
Shin Yoo | COINSE@KAIST

Test Flakiness
CS453 Automated Software Testing

Push On Green

• A DevOps concept popularised by Google, more commonly and also known
as: Continuous Deployment (as in CI/CD)

• Newest version of your software is automatically deployed whenever all tests
pass

• Test results are critical

• False Negative (i.e., test passes when code is incorrect): you end up
releasing an incorrect software

• False Positive (i.e., test fails when code is correct): slows the development
down

Making “Push On Green” a Reality: Issues and Actions Involved in Maintaining
a Production Service

• A USENIX LISA 2014 presentation given by Daniel Klein, Google: https://
www.usenix.org/conference/lisa14/conference-program/presentation/klein

• LISA stands for Large Installation System Administration Conference: the talk
is very practical and informative :)

https://www.usenix.org/conference/lisa14/conference-program/presentation/klein
https://www.usenix.org/conference/lisa14/conference-program/presentation/klein

Test Flakiness

• We call a test case to be “flaky” when it changes outcome against the same
code.

• This creates a huge problem for Pass on Green philosophy: when a test
transitions from pass to fail, is it flaky or is it actually a real problem?

%REP]WMW�SJ�8IWX�6IWYPXW�EX�+SSKPI

Ɣ %REP]WMW�SJ�E�PEVKI�WEQTPI�SJ�XIWXW����QSRXL�WLS[IH�
ż ��	�SJ�XVERWMXMSRW�JVSQ�4EWW��"�*EMP�EVI�JVSQ��JPEO]��XIWXW
ż 3RP]�����	�SJ�XIWXW�IZIV�JSYRH�E�FVIEOEKI
ż *VIUYIRXP]�GLERKIH�JMPIW�QSVI�PMOIP]�XS�GEYWI�E�FVIEOEKI
ż ��SV�QSVI�HIZIPSTIVW�GLERKMRK�E�JMPI�MW�QSVI�PMOIP]�XS�GEYWI�E�FVIEOEKI
ż 'LERKIW��GPSWIV��MR�XLI�HITIRHIRG]�KVETL�QSVI�PMOIP]�XS�GEYWI�E�FVIEOEKI
ż 'IVXEMR�TISTPI���EYXSQEXMSR�QSVI�PMOIP]�XS�GEYWI�FVIEOEKIW��SSTW�
ż 'IVXEMR�PERKYEKIW�QSVI�PMOIP]�XS�GEYWI�FVIEOEKIW��WSVV]

6HH��SULRU�GHFN�DERXW�*RRJOH�&,�6\VWHP��6HH�WKLV�SDSHU�DERXW�SLSHU�DQG�&/V

"The State of Continuous Integration Testing at Google”, John Micco, ICST 2017 Keynote (https://research.google/pubs/pub45880/)

https://research.google/pubs/pub45880/

*PEO]�8IWXW

Ɣ 8IWX�*PEOMRIWW�MW�E�LYKI�TVSFPIQ
Ɣ *PEOMRIWW�MW�E�XIWX�XLEX�MW�SFWIVZIH�XS�FSXL�4EWW�ERH�*EMP�[MXL�XLI�WEQI�GSHI
Ɣ %PQSWX���	�SJ�SYV����1�XIWXW�LEZI�WSQI�PIZIP�SJ�JPEOMRIWW
Ɣ *PEO]�JEMPYVIW�JVIUYIRXP]�FPSGO�ERH�HIPE]�VIPIEWIW
Ɣ (IZIPSTIVW�MKRSVI�JPEO]�XIWXW�[LIR�WYFQMXXMRK���WSQIXMQIW�MRGSVVIGXP]
Ɣ ;I�WTIRH�FIX[IIR���ERH���	�SJ�SYV�GSQTYXI�VIWSYVGIW�VI�VYRRMRK�JPEO]�XIWXW

"The State of Continuous Integration Testing at Google”, John Micco, ICST 2017 Keynote (https://research.google/pubs/pub45880/)

https://research.google/pubs/pub45880/

Sources of Flakiness

• Parallelism: interference or poor synchronization

• Execution time: something takes too long and times out

• State management: poorly managed or not controlled

• Data management: poorly managed or not controlled

• Assertions: incorrect assertions

• Algorithm: nondeterministic choices

Solutions (?)

• Better synchronization

• Threadsafe code + independent execution environment

• Break-down long sequences + step-wise synchronization

• Explicit pre-condition setup for both state and data + avoid dependencies
between test executions

“Your Tests Aren’t Flaky”

• A talk given by Alister Scott (Automattic) at GTAC 2015

• https://www.youtube.com/watch?v=hmk1h40shaE

• https://docs.google.com/presentation/d/
1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?
slide=id.gd8d3f5279_0_0 (slides)

https://www.youtube.com/watch?v=hmk1h40shaE
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0

Research on Test Flakiness

• Detection: is this test failure real, or a result of flakiness?

• Prediction: how likely is this test case to be flaky?

• Repair: automatically remove flakiness? (probably the most ambitious goal)

Detection

• A test fails. How do you determine whether it is flaky or not? (Recall
Regression Test Case Selection)

• A test case that transitions from pass to fail but does not cover any of the
changed part is likely to be flaky (because the changed behavior is caused by
the changed code)

• DeFlaker: Automatically Detecting Flaky Tests, Jonathan Bell; Owolabi
Legunsen; Michael Hilton; Lamyaa Eloussi; Tifany Yung; Darko Marinov, ICSE
2018 (https://ieeexplore.ieee.org/abstract/document/8453104)

https://ieeexplore.ieee.org/abstract/document/8453104

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Bell et al.

Table 1: Number of !aky tests found by re-running 5,966 builds of 26 open-source projects. We consider only new test failures,
where a test passed on the previous commit, and report !akes reported by each phase of our Rerun strategies. DeFlaker found more !aky
tests than the Sure)re or Fork rerun strategies: only the very costly Reboot strategy found more !aky tests than DeFlaker.

DeFlaker labeled as:Test Methods
in Project

Con'rmed !aky by
Rerun strategy Flaky Not Flaky

Project #SHAs Total Failing

Total
New

Failures Sure're +Fork ++Reboot Con'rmed Unconf. Con'rmed Unconf.
achilles 227 337 77 242 13 14 230 225 4 5 8
ambari 500 896 7 75 52 71 74 74 0 0 1
assertj-core 29 6, 261 2 3 2 2 2 2 0 0 1
checkstyle 500 1, 787 1 1 0 0 0 0 0 0 1
cloudera.oryx 332 275 23 29 5 5 5 5 20 0 4
commons-exec 70 89 2 22 22 22 22 21 0 1 0
dropwizard 298 428 1 60 60 60 60 55 0 5 0
hadoop 298 2, 361 365 1, 081 284 865 1, 054 1, 028 25 26 2
handlebars 27 712 7 9 3 7 7 6 2 1 0
hbase 127 431 106 406 62 242 390 383 12 7 4
hector 159 142 12 87 0 74 79 72 4 7 4
httpcore 34 712 2 2 2 2 2 1 0 1 0
jackrabbit-oak 500 4, 035 26 34 10 33 34 32 0 2 0
jimfs 164 628 7 21 21 21 21 15 0 6 0
logback 50 964 11 18 18 18 18 18 0 0 0
ninja 317 307 37 122 37 77 110 94 2 16 10
okhttp 500 1, 778 129 333 296 305 310 231 0 79 23
oozie 113 1, 025 1, 065 2, 246 42 2, 032 2, 244 2, 234 0 10 2
orbit 227 86 9 86 84 85 85 73 0 12 1
oryx 212 200 38 46 14 14 46 14 0 32 0
spring-boot 111 2, 002 67 140 73 107 135 135 3 0 2
tachyon 500 470 4 5 3 5 5 5 0 0 0
togglz 140 227 21 28 5 14 28 28 0 0 0
undertow 7 340 0 0 0 0 0 0 0 0 0
wro4j 306 1, 160 114 217 39 96 99 80 8 19 110
zxing 218 415 2 15 15 15 15 15 0 0 0
26 Total 5, 966 28, 068 2, 135 5, 328 1, 162 4, 186 5, 075 4, 846 80 229 173

)ve times, running a mvn clean between tests and rebooting the
machine between runs.

Table 1 shows the results of this study, including the number of
test failures con)rmed as !aky by each Rerun strategy. Overall, we
observed 2, 135 tests that exhibited some potentially !aky behavior,
having new failures (passing on one commit, then failing on the
following commit). Collectively, these tests had a total of 5, 328 new
failures, with 1, 162 detected by the Sure)re (same JVM) reruns,
4, 186 detected by the Sure)re strategy or the Fork strategy, and
5, 075 detected by the Sure)re, Fork, or Reboot strategy. This result
is striking: the existing !aky test detector in Maven only identi)ed
23% of the !aky failures identi)ed by all three strategies (including
the heavyweight Reboot strategy)!

It would be di*cult to fairly state the cost of these various reruns,
as the cost of rerunning a test varies with many factors (how long
the test took to run the)rst time, how much shared state it might
need to setup, etc.). If all tests fail, then the cost of rerunning them all
once would be at least the cost of running the test suite the)rst time.
Even when (re)running fewer tests, any Rerun strategy aside from

Maven’s Rerun will incur the high computational cost of isolating
tests in their own JVM as documented by prior work [25], or more
if employing stronger isolation similar to our Reboot strategy [65].

Table 2 summarizes Rerun results by strategy, including the
number of reruns needed to witness the !ake. From these results, we
may conclude that only one rerun is needed for each kind of rerun:
)rst run a failing test in the same JVM once, and if it fails, run in a
new JVM once, and if still fails, run after a reboot. Performing more
runs of the same kind increases the cost but does not substantially
increase the chance to obtain a pass. In other words, changing the
kind of rerun is more likely to help than just increasing the number
of reruns, and various testing frameworks [21, 42, 52, 63, 75, 77]
that support reruns and o+er defaults such as 3, 5, or 10 reruns of
the same kind should rather o+er new kinds of reruns. DeFlaker
allows Maven users to automatically have tests rerun in a new JVM.

3.2 RQ2: Finding Flaky Tests with DeFlaker
We evaluated DeFlaker’s e*cacy in marking test failures as !aky
on the same test executions as in the previous section. That is,

438

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 23,2021 at 15:46:25 UTC from IEEE Xplore. Restrictions apply.

DeFlaker: Automatically Detecting Flaky Tests ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Number of reruns required to con!rm the "akes
from Table 1, and the percent of "akes con!rmed by reruns
at each tier also con!rmed byDeFlakerwithout any reruns
required. If a !ake was con"rmed, we stopped rerunning it; we
executed the three rerun strategies in the order listed.

Reruns to Find Flaky
Strategy 1 2 3 4 5 Total

% Also Found
by DeFlaker

Same JVM 994 90 38 24 16 1, 162(22.9%) 87.6%
New JVM 2, 913 32 32 19 28 3, 024(59.6%) 98.4%
Reboot 889 0 0 0 0 889(17.5%) 95.8%
All 5, 075(100.0%) 95.5%

when running tests in our historical environment, we also ran
DeFlaker. We used the reruns as an oracle for whether a test failure
was truly !aky, which allowed us to identify DeFlaker-reported
!aky failures that were con"rmed as failures versus those that
remain uncon"rmed. Note that we may over-estimate the number
of false alarms for DeFlaker because the test could still be !aky
if investigated further. Table 1 reports these results. In summary,
DeFlaker reported 4, 846 failures as !aky (95.5% of con"rmed
!akes) with a very low false alarm rate, just 1.5%. These reports
represent a total of 1, 874 !aky tests. DeFlaker "nds signi"cantly
more !aky test failures than the Sure"re strategy and slightly more
than those found using the Fork JVM strategy.

Given thatmost of the !akes (77%) couldn’t be con"rmed through
a simple rerun in the same JVM, we believe that DeFlaker is even
more valuable to developers, as it can provide immediate, trusted
feedback with signi"cantly less delay. Table 2 shows what percent
of !akes detected by each rerun technique were also detected by
DeFlaker. Of those 3, 024 !aky tests detected only after rerunning
tests in a new JVM, DeFlaker accurately marked 98.4% of them as
!aky, suggesting that the developers could have detected these !aky
tests without paying the cost to rerun these tests. Most compelling
is that for the 889 failures that required the most expensive reruns
to con"rm as !aky tests – running a mvn clean between tests and
rebooting the machine between runs – DeFlaker detected 95.8%
of these !aky test runs without any expensive rerun.

Overall, based on these results, we "nd DeFlaker to be a cost-
bene"cial approach to run before or together with Rerun, and we
also suggest a potentially optimal way to run Rerun. For projects
that have lots of failing tests, DeFlaker can be run on all the tests in
the entire test suite, because DeFlaker immediately detects many
!aky tests without needing any rerun. For projects that have a few
failing tests, DeFlaker can be run only when rerunning failed tests
in a new JVM; if the tests still fail but do not execute any changed
code, then reruns can stop without costly reboots.

To evaluate DeFlaker on a wider set of projects, and to "nd
previously unknown !aky tests, we performed experiments in the
live environment, the results of which are summarized in Table
3. Of the 96 open-source Java projects that we shadowed, rela-
tively few were actively developed (Labuschagne et al. reported
a similar "nding [56]), having more than a handful of builds over
the three-month time period. Of particular note are the projects
where DeFlaker was only run on a handful of builds (i.e., achilles,

Table 3: Results from live environment, showing only
projects that had tests fail after previously passing. Showing
the total failures, and for DeFlaker !ake reports: Con"rmed !akes,
Reports of !akes sent to developers,Addressed !akes by developer.

Flake Reports
Project Tests # SHAs

New
Fails C R A Issue Links

achilles 573 5 2 2 2 2 [2, 3]
checkstyle 26, 935 96 1 1 1 1 [4]
geoserver 4, 919 60 39 39 1 0 [5]
jackrabbit-oak 9, 788 99 5 5 2 1 [6, 7]
jmeter-plugins 1, 571 19 1 1 1 0 [8]
killbill 14, 827 31 26 26 1 0 [9]
nutz 1, 117 87 1 1 1 1 [10]
presto 4, 554 203 11 11 7 0 [11–16]
quickml 98 2 2 2 2 0 [17, 18]
togglz 748 12 3 3 2 2 [19, 20]
10 Total 65, 130 614 91 91 19 7

quickml), yet still identi"ed !aky tests. In total, only 10 projects had
at least one test that DeFlaker detected as a candidate !ake (that
had passed in the previous commit, then failed in the current com-
mit). We found a total of 91 failures that were potential !akes, and
con"rmed that they were all !akes by repeatedly rerunning them on
our local machines: if they eventually passed given the same code,
and no other changes, we declared them true !akes. Although we
performed far fewer builds in the live environment (constrained by
the resources provided by TravisCI), DeFlaker actually identi"ed
more !aky test failures per-build in the live environment (546) than
in the historical environment (91/614). We found no false positives
in this study (but DeFlaker can have false positives, as discussed
previously). Unfortunately, we cannot comment on the e*cacy of
individual rerun strategies here, as we began collecting this data
in the "eld before automating the three-strategy rerun approach
described in the previous section.

Out of the 91 previously unknown !aky tests that DeFlaker
detected, we reported 19 to developers (one test in togglz and three
tests in presto had been previously detected as !aky by the develop-
ers). Of the 19 reports, 7 have been addressed, most by removing or
reducing !akiness, but one by removing/ignoring the test (which
is why we use the term “addressed” rather than “"xed,” because
removing a test is not a "x for that test, but it was a "x for the test
suite as the developers found more value in removing this test than
keeping it and having to deal with its !akiness). In several cases,
we found that !aky tests previously believed to have been "xed by
developers were still !aky, due to the same or di+erent causes [16].
We received several very positive responses, such as “Thank you
very much for your help with this. I just committed a "x. Looking
forward to see more green builds now.” [19] and “@!akycov, thanks
a lot!” [4]. All remaining reports are still open at the time of writing,
with the exception of one geoserver issue: those developers could
not reproduce the failure and were not interested in debugging
it [5]. In cases where a project had multiple !aky tests, we began
by opening an issue on just one of the !aky tests, and did not open
more issues if the developers didn’t respond. We reported two !aky
tests in presto with similar root causes in one issue.

439

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on May 23,2021 at 15:46:25 UTC from IEEE Xplore. Restrictions apply.

Prediction

• Can we build a predictive model that can tell us whether a test case is likely
to be flaky?

• What would be a good feature set?

• “FlakeFlagger: Predicting Flakiness Without Rerunning Tests”, Abdulrahman
Alshammari, Christopher Morris, Michael Hilton, and Jonathan Bell, ICSE
2021 (https://ieeexplore.ieee.org/abstract/document/9402098)

https://ieeexplore.ieee.org/abstract/document/9402098

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature is rep-
resented in multiple forms based on the h values (number of the past commits). In our evaluation, we considered
h = 5, 10, 25, 50, 75, 100, 500 and 10, 000

Feature Description

Te
st

Sm
el

ls

Indirect Testing True if the test interacts with the object under test via an intermediary [24]
Eager Testing True if the test exercises more than one method of the tested object [24]
Test Run War True if the test allocates a file or resource which might be used by other tests [24]
Conditional Logic True if the test has a conditional if-statement within the test method body [25]
Fire and Forget True if the test launches background threads or tasks. [26]
Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True if the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]

N
um

er
ic

Fe
at

ur
es

Test Lines of Code Number of lines of code in the test method body
Number of Assertions Number of assertions checked by the test
Execution Time Running time for the test execution
Source Covered Lines Number of lines covered by each test, counting only production code
Covered Lines Total number of lines of code covered by the test
Source Covered Classes Total number of production classes covered by each test
External Libraries Number of external libraries used by the test
Covered Lines Churn h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits. Each value h indicates that at least h lines

were modified at least h times in that period.

the candidate number of tests they need to investigate via re-
running or manual inspection.

By proactively identifying flaky tests, we may also help
developers understand why these tests are flaky. Prior work
has suggested different properties of tests that might make
them more likely to be flaky, and FlakeFlagger can report
which of these features are present in each test [4], [8]. In
practice, if a feature has a strong correlation with flakiness,
developers might choose to focus on this feature in their future
test maintenance and development activities.

Figure 1 shows a high-level overview of our approach
to detect flaky tests. First, we collect a series of features
describing each test in a project. In a developer’s scenario,
we would assume that some of these tests would be known to
be flaky, and the developers would be interested in detecting
other flaky tests. For instance, the developer might know the
flaky tests that exist in their test suite currently, and would like
to identify if a newly written test is flaky. We collect behavioral
features (such as API usage) of each test, and then construct
a classifier to predict which tests are flaky. In a controlled
experiment (with known flaky tests), we can perform cross-
validation, and generate a confusion matrix that describes the
performance of the classifier. In practice, without an oracle,
we would present a report to developers including a list of
likely flaky tests.

A. Prediction Features

To develop a list of features that may be predictive of
flakiness, we look to prior flaky test research [1], [4], [6],
[8]. Ahmed et al. [8] categorized 23 developer-reported factors
which affect test flakiness. These features are described by
practitioners at a high level, and include test case complexity,
hard-coded values and test smells. Eck et al. [4] interviewed
21 developers about flaky tests and tabulated the frequency
of different kinds of flaky tests as well as developers’ fixes
for those flaky tests. Whereas prior flakiness classification
approaches used static, code-level features (e.g. presence of
textual tokens in the body of each test method), these surveys
describe features that are more nuanced. For instance, Eck et

al. note that many flaky tests are flaky due to causes not in
the test method itself, but instead, in the production code that
is executed by that test [4].

Inspired by previous studies on test flakiness, we developed
a list of sixteen features, some of are based on general studies
on the causes of flaky tests [1], [8], while others are defined as
bad practices in writing unit tests [28]. Unfortunately, some of
these flaky test root cases are too complicated to detect without
human intervention, for instance, Eck et al’s “Too restrictive
range” (which effectively describes the case where an assertion
is wrong). Hence, we considered all of the features described
in the prior works, and then selected only those for which we
could write automated detectors. We implemented detectors
for each of the features shown in Table II.

While some of the features can be detected by inspecting
the test method statically (specifically, the conditional logic
smell and test line of code), the rest of the features require
more than static analysis. For instance: existing automated test
smell detectors have analyzed only the code that is present in a
test method [29]–[32], and hence can fail to label tests that are
smelly because they invoke a helper method, which in turn,
performs smelly behavior. For instance, the “Fire and Forget”
smell exists in tests that spawn background threads or tasks;
a smell detector that considered only direct calls to launch
threads in the test method body would not define a test as
smelly if it called a helper method to launch that background
thread. Since our goal is not to precisely detect test smells (as
identified by humans), but rather, to find features that may
be representative of flaky tests, we decided to expand our
definition of many of these smells to be inclusive of all code
executed by a test, rather than just the code contained in the
test method body itself.

We developed a hybrid static/dynamic framework to collect
the statement coverage of each test, and then statically analyze
the covered code in order to collect these behavioral features.
For instance, we determined that a test had the “fire and
forget” smell feature if, anytime during its execution (including
in the production code that is called by the test), that test
launched a background thread or task. We also collect a variety

TABLE III: Prediction performance for FlakeFlagger, the vocabulary-based approach, and the hybrid combination of both. The
hybrid approach builds a model with both FlakeFlagger’s and the vocabulary-based approach’s features. We show the number
of True Positives, False Negatives, False Positives and True Negatives, Precision, Recall, and F1 scores per-project. The AUC
value is calculated after each fold where the reported value is the overall averages of AUC values after all folds. Projects with
zero F1 values have very low numbers of flaky tests (less than 3 per project), and illustrate known limitations of FlakeFlagger.

Flaky by FlakeFlagger Vocabulary-Based Approach [12] Combined Approach

Project Tests Reruns TP FN FP TN Pr R F TP FN FP TN Pr R F TP FN FP TN Pr R F

spring-boot 2,108 160 139 21 15 1,933 90% 87% 89% 134 26 703 1,245 16% 84% 27% 143 17 18 1,930 89% 89% 89%
hbase 431 145 129 16 32 254 80% 89% 84% 89 56 152 134 37% 61% 46% 130 15 33 253 80% 90% 84%
alluxio 187 116 116 0 0 71 100% 100% 100% 108 8 11 60 91% 93% 92% 116 0 0 71 100% 100% 100%
okhttp 810 100 52 48 159 551 25% 52% 33% 79 21 444 266 15% 79% 25% 46 54 104 606 31% 46% 37%
ambari 324 52 47 5 3 269 94% 90% 92% 36 16 121 151 23% 69% 34% 47 5 3 269 94% 90% 92%
hector 142 33 30 3 8 101 79% 91% 85% 13 20 23 86 36% 39% 38% 25 8 11 98 69% 76% 72%
activiti 2,043 32 10 22 43 1,968 19% 31% 24% 12 20 531 1,480 2% 38% 4% 7 25 34 1,977 17% 22% 19%
java-websocket 145 23 19 4 1 121 95% 83% 88% 23 0 74 48 24% 100% 38% 19 4 4 118 83% 83% 83%
wildfly 1,023 23 11 12 27 973 29% 48% 36% 20 3 554 446 3% 87% 7% 17 6 24 976 41% 74% 53%
httpcore 712 22 14 8 23 667 38% 64% 47% 16 6 375 315 4% 73% 8% 15 7 24 666 38% 68% 49%
logback 805 22 3 19 17 766 15% 14% 14% 10 12 259 524 4% 45% 7% 5 17 11 772 31% 23% 26%
incubator-dubbo 2,174 19 8 11 35 2,120 19% 42% 26% 11 8 813 1,342 1% 58% 3% 13 6 23 2,132 36% 68% 47%
http-request 163 18 12 6 6 139 67% 67% 67% 16 2 84 61 16% 89% 27% 12 6 6 139 67% 67% 67%
wro4j 1,135 16 4 12 2 1,117 67% 25% 36% 2 14 101 1,018 2% 12% 3% 0 16 1 1,118 0% 0% 0%
orbit 86 7 1 6 8 71 11% 14% 12% 6 1 32 47 16% 86% 27% 1 6 7 72 12% 14% 13%
undertow 183 7 2 5 8 168 20% 29% 24% 6 1 63 113 9% 86% 16% 3 4 8 168 27% 43% 33%
achilles 1,317 4 2 2 3 1,310 40% 50% 44% 0 4 0 1,313 0% 0% 0% 0 4 0 1,313 0% 0% 0%
elastic-job-lite 558 3 0 3 0 555 0% 0% 0% 0 3 34 521 0% 0% 0% 1 2 0 555 100% 33% 50%
zxing 345 2 0 2 2 341 0% 0% 0% 1 1 144 199 1% 50% 1% 0 2 2 341 0% 0% 0%
assertj-core 6,261 1 0 1 5 6,255 0% 0% 0% 0 1 6 6,254 0% 0% 0% 0 1 0 6,260 0% 0% 0%
commons-exec 55 1 0 1 1 53 0% 0% 0% 1 0 18 36 5% 100% 10% 0 1 1 53 0% 0% 0%
handlebars.java 420 1 0 1 5 414 0% 0% 0% 0 1 91 328 0% 0% 0% 0 1 0 419 0% 0% 0%
ninja 307 1 0 1 3 303 0% 0% 0% 0 1 50 256 0% 0% 0% 0 1 0 306 0% 0% 0%

Total 21,734 808 599 209 406 20,520 60% 74% 66% 583 225 4,683 16,243 11% 72% 19% 600 208 314 20,612 66% 74% 86%

AUC (Average per fold) 86% 75% 86%

needed to run such an experiment would vary dramatically
between the two models, since FlakeFlagger had far fewer
false positives (406 vs 4,683). Assuming that each test would
take a comparable amount of time to run flaky test detectors
on, our developer (or researcher) would be able to confirm
the flakiness of FlakeFlagger’s 1,005 reported flaky tests (599
TPs plus 406 FPs) in roughly 18% of the time that it would
take to confirm the flakiness of the 5,266 reported flaky by
the vocabulary-based approach (583 TPs plus 4,683 FPs).

We were initially surprised that the precision of the
vocabulary-based approach’s was so much lower than Flake-
Flagger’s, and indeed, lower than reported by the original
authors [12]. We found that the tokens used in Pinto et
al.’s bag-of-words model did indeed frequently occur in flaky
tests, but also occurred quite frequently in non-flaky tests. For
example, one of the most relevant tokens that the model relied
upon (both in our study, and in [12]) was the Java throws
keyword. However, when examining the entire corpus, we
discovered that this keyword is used quite frequently in both
flaky and non-flaky tests, and hence, is not a very good
predictor of flakiness.

FlakeFlagger’s performance varied across projects: on some
projects (e.g., alluxio), we had perfect precision and recall,
while on others (e.g., okhttp and activiti) the approach was less
successful. We investigated more closely the different factors
that could cause such a varied performance among different
projects. The first and most obvious factor is the size of the
training data: our model performed best on the two projects

which had the most known flaky tests (alluxio and spring-boot
each had more than 100). On projects with very few known
flaky tests (less than 4), FlakeFlagger did not classify any
of the flaky tests as flaky, resulting in F1 scores of 0. This
results from the lack of training data that are representative
of the flaky tests in these projects. However, note that even
on these projects with so few flaky tests (e.g., zxing with
only two known flaky tests, ninja with only one), even though
FlakeFlagger failed to identify the flaky tests (true positives),
it had far fewer false positives than the other approach.

More broadly speaking, we can attribute the variation of
prediction performance between projects to the relative gen-
erality of our features (such as test execution time, coverage
of recently changed lines, etc.). Each project has its own
environmental assumptions, development patterns, and other
unique characteristics that can make it difficult to create a
single general-purpose approach to classifying tests as flaky or
not. Another explanation for why performance varies across
projects may be that not all flaky tests have been labeled
correctly — no rerun-based technique can guarantee to find
all flaky tests (even after 10,000 reruns). That is: there may
be tests that are labeled as “not flaky” in our dataset that are
in fact flaky, but we simply did not observe any flaky failure
of those tests in our experiments.

The higher number of observed flaky tests in a single project
does not guarantee that FlakeFlagger performs well. Some
flaky failures are due to rare dependency conflicts and network
failures that are not captured well from our features described

Lexical Analysis Approach

• If sources of flakiness are limited to a few typical ones (network related latency, external
resources not ready, file I/O, etc), do they manifest themselves with specific lexical
patterns?

• G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and A. Bertolino. What is
the vocabulary of flaky tests? MSR 2020, pages 492–502

• Static flaky test prediction essentially becomes text classification

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Figure 2: Histogram of probability of a !aky test to pass.

the executions. For example, for 47 !aky tests (55%), the test passed
99 times (out of 100 repetitions) and produced a di"erent result in
only one case. This result may indicate that more executions might
be needed to accurately identify !aky tests.

The histogram also shows that there are rare cases where the
probability of a !aky test to pass is low–only one !aky test passed in
less than 10% of the executions. For this case, the strategy adopted
by Continuous Integration (CI) systems to rerun the test for a
small number of times would unlikely identify the cause of failure
as !akiness. The probability of subsequent failures after the #rst
test execution fails is relatively high. Assuming for example that
the framework reruns a test three other times, after a failure, the
probability of !akiness going undetected would be 66% (=0.94), i.e.,
the probability of four failures in a row.

Results indicate that !akiness is a relatively common
problem in IO-related projects. Furthermore, detecting

!akiness with test reruns is challenging.

5.2 Answering RQ2: How accurately can we
predict test !akiness based on source code
identi"ers in the test cases?

Table 3 shows the performance of #ve machine learning algorithms
on our data set in terms of standard metrics used in the literature,
namely: precision, recall, F1-score, MCC (Matthews correlation
coe$cient), and AUC (area under the ROC curve). Numbers in bold
highlight the algorithm that performed best for a given metric.

Table 3: Classi"er performance

algorithm precision recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

All classi#ers achieved very good performance in distinguishing
!aky test cases from non-!aky test cases. While Random Forest
achieved the best precision (0.99), the Support Vector Machine

classi#er slightly outperformed Random Forest in terms of recall
(0.92). Overall, in terms of F1-score, Random Forest achieved the
best performance, but all classi#ers achieved an F1-score of at least
0.85. Results are consistent when considering Matthews correlation
coe$cient and area under the ROC curve. In both cases, the Random
Forest classi#er achieves the best performance, with values of 0.90
and 0.98, respectively.

As is common when using automated classi#ers, we attempted
parameter tuning to see if it would impact the classi#er performance.
In this case, we changed the ‘number of trees’ parameter of the
Random Forest algorithm from its default setting in Weka of 100.
Increasing the number of trees had no impact on the F1-score (we
tried values of 500 and 1,000) while reducing the number of trees led
to a decrease in F1-score to 0.91 for the values of 5 and 10. Reducing
the number of trees to 50 had no impact on the F1-score.

All classi#ers performed very well on our data set.
Overall, Random Forest was the classi#er that

performed best.

5.3 Answering RQ3: What value do di#erent
features add to the classi"er?

In this section, we investigate the impact of the di"erent features
used in our classi#ers on their performance. We focus the inves-
tigation on the two best-performing classi#ers identi#ed in the
previous section: Random Forest (best precision and F1-score) and
Support Vector Machine (best recall).

Tables 4a and 4b compare the performance of these two classi-
#ers to the performance of the same classi#er without a particular
feature, including features of the text classi#cation algorithm (e.g.,
stemming, stop word removal, etc.) and features describing the data
(e.g., number of lines of code, contains identi#er "status", etc.).

For the Random Forest classi#er (Table 4a), not all features in
our pipeline had a visible impact on the results: running the same
pipeline, but without stemming, without stop word removal or
without including the LOCmetric had no impact on the F1-score, for
example, and it also made no di"erence whether we considered only
split identi#ers as tokens (e.g., turning getId into two features get
and id instead of three features get, id, and getid). Lowercasing
had a negligible impact (without it, the F1-score would drop from
0.95 to 0.94), similar to not including Java keywords or not splitting
identi#ers by camel case.

The only large impact was observed when we only included
Java keywords as tokens, but not identi#er names. In this case, the
performance would drop from an F1-score of 0.95 to 0.79.

As Table 4b shows, the results for the Support Vector Machine
classi#er are similar: the F1-score was not a"ected by stemming,
stop word removal, the LOC metric, and Java keywords, while the
e"ect of lowercasing was negligible. Not splitting identi#ers re-
duced the F1-score from 0.93 to 0.89 and not considering identi#ers
at all reduced it to 0.74.

497

Is it test case or test execution?
An et al., ICSME 2024

• What if all (or most of) your tests deal with
database connection? Lexical analysis at
the test code level will lose precision 🫠

• Instead, we can focus on individual failure,
and lexically analyse the symptoms (stack
traces, error messages…)

• We match observed symptoms to a set of
known flaky symptoms - but abstract
details (such as IP address) for more
accurate matching.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Just-in-Time Flaky Test Detection via Abstracted Failure Symptom Matching (Experience Paper) ISSTA 2023, 17-21 July, 2023, Sea�le, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 5: The performance of �aky failure detection on di�erent hyperparameter settings for) and, . Each heatmap represents
the precision, recall, and F1 score of the detection results (in left-to-right order) for a given combination of) and, . The darker
the cell is, the higher the value is.

Figure 6: Precision (upper) and Recall (lower) for each ab-
straction setting: without abstraction, after only purifying
stack trace, after only masking numbers, and after both pu-
rifying stack trace and masking numbers. The results are
averaged over all hyperparameter settings (mean).

that this automated failure grouping can help developers to identify
the root cause of �aky failures more e�ciently.

5.3 Resource Savings: How much test resources
can be saved compared to the conventional
rerun strategy?

We compute the percentages of the machine time and the number
of test executions that can be saved by using our �akiness detection
approach, compared to the conventional rerun strategy. Originally,
each pre-submit testing run requires, on average, nine additional
test executions and 3.13 hours of machine time for rerunning the
studied failures (i.e., the 13,168 test failures with valid symptoms),
which amounts to 219 executions and 78 hours spent per day.

Figure 8a and Figure 8b show the total average, one-day average,
and two-week moving average of the percentages of the machine

Figure 7: The number of unique failure symptoms (upper)
and average character length of symptoms (lower) for each
abstraction stage: without abstraction, after only purifying
stack trace, after only masking numbers, and after both pu-
rifying stack trace and masking numbers.

time and the number of test executions saved by our approach
with) = 3 and, = 3. Our approach can save up to 88% of test
executions and 97% of machine time a day. On average, 46% of test
executions and 49% of machine time can be saved when compared
to the rerun strategy. Figure 9 shows the trend in the resource
savings for every hyperparameter setting. We observe that lower)
and, values lead to higher resource savings as they lead to more
�aky failures being detected (higher recall). However, the lower)
and, values may not always be desirable as it also leads to more
false positives (lower precision), which can increase the human
postmortem analysis costs. Therefore, the optimal) and, values
should be chosen based on the trade-o� between resource savings
and precision.

7

Automated Repair of Flakiness
FlakeSync (ICSE 2024)

• Specifically handles asynchronous
flakiness by ensuring execution
order (see the example on the right:
the added lines are the fix by
FlakeSync)

• How do we find where to insert such
a guard? Critical sections are the
points where an injected delay can
cause test failures :)

Summary

• Test flakiness is a simple yet extremely important problem in industry
(especially under CI/CD practice).

• Empirical evidence suggests that, as long as you automate your test, you
probably cannot avoid flakiness entirely.

• Solving it will require testable design that considers flakiness from the early
development stage.

• There are research that tries to detect, predict, and repair flakiness.

