approach (blue), we present the mean value from �ve
runs, along with its 95% con�dence interval.

Figure 6: Comment accuracy by normalized estimator value
bin, shown with the 95% con�dence interval of each bin.

suited to revealing inaccurate descriptions of program behavior.
Given that, one would expect comments that inaccurately describe
the behavior of the code (those labeled lacking context or code
mischaracterization in Section 2) should have a greater di�erence.
Indeed, this is what we observe - the test pass rate for comments
that inaccurately describe the behavior of the code is even lower,
and the di�erence is more signi�cant (? < 10�4). As this is the
intended use case, we exclude the comments that are inaccurate for
other reasons in the remainder of our analysis.

Although there is a meaningful di�erence in test pass rate be-
tween accurate and inaccurate comments, recall we derived the
correctness estimator in Section 4.1, which would theoretically have
a direct correspondence with the likelihood of a document being
accurate according to Bayesian inference, unlike test pass rate. In
Figure 4b, we plot the ROC (receiver operating characteristic) curve
between our correctness estimator and actual comment correctness,
showing a robust relationship between the two. The statistical rela-
tionship between comment accuracy and our correctness estimator
is even stronger than in the test pass rate case - the point-biserial
correlation between the two is extremely unlikely to be due to
chance (? < 10�11), and the Welch’s t-test also yields a signi�-
cant di�erence for estimator value between correct and incorrect
comments (? < 10�9). We emphasize that no other baseline had
a statistical relationship with comment factual accuracy, whereas
our estimator shows a strong relationship.

In Figure 5, we compare the ROC-AUC and AP values of di�erent
predictors with the values achieved by document testing. Docu-
ment testing does the best in distinguishing correct comments from
inaccurate ones, as no other method comes within its 95% error
margins. Along with the signi�cant statistical relationships that we

Identifying Inaccurate Descriptions in LLM-generated Code Comments via Test Execution

(a) Pass rate by accuracy, with 95%
con�dence intervals.

(b) ROC graph of correctness esti-
mator with actual correctness.

Figure 4: Relationship between comment accuracy and sug-
gested indicators.

5.2 Evaluation Details
For our study, we focused onwhether GPT-3 (gpt-3.5-turbo-0125)
could be used to evaluate comments that it generated itself. Thus,
the 141 unambiguously labeled comments and methods from Sec-
tion 2 were used as subjects for our experiment. We did so because
we wanted to provide a proof of concept that documentation testing
could work with a single LLM, and that it would not require a com-
plex setup. Unless speci�ed otherwise, we repeated experiments
�ve times to verify that our approach works consistently.

For RQ1, we report the average test passing rate, to verify our
starting assumption made in Section 2, and also in assessing the ef-
fectiveness of our prompting technique. We also use the correctness
estimator from Equation (13) in RQ1 to RQ3. We evaluate metrics
on the basis of the p-values for the Welch’s t-test and Point-biserial
correlation, as well as the ROC-AUC and the average precision
(AP) value of our approach; the ROC-AUC value is commonly used
to evaluate binary classi�ers as a general measure of predictive-
ness [7], while AP is suggestedwhen the classes are unbalanced [35].
ROC-AUC is 0.5 for a random classi�er, while AP depends; for both,
higher values are better. For RQ1, we additionally report the pro-
portion of accurate comments within a given estimator score range.
For RQ2, we additionally report the percentage of comments for
which at least one executable test was generated, as an indication
of how e�ective the prompting techniques were in providing useful
information to generate tests.F = 100 was used in RQ1 and RQ2.

6 RESULTS
This section outlines the results of experiments performed.

6.1 RQ1: Predicting Inaccuracies
This research question relates to whether generating and execut-
ing tests from comments helps distinguish accurate and inaccurate
comments. We �rst verify our assumption that the test pass rate
would be higher for factually accurate comments (Equation (1)).
Figure 4a shows the test pass rate by document type, averaged
over the �ve runs that we did. As presented in the graph, there
is a substantial and statistically signi�cant (? = 0.002) di�erence
in pass rate between accurate and inaccurate documents. As men-
tioned in Section 3, however, document testing is a concept most

Figure 5: ROC-AUC and AP values compared with baselines.
For our approach (blue), we present the mean value from �ve
runs, along with its 95% con�dence interval.

Figure 6: Comment accuracy by normalized estimator value
bin, shown with the 95% con�dence interval of each bin.

suited to revealing inaccurate descriptions of program behavior.
Given that, one would expect comments that inaccurately describe
the behavior of the code (those labeled lacking context or code
mischaracterization in Section 2) should have a greater di�erence.
Indeed, this is what we observe - the test pass rate for comments
that inaccurately describe the behavior of the code is even lower,
and the di�erence is more signi�cant (? < 10�4). As this is the
intended use case, we exclude the comments that are inaccurate for
other reasons in the remainder of our analysis.

Although there is a meaningful di�erence in test pass rate be-
tween accurate and inaccurate comments, recall we derived the
correctness estimator in Section 4.1, which would theoretically have
a direct correspondence with the likelihood of a document being
accurate according to Bayesian inference, unlike test pass rate. In
Figure 4b, we plot the ROC (receiver operating characteristic) curve
between our correctness estimator and actual comment correctness,
showing a robust relationship between the two. The statistical rela-
tionship between comment accuracy and our correctness estimator
is even stronger than in the test pass rate case - the point-biserial
correlation between the two is extremely unlikely to be due to
chance (? < 10�11), and the Welch’s t-test also yields a signi�-
cant di�erence for estimator value between correct and incorrect
comments (? < 10�9). We emphasize that no other baseline had
a statistical relationship with comment factual accuracy, whereas
our estimator shows a strong relationship.

In Figure 5, we compare the ROC-AUC and AP values of di�erent
predictors with the values achieved by document testing. Docu-
ment testing does the best in distinguishing correct comments from
inaccurate ones, as no other method comes within its 95% error
margins. Along with the signi�cant statistical relationships that we

If we then tell LLMs to synthesise test cases based on comments 

—> the pass rate of generated tests correlates with comment quality.

https://arxiv.org/pdf/2406.14836


Zero-shot Automated Debugging
Kang et al., EMSE 2025 (https://arxiv.org/abs/2304.02195)

54

Kang et al.

Construct
Prompt

Scientific 
Debugging 
Explanation

Debugging 
Problem 

Description

1 def f(n):
2     # Evaluate if n can be
3     # written as the sum of 4
4     # positive even numbers.
5     return n%2==0 and n>8

fails on the test
assert f(8) == True, f(8)

with the error message
...
AssertionError: False

Hypothesize
via LLM

Hypothesis: The input 8 is even. 
Perhaps the condition on line 5 is 
classifying the input as odd.
Prediction: n%2==0 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n%2==0)`

The LLM makes a hypothesis 
about what the bug is, and an 
experiment to run.

Observe
via execution

Observation: True

The debugger verifies 
by performing the 
experiment.

Conclude
via LLM

Conclusion: The 
hypothesis is rejected.

The LLM judges the 
hypothesis (here, to 
be incorrect).

Hypothesis: [The prev. hypothesis] 
was REJECTED. Perhaps the 
condition… is classifying the 
input as less than or equal to 8.
Prediction: n>8 will be false.
Experiment: `b debugging.py:5 ;; c 
;; p (n>8)`

The prior hypothesis was 
rejected; the LLM suggests 
n>8 is problematic.

Observation: False

This time, the 
debugger confirms the 
prediction.

Conclusion: The 
hypothesis is supported.

The LLM deems the 
hypothesis correct.

1 2 3

4 5

Hypothesis: [The prev. hypothesis] 
was SUPPORTED. Perhaps it should 
be changed to n>=8.
Prediction: If the condition on 
line 5 is changed to n>=8, the 
test will pass.
Experiment: `REPLACE(5, "n>8", 
"n>=8") AND RUN`

6

The LLM generates a custom 
command to fix the code and 
execute the failing test.

Observation: 
[No exception triggered]

Due to the fix, the 
failing test passed.

Conclusion: The 
hypothesis is supported. 
<DEBUGGING DONE>

The LLM signals that 
debugging is done 
(<DEBUGGING DONE>).

7 8 9
Legend

Dashed boxes:
generated by LLM

Solid boxes: generated by 
debugger / test execution

def f(n):
  return (n%2==0 and
            n>=8)

Fix is generated; 
the developer may 
check the process 
(steps 1-9) 
on request.

Suggest
via LLM

10

Append to prompt
after generation

Legend

A B C D E

Annotated Run (1-10)

Pipeline (A-E)

Figure 1: The pipeline and a real example run of A���SD, with annotations in black boxes and lightly edited for clarity. Given
a detailed description of the scienti�c debugging concept and a description of the bug (A), A���SD will generate a hypothesis
about what the bug is and construct an experiment to verify, using an LLM (B), actually run the experiment using a debugger
or code execution (C), and decide whether the hypothesis is correct based on the experiment result using an LLM (D). The
hypothesize-observe-conclude loop is repeated until the LLM concludes the debugging or an iteration limit is reached; �nally,
a �x is generated (E), with an explanation (white boxes from (1) to (9)) that the developer may view.

3.2 Hypothesize-Observe-Conclude
With the initial prompt,A���SD starts iterating over the ‘hypothesize-
observe-conclude’ loop depicted in Figure 1 ( B - D ). The result
of each process is appended to the prompt to allow incremental
hypothesis prediction; i.e. when generating the conclusion in 3 ,
the LLM would predict it based on the concatenation of the initial
prompt, 1 , and 2 . We describe each iteration of the loop as a step:
for example, Figure 1 1 - 3 would make up one step.

Hypothesize. Here, we lead the language model to generate a
hypothesis by appending the token Hypothesis: to the prompt, so
that the language model generates a hypothesis about the bug. We
observe that the Prediction: and Experiment: line headers are
also generated in turn by the LLM, due to the detailed description
of the scienti�c debugging process provided by the prompt. The
important aspect for the next step is the Experiment command,
where the language model either generates a debugger command
that can be executed by a debugger, or a custom code modi�cation-
and-execution script so that the language model can ‘test’ a certain
change. As the document is in Markdown format, the Experiment
script is wrapped in backticks (�); this script is extracted from the
LLM output to get concrete code execution results in the next step.

Examples can be seen in Figure 1 1 , 4 , and 7 - note thatA���SD
also localizes the fault as a part of the hypothesizing process, thus
making fault localization explainable as well.

Observe. The generated experiment script is passed to a back-
ground process based on traditional software engineering tools that
provides real execution results back to the language model, so that
we can ground the generation process of A���SD on real results,
and also build credibility for developer presentation. The model
can either (i) invoke a composite debugger command by setting a
breakpoint and printing a value, or (ii) modify the code and run
the failing test with the aforementioned DSL. When executing a
debugger command, it is executed via the command-line interface
of the language-appropriate debugger, and the output from the last
subcommand of the composite command (assumed to be a print
command) is returned, as in Figure 1 2 and 5 . When the break-
point is within a loop, the debugger collects values at di�erent
timesteps of execution and returns them together, e.g. ‘At each loop
execution, the expression was: [v1, v2, ...]’, up to a maximum of 100
values. Meanwhile, upon test execution from a edit-and-execute
DSL command, if an exception is raised, the exception type and
message are returned as the observation; otherwise, the result ‘[No
exception triggered]’ is appended, as in Figure 1 8 .

It hypothesise about the 
bug, but then can also 

validate its own hypotheses 
dynamically using 

debugger.

https://arxiv.org/abs/2304.02195


Dynamic Feedback enables Autonomy
Yoon et al., ICST 2024 (https://arxiv.org/abs/2311.08649)

      Task History Memory (Long-term Memory)

Initial Knowledge

Planner
Actor   

Observer

      Working Memory (Short-term Memory)

Task 
Termination

Current GUI StateGUI State 
Describer Previous GUI State

Current 
Task action observation action observation

+critique
…

Task Summary
Summary of Task 1 

(Success)
Summary of Task 2 

(Failure)
… New Task 

Summary

Task Reflection 1

Task Reflection 2

Task Reflection 3

Task Reflection 1

Task Reflection 2

Task Reflection 3

Task Reflection 1

Task Reflection 2

Task Reflection 3

      Widget Knowledge Memory (Spatial Memory)

Widget-wise observations

touch

scroll
...

Task 
Initiation

[PERSONA] started [APP_NAME]

[New Task] Create a new flashcard in 
the "My Deck" deck

Count: 3

Count: 1

[Reflection] The app allows users to add 
images, audio, and advanced[...]

[ACTION] Fill a textfield that has content_desc 
"Front" with "What is the capital city of France?"
[OBSERVATION] [...] has been filled with the text 
“What is the capital city of France?”
[ACTION] Fill a textfield [...] with “Paris” 

…

[Task Result] Person X successfully 
created a new flashcard in the "My Deck" 
deck with the question[...]

[Reflection] The app provides a 
dropdown field to select the deck[...]

A ReflectorC

Save
Retrieve

Virtual User Profile 
of “[PERSONA]”

Ultimate Goal of [PERSONA]

[New Task] Attach a photo to the 
flashcard

[New Task] Attach an audio clip to the 
flashcard[...]

Widget Retriever

self-
critique

Task Retriever

B

Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the

https://arxiv.org/abs/2311.08649


LLMs for Software Engineering
So many things happening all around us, but for now I would say:

• “Chat” may not be an ideal platform to iteratively refine your solution: you 
need additional information source, ideally dynamic feedback from concrete 
executions


• “Agents” seem to be the next wave of change: LLMs will drive the problem 
solving “strategy” while various external parts are providing information.


• Even multi-agent architecture: a single application, inside which multiple 
LLMs are doing a range of sub-tasks, collaborating with each other.


• We need to learn how to build these agents well, not to mention test <— very 
little known so far.



We are still in the Chinese room
John Searle, “Mind, Brains, and Programs” in 1980

• Suppose we have a computer program that 
behaves as if it understands Chinese 
language.


• You are in a closed room with the AI program 
source code.


• Someone passes a paper with Chinese 
characters written on it, into the room.


• You use the source code as instruction to 
generate the response to the input, and sends 
the response out of the room.


• Do you understand Chinese language, or not?



Summary

• AI/ML model as part of larger software system will be the future - but this calls 
for very new approach towards testing.


• LLMs are THE topic right now, but there are also so much hype: 



	 Using Large Language Models

 Language Models are Autocomplete Machines

	 (image from thegradient.pub)

 13



	 Using Large Language Models

 Formulating bug reproduction as autocomplete

	 Report Content

	 The first part of the prompt presents the bug report.

 14



	 Using Large Language Models

 Formulating bug reproduction as autocomplete

	 Prompting Reproducing Test Generation

	 The second part increases the likelihood of a bug-reproducing test
	 (from a language distribution perspective).

 15



	 Using Large Language Models

 LLMs are known to benefit with examples

	 A prompt template we used for experiments.
	 Note the example answers (highlighted).

 16



	 Using Large Language Models

 Given a prompt, sample N candidate tests.

	 Prompt
	 T1
	 Example

 Report	 LLM	 T2

 Bug Report

 Example
  Test  T3

 …

 Tn

 LLM-portion of LIBRO algorithm - note the prompt and N samples.
	 (in our case, we sampled N=50 tests as default.)

 17



	 Postprocessing LLM Results

 Showing 50 tests is infeasible
 test1  {
  filler;
  filler2;
 }

 test2  {
  filler;
  filler2;
 }

 test3  {
  filler;
  filler2;
 }

 test4  {
  filler;
  filler2;
 }

 test5  {
  filler;
  filler2;
 }

 test6  {
  filler;
  filler2;
 }

 test7  {
  filler;
  filler2;
 }

 test8  {
  filler;
  filler2;
 }

 test9  {
  filler;
  filler2;
 }

 test10  {
  filler;
  filler2;
 }

 test11  {
  filler;
  filler2;
 }

 test12  {
  filler;
  filler2;
 }

 test13  {
  filler;
  filler2;
 }

 test14  {
  filler;
  filler2;
 }

 test15  {
  filler;
  filler2;
 }

 test16  {
  filler;
  filler2;
 }

 test17  {
  filler;
  filler2;
 }

 test18  {
  filler;
  filler2;
 }

 test19  {
  filler;
  filler2;
 }

 test20  {
  filler;
  filler2;
 }

 test21  {
  filler;
  filler2;
 }

 test22  {
  filler;
  filler2;
 }

 test23  {
  filler;
  filler2;
 }

 test24  {
  filler;
  filler2;
 }

 test25  {
  filler;
  filler2;
 }

 test26  {
  filler;
  filler2;
 }

 test27  {
  filler;
  filler2;
 }

 test28  {
  filler;
  filler2;
 }

 test29  {
  filler;
  filler2;
 }

 test30  {
  filler;
  filler2;
 }

 test31  {
  filler;
  filler2;
 }

 test32  {
  filler;
  filler2;
 }

 test33  {
  filler;
  filler2;
 }

 test34  {
  filler;
  filler2;
 }

 test35  {
  filler;
  filler2;
 }

 test36  {
  filler;
  filler2;
 }

 test37  {
  filler;
  filler2;
 }

 test38  {
  filler;
  filler2;
 }

 test39  {
  filler;
  filler2;
 }

 test40  {
  filler;
  filler2;
 }

 test41  {
  filler;
  filler2;
 }

 test42  {
  filler;
  filler2;
 }

 test43  {
  filler;
  filler2;
 }

 test44  {
  filler;
  filler2;
 }

 test45  {
  filler;
  filler2;
 }

 test46  {
  filler;
  filler2;
 }

 test47  {
  filler;
  filler2;
 }

 test48  {
  filler;
  filler2;
 }

 test49  {
  filler;
  filler2;
 }

 test50  {
  filler;
  filler2;
 }

 18



	 Postprocessing LLM Results

 Some might not even compile!
 test1  {
  filler;
  filler2;
 }

 test2  {
  filler;
  filler2;
 }

 test3  {
  filler;
  filler2;
 }

 test4  {
  filler;
  filler2;
 }

 test5  {
  filler;
  filler2;
 }

 test6  {
  filler;
  filler2;
 }

 test7  {
  filler;
  filler2;
 }

 test8  {
  filler;
  filler2;
 }

 test9  {
  filler;
  filler2;
 }

 test10  {
  filler;
  filler2;
 }

 test11  {
  filler;
  filler2;
 }

 test12  {
  filler;
  filler2;
 }

 test13  {
  filler;
  filler2;
 }

 test14  {
  filler;
  filler2;
 }

 test15  {
  filler;
  filler2;
 }

 test16  {
  filler;
  filler2;
 }

 test17  {
  filler;
  filler2;
 }

 test18  {
  filler;
  filler2;
 }

 test19  {
  filler;
  filler2;
 }

 test20  {
  filler;
  filler2;
 }

 test21  {
  filler;
  filler2;
 }

 test22  {
  filler;
  filler2;
 }

 test23  {
  filler;
  filler2;
 }

 test24  {
  filler;
  filler2;
 }

 test25  {
  filler;
  filler2;
 }

 test26  {
  filler;
  filler2;
 }

 test27  {
  filler;
  filler2;
 }

 test28  {
  filler;
  filler2;
 }

 test29  {
  filler;
  filler2;
 }

 test30  {
  filler;
  filler2;
 }

 test31  {
  filler;
  filler2;
 }

 test32  {
  filler;
  filler2;
 }

 test33  {
  filler;
  filler2;
 }

 test34  {
  filler;
  filler2;
 }

 test35  {
  filler;
  filler2;
 }

 test36  {
  filler;
  filler2;
 }

 test37  {
  filler;
  filler2;
 }

 test38  {
  filler;
  filler2;
 }

 test39  {
  filler;
  filler2;
 }

 test40  {
  filler;
  filler2;
 }

 test41  {
  filler;
  filler2;
 }

 test42  {
  filler;
  filler2;
 }

 test43  {
  filler;
  filler2;
 }

 test44  {
  filler;
  filler2;
 }

 test45  {
  filler;
  filler2;
 }

 test46  {
  filler;
  filler2;
 }

 test47  {
  filler;
  filler2;
 }

 test48  {
  filler;
  filler2;
 }

 test49  {
  filler;
  filler2;
 }

 test50  {
  filler;
  filler2;
 }

 19



 LIBRO’s post-processing in three steps

 0

 T

 T
 T
 T3

 T

 1

 T1  T2

 2
	 Bug 1

 T1

 Bug 2

 T1

 3
 1

 2

 T1

 T

 T
  T

 T
 T

	 T  T3  Tn  3

 T2

 Tn

 Raw LLM Outputs	 Execute and Cluster	 Decide if Results Reliable	 Rank Tests

 20



	 Postprocessing LLM Results

	 Injecting to target files

 Select the file with greatest lexical similarity and inject the test; add import statements for unmet dependencies.

 file1	 file2	 file3	 …	 fileN
 21



	 Postprocessing LLM Results

 Execute Tests. Four results possible:

 1	 2	 3

 Compile
 failures

 Passing in
  Buggy

	 Non-
 reproducing

 4

 LLM-made
	 test

 Compiler

 Compilable
	 Tests

 Execution

 Failing-in-
	 Buggy
	 (FIB)  Inspect

 Reproducing
	 test

 22



	 Postprocessing LLM Results

 Cluster FIB tests with error message

 23



	 Postprocessing LLM Results

 Show results only if cluster size large enough

 24



	 Postprocessing LLM Results

 Ranking tests with three heuristics (1)

 25



	 Postprocessing LLM Results

 Ranking tests with three heuristics (2)

 26



 Recap

 Diagram of LIBRO

 27



 Results

 28



 Evaluating the Technique

	 RQ1: Efficacy

 How many bugs reproduced? (D4J)

	 RQ2: Efficiency

 ⏱
 How much resources are required?

	 RQ3: Generality

 Are results similar on held-out data?

 29



 RQ1: Efficacy

 RQ1-1: One-third of all bugs were successfully reproduced.	 RQ1-2: LIBRO significantly outperforms baselines.

 30



 RQ2-2: Time cost of each component

	 The API call and actual execution of the test took the longest amount of time.
 31



 RQ2-3: Selection performance

	 Selecting by counting the failing-in-buggy tests was effective;
 32



  RQ2-3: Ranking performance

 Our within-FIB ranking technique was better than the random baseline.
 33



	 RQ3: Generality

  RQ3-1: LIBRO demonstrating it works outside of its (potential) training data.

 RQ3-2: LIBRO selection and ranking heuristics generalize to novel data as well.
 34



 Successful Example

	 public  void  testIssue()  {
 DateTimeZone.forOffsetHoursMinutes
 cannot handle negative offset < 1 hour

 DateTimeZone.forOffsetHoursMinutes(h,
 m) cannot handle negative offset < 1 hour
 like -0:30 due to argument range
 checking. I used forOffsetMillis ()
 instead.
 This should probably be mentioned in the
 documentation or negative minutes be
 accepted.

	 Bug Report: Joda-Time BUG #8

	 DateTimeZone  tz  =
 DateTimeZone. forOffsetHoursMinutes (0,  -30);
	 assertNotNull (tz);
 }

	 A test generated by LIBRO

 public  void  testForOffsetHoursMinutes_int_int()  {
	 ...
	 assertEquals (DateTimeZone.forID("-00:15"),
 DateTimeZone. forOffsetHoursMinutes (0,  -15));
	 ...
 }

	 A developer-written test
 35



	 Examples and Failure Analysis

 ●  When failures happened, we find that
	 ○	 32.5% are due to a need of complex helper functions;
	 ○	 27.5% are due to low report quality;
	 ○	 20% are due to LLM misunderstanding of report;
	 ○	 15% are due to dependency on external resources;
	 ○	 7.5% are due to LLM synthesis limit (we set 256 tokens, or ~1000 characters).

 36



 Conclusion
 Read our preprint!

 1
	 We tackle the problem of
 reproducing general bugs from reports.

 2
 We propose LIBRO, which combines LLMs and postprocessing
	 to effectively reproduce bug reports.

 3
 Our evaluation shows LIBRO successfully reproduces bugs,
	 and that its postprocessing heuristics work.

 Contact us at sungmin.kang@kaist.ac.kr / juyeon.yoon@kaist.ac.kr
 Find our preprint with the QR code above, or by searching for “Exploring LLM-based General Bug Reproduction”

 37


