Test Flakiness

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

Push On Green

* A DevOps concept popularised by Google, more commonly and also known
as. Continuous Deployment (as in CI/CD)

 Newest version of your software is automatically deployed whenever all tests
pass

e Jest results are critical

* False Negative (i.e., test passes when code is incorrect): you end up
releasing an incorrect software

* False Positive (i.e., test fails when code is correct): slows the development
down

Making “Push On Green” a Reality: Issues and Actions Involved in Maintaining
a Production Service

A USENIX LISA 2014 presentation given by Daniel Klein, Google: https://
www.usenix.org/conference/lisal4/conference-program/presentation/klein

* LISA stands for Large Installation System Administration Conference: the talk
IS very practical and informative :)

https://www.usenix.org/conference/lisa14/conference-program/presentation/klein
https://www.usenix.org/conference/lisa14/conference-program/presentation/klein

Test Flakiness

 We call a test case to be “flaky” when it changes outcome against the same
code.

* This creates a huge problem for Pass on Green philosophy: when a test
transitions from pass to fail, is it flaky or is it actually a real problem??

Analysis of Test Results at Google

E
e Analysis of a large sample of tests (1 month) showed: ‘ﬁ
o0 " . IDIID) I IBIAWIB
84% of transitions from Pass - >Fa|I are from fIak_i TO [EiE FLATCES]

Only 1.23% of tests ever found a breakage
Frequently changed files more likely to cause a breakage
3 or more developers changing a file is more likely to cause a breakage
Changes "closer” in the dependency graph more likely to cause a breakage
Certain people / automation more likely to cause breakages (oops!)
Certain languages more likely to cause breakages (sorry)

O O O O O O O

See: prior deck about Google Cl System, See this paper about piper and CLs

Google

"The State of Continuous Integration Testing at Google”, John Micco, ICST 2017 Keynote (https://research.google/pubs/pub45880/)

https://research.google/pubs/pub45880/

Flaky Tests

S

=

-

= BT g N e

0 Eadan
e ER - Fad S 2 cu

)
ORI -z

" s
- e

0 5
TS OX- B9

2 -
- /
ORIw -z

S

IR TR I R TR [T ST I I
D= mEEns > > RS RS S S S SR
> DOnon > D> D eSS S S B
A-Dnnon- onn-> m-> 0> RS>

-ﬂHEE!!EBBBIHHHEBB!!QEIEHH

JUMDID%

8 0K on)> B> > S oS s> I
> 00> > IR S B S S S S S
> - 0> DonDnnon.- oo o> 0> > |
L IO TR]« DR IS I 7« T I TR TR IR
HﬂUBEEIIBHIEBBEEH!EHIHHB“

Flakiness is a test that is observed to both Pass and Fail with the same code

Almost 16% of our 4.2M tests have some level of flakiness
Developers ignore flaky tests when submitting - sometimes incorrectly

Flaky failures frequently block and delay releases

Test Flakiness is a huge problem

i e

s D Y NPT

- -
.o o

4 Sy
.. -

5 0 o
s Do L BT

We spend between 2 and 16% of our compute resources re-running flaky tests

> [
_ > >
> S S S SIS S IS S]S e (e S TS TS S
s SIS (e[S TS RS [S[S S ST S s i |
- 00> manon- |- mn- >~ 0> nnn> oo
| R e RS T« RS R I TR TR [
> DonnD> o> o s 5> RS S S S S
o (NS > TS (S TS (S TS (S]S | IS (S S S S |
> [[0 (NS > [0S S RS S | NS (S S | S |
> | [S (S (e (S e S | (S | S [
> EEnm > o> s S SSSES eSS S
RS TR RSO T SN - S« RS IR]
> > Ju [S TS TS S TS [S 1S (S 0> s (> 0> 0
AIEHTJIHHHI!EEHEHHIIIDIEBIH
< RO RSO I R I R RS R IR I]
(IR TR RS RS RS RS RS (]
(IR SRS IR RS R S R AR]
> > |- 0> > mn s mes S mes >SS s
> > IS (S [(S (S S [RS (S (s S | (S |
(1R TR IR IR S - S I R R IR]
> [> (> [S S R K S S S S
(IR TR RS RS RS S I I S S IR
- moonom- > &= 5> 5> 5> s>
eI I ST« T S - TS - TR TR |
noooooonooom- >~ nn> -
nonn - mon-s > o> s> RS 5SS RS |
o> Oooonoo- o> - o=« 0N nnon
(IR TR T S RS e I TS ST RS IR]
(IR IR S« ST S RS IR I I
o~ Ooo- nooonoo- >~ oo o> s> |
> > OO~ onoon- > o> a0 nnsns >
> DEEn > o> 1S > 5SS S RS > S S |
> > Innoononon- | x-S > oo
IR0 IR RS S S R S ISR]
(IR L T« TR T« T I TR I I
nooooon -~ E-s > Inn- > o> oo
L L 1 S S S S R [
o~ > mn- > - Dnnnn- > S S S S
0> mEES s SS[eS SIS S S RS S S S |
jIEEBBEEEDHEHIEBIHEEIEMEM
1~ 0~ - 0> Dononn- 0> OooonoE
O Oooon-Ooo- oo 0~ OooonoD
> [> o[> JHIS (S xS]S | NS S S S 0 DEnn
>SS oS RS [EES > DR (> S DR (S
> S (> 0 S S (RS - | S WS S (S
> > S>> s > (i 0> [ma > oS oS
> > > o[> S s S S S ms s S S S i mn
(R TR RS T I T S« A T [TR [«
0> 0/~ DK JIEEEHMEEBIEDHHEE_.
OO0~ D00~ 0o onooo- o> 0> ann
L RO DRI S T I T« T« S R]
IR VRS T T O T« ST IS TR]
I~ 0> Dononn - oonoom s>~ o>
.;MBHEFL!HHBT._IEIIH!HBIBI
Fooon- |- oo~ oo nonon- s >SS 0> o
nnnom- |~ o> o> - s Es S S S I
S onon-> Donoon> |- onn- s> >
& [TR TR R S S S

0> 0> - -S> s e 5> S S s |

(I TR R I JE S TS T RS IR R L]
OnnD > o =~ &[>S B> S S Es ms|
- 0D Don- > 0> nan--> s> oS oD

[RS e I TS TR | R R R R [

[JEE RO I TR TS« RS [ES CE - IR

[JEE [RSRS I 1S TR I TR I IS S - TR [
-~ i) 1> S s S S S 5S> S 0 (D
0> > 0> oD oD oS> nnn- > > me

[TR RS C JC TRS TS I JERT I JEN RS T [T |
[RS e e o I T S [P S R (2

Google

//research.google/pubs/pub45880/)

"The State of Continuous Integration Testing at Google”, John Micco, ICST 2017 Keynote (https

https://research.google/pubs/pub45880/

Sources of Flakiness

» Parallelism: interference or poor synchronization

* EXxecution time: something takes too long and times out
o State management: poorly managed or not controlled
 Data management: poorly managed or not controlled

* Assertions: incorrect assertions

» Algorithm: nondeterministic choices

Solutions (?)

o Better synchronization
 Threadsafe code + independent execution environment
 Break-down long sequences + step-wise synchronization

* EXxplicit pre-condition setup for both state and data + avoid dependencies
between test executions

“Your Tests Aren’t Flaky”

* A talk given by Alister Scott (Automattic) at GTAC 2015

» https://www.youtube.com/watch?v=hmki1h40shaE

» https://docs.google.com/presentation/d/
1L9hGYqCAQjZyXE9ch4Toh4ziuYYkB20OiMCdFpgfTkoO/pub?
slide=id.gd8d3f5279 0 0O (slides)

https://www.youtube.com/watch?v=hmk1h40shaE
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0
https://docs.google.com/presentation/d/1L9hGYqCAgjZyXE9ch4Toh4ziuYYkB2OiMCdFpgfTko0/pub?slide=id.gd8d3f5279_0_0

Research on Test Flakiness

e Detection: is this test failure real, or a result of flakiness?
* Prediction: how likely is this test case to be flaky?

* Repair: automatically remove flakiness? (probably the most ambitious goal)

Detection

* A test fails. How do you determine whether it is flaky or not? (Recall
Regression Test Case Selection)

* A test case that transitions from pass to fail but does not cover any of the
changed part is likely to be flaky (because the changed behavior is caused by
the changed code)

 DeFlaker: Automatically Detecting Flaky Tests, Jonathan Bell; Owolabi
Legunsen; Michael Hilton; Lamyaa Eloussi; Tifany Yung; Darko Marinov, ICSE
2018 (https://ieeexplore.ieee.org/abstract/document/8453104)

https://ieeexplore.ieee.org/abstract/document/8453104

Table 1: Number of flaky tests found by re-running 5,966 builds of 26 open-source projects. We consider only new test failures,
where a test passed on the previous commit, and report flakes reported by each phase of our RERUN strategies. DEFLAKER found more flaky
tests than the Surefire or Fork rerun strategies: only the very costly Reboot strategy found more flaky tests than DEFLAKER.

Test Methods Total Confirmed flaky by DEFLAKER labeled as:
in Project New RERUN strategy Flaky Not Flaky
Project #SHAs Total Failing Failures | Surefire +Fork ++Reboot | Confirmed Unconf. | Confirmed Unconf.
achilles 227 337 77 242 13 14 230 225 4 5 3
ambari 500 896 7 75 52 71 74 74 0 0 1
assertj-core 29 6,261 2 3 2 2 2 2 0 0 1
checkstyle 500 1,787 1 1 0 0 0 0 0 0 1
cloudera.oryx 332 275 23 29 5 5 5 5 20 0 4
commons-exec 70 39 2 22 22 22 22 21 0 1 0
dropwizard 298 428 1 60 60 60 60 55 0 5 0
hadoop 298 2,361 365 1,081 284 865 1,054 1,028 25 26 2
handlebars 27 712 7 9 3 7 7 6 2 1 0
hbase 127 431 106 406 62 242 390 383 12 7 4
hector 159 142 12 87 0 74 79 72 4 7 4
httpcore 34 712 2 2 2 2 2 1 0 1 0
jackrabbit-oak 500 4,035 26 34 10 33 34 32 0 2 0
jimfs 164 628 7 21 21 21 21 15 0 6 0
logback 50 964 11 18 18 18 18 18 0 0 0
ninja 317 307 37 122 37 77 110 94 2 16 10
okhttp 500 1,778 129 333 296 305 310 231 0 79 23
oozie 113 1,025 1,065 2,246 42 2,032 2,244 2,234 0 10 2
orbit 227 36 9 86 84 85 85 73 0 12 1
Oryx 212 200 38 46 14 14 46 14 0 32 0
spring-boot 111 2,002 67 140 73 107 135 135 3 0 2
tachyon 500 470 4 5 3 5 5 5 0 0 0
togglz 140 227 21 28 5 14 28 28 0 0 0
undertow 7 340 0 0 0 0 0 0 0 0 0
Wro4j 306 1,160 114 217 39 96 99 80 8 19 110
zXing 218 415 2 15 15 15 15 15 0 0 0
26 Total 5,966 28,068 2,135 5,328 1,162 4,186 5,075 4,846 30 229 173

Table 2: Number of reruns required to confirm the flakes
from Table 1, and the percent of flakes confirmed by reruns
at each tier also confirmed by DEFLAKER without any reruns
required. If a flake was confirmed, we stopped rerunning it; we
executed the three rerun strategies in the order listed.

Reruns to Find Flaky 7 Also Found
Strategy 1 2 3 4 5 Total by DEFLAKER
Same JVM 994 90 38 24 16 1,162(22.9%) 87.6%
New JVM 2,913 32 32 19 28 3,024(59.6%) 98.4%
Reboot 389 0 0 0 O 889(17.5%) 95.8%

All 5,075(100.0%) 95.5%

Prediction

 Can we build a predictive model that can tell us whether a test case is likely
to be flaky?

 What would be a good feature set?

* “FlakeFlagger: Predicting Flakiness Without Rerunning Tests”, Abdulrahman
Alshammari, Christopher Morris, Michael Hilton, and Jonathan Bell, ICSE
2021 (https://ieeexplore.ieee.org/abstract/document/9402098)

https://ieeexplore.ieee.org/abstract/document/9402098

TABLE II: Complete list of features captured for test flakiness prediction. The Covered Lines Churn feature 1s rep-
resented 1n multiple forms based on the A values (number of the past commits). In our evaluation, we considered

h = 5.10,25,50, 75,100, 500 and 10, 000

Feature Description
Indirect Testing True 1f the test interacts with the object under test via an intermediary [24]
Eager Testing True 1f the test exercises more than one method of the tested object [24]
% Test Run War True 1f the test allocates a file or resource which might be used by other tests [24]
= Conditional Logic True 1f the test has a conditional if-statement within the test method body [23]
7 Fire and Forget True 1f the test launches background threads or tasks. [26]
é Mystery Guest True if the test accesses external resources [24]
Assertion Roulette True 1f the test has multiple assertions [24]
Resources Optimism True if the test accesses external resources without checking their availability [24]
Test Lines of Code Number of lines of code in the test method body
O Number of Assertions Number of assertions checked by the test
% Execution Time Running time for the test execution
o Source Covered Lines Number of lines covered by each test, counting only production code
2 Covered Lines Total number of lines of code covered by the test
QE) Source Covered Classes Total number of production classes covered by each test
E External Libraries Number of external libraries used by the test
Covered Lines Churn h-index capturing churn of covered lines in past 5, 10, 25, 50, 75, 100, 500, and 10,000 commits. Each value A indicates that at least h lines
were modified at least hA times in that period.

TABLE III: Prediction performance for FlakeFlagger, the vocabulary-based approach, and the hybrid combination of both. The
hybrid approach builds a model with both FlakeFlagger’s and the vocabulary-based approach’s features. We show the number
of True Positives, False Negatives, False Positives and True Negatives, Precision, Recall, and F1 scores per-project. The AUC
value 1s calculated after each fold where the reported value 1s the overall averages of AUC values after all folds. Projects with

zero F1 values have very low numbers of flaky tests (less than 3 per project), and illustrate known limitations of FlakeFlagger.

Flaky by FlakeFlagger ¢ Vocabulary-Based Approach [12] |] Combined Approach

Project Tests Reruns| TP FN FP TN Pr R *TP FN FP TN Pr R FJPFN FP TN Pr R F
spring-boot 2,108 160{139 21 15 1,933 90% 87% 89%|134 26 703 1,245 16% 84% 27%|143 17 18 1,930 89% 89% 89%
hbase 431 145(129 16 32 254 80% 89% 84%| 89 56 152 134 37% 61% 46%|130 15 33 253 80% 90% 84%
alluxio 187 116{116 0 O 71 100% 100% 100%|108 8 11 60 91% 93% 92%|116 0 O 71 100% 100% 100%
okhttp 810 100| 52 48 159 551 25% 52% 33%| 79 21 444 266 15% 79% 25%| 46 54 104 606 31% 46% 37%
ambari 324 521 47 5 3 209 94% 90% 92%| 36 16 121 151 23% 69% 34%| 47 5 3 269 94% 90% 92%
hector 142 33 30 3 8 101 79% 91% 85%| 13 20 23 86 36% 39% 38%| 25 8 11 98 69% T76% 12%
activiti 2,043 321 10 22 43 1968 19% 31% 24%| 12 20 531 1,480 2% 38% 4%| 7 25 34 1977 17% 22% 19%
java-websocket 145 231 19 4 1 121 95% 83% 88%| 23 0 74 48 24% 100% 38%| 19 4 4 118 83% 83% 83%
wildfly 1,023 231 11 12 27 973 29% 48% 36%| 20 3 554 446 3% 87% 7%| 17 6 24 976 41% 7T74% 53%
httpcore 712 221 14 8 23 667 38% 64% 47%| 16 6 375 315 4% T73% 8%| 15 7T 24 666 38% 68% 49%
logback 805 221 3 19 17 766 15% 14% 14%| 10 12 259 524 4% 45% 7T7%| 5 17 11 772 31% 23% 26%
incubator-dubbo 2,174 19 8 11 35 2,120 19% 42% 26%| 11 8 813 1,342 1% 58% 3%| 13 6 23 2,132 36% 68% 47%
http-request 163 18 12 6 6 139 67% 67% 67%| 16 2 84 61 16% 89% 27%| 12 6 6 139 67% 67% 67%
wrodj 1,135 16 4 12 2 1,117 67% 25% 36%| 2 14 101 1,018 2% 12% 3%| O 16 1 1,118 0% 0% 0%
orbit 86 77 1 6 8 71 11% 14% 12%| 6 1 32 47 16% 86% 27%| 1 6 7 72 12% 14% 13%
undertow 183 77 2 5 8 168 20% 29% 24%| 6 1 63 113 9% 86% 16%| 3 4 8 168 27% 43% 33%
achilles 1,317 41 2 2 3 1,310 40% 50% 44%| 0 4 0 1,313 0% 0% O0%| O 4 O 1,313 0% 0% 0%
elastic-job-lite 558 3 0 3 0 55 0% 0% 0%l O 3 34 521 0% 0% 0%| 1 2 O 555100% 33% 50%
zxing 345 2 0 2 2 341 0% 0% 0% 1 1 144 199 1% 50% 1%| 0 2 2 341 0% 0% 0%
assertj-core 6,261 1, 0 1 5 625 0% 0% 0% 0 1 6 6254 0% 0% 0% 0 1 0 6260 0% 0% 0%
commons-exec 55 1, 0 1 1 53, 0% 0% 0% 1 O 18 36 5% 100% 10%| O 1 1 53 0% 0% 0%
handlebars.java 420 1, 0 1 5 414 0% 0% 0% O 1 91 328 0% 0% 0%| O 1 O 419 0% 0% 0%
ninja 307 1, 0 1 3 303 0% 0% 0% O 1 50 256 0% 0% 0%| O 1 O 306 0% 0% 0%
Total 21,734 8081599 209 406 20,520 60% 74% 66% |583 225 4,683 16,243 11% 72% 19% 600 208 314 20,612 66% 74% 86%
AUC (Average per fold) 86% 75% 86%

Lexical Analysis Approach

 |f sources of flakiness are limited to a few typical ones (network related latency, external
resources not ready, file I/O, etc), do they manifest themselves with specific lexical
patterns?

* (. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and A. Bertolino. What is
the vocabulary of flaky tests? MSR 2020, pages 492-502

« Static flaky test prediction essentially becomes text classification

Table 3: Classifier performance

algorithm precision recall F; MCC AUC
Random Forest 0.99 091 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 093 0.80 0.86 0.74 0.93
Support Vector 093 0.92 093 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

Is it test case or test execution?
An et al., ICSME 2024

Precision
 What if all (or most of) your tests deal with L 0970
database connection? Lexical analysis at =
the test code level will lose precision &
Recall
* Instead, we can focus on individual failure, o222
and lexically analyse the symptoms (stack .
traces, error messages...) =

 We match observed symptoms to a set of
known flaky symptoms - but abstract

Figure 6: Precision (upper) and Recall (lower) for each ab-
straction setting: without abstraction, after only purifying

deta| IS (SUCh as I P ad d reSS) fOr more stack trace, after only masking numbers, and after both pu-

rifying stack trace and masking numbers. The results are

accurate matc h I N g . averaged over all hyperparameter settings (mean).

Automated Repair of Flakiness..

FlakeSync (ICSE 2024)

o Specifically handles asynchronous
flakiness by ensuring execution
order (see the example on the right:
the added lines are the fix by
FlakeSync)

« How do we find where to insert such
a guard? Critical sections are the
points where an injected delay can
cause test failures :)

@Test
public void testGrpcExecutorPool() {

GRPCMetrics gm = GRPCMetrics.getEmptyGRPCMetrics();

GrpcThreadPoolExecutor executor =
new GrpcServer.GrpcThreadPoolExecutor(gm);

executor.submit(...);

0+ while (!'GGrpcThreadPoolExecutor.hasExecuted) {

Thread.yield();

}
Thread.sleep(120);

double activeThreads = gm.getGaugeMap().get(THREADS);

assertEquals(2, activeThreads);
double queueSize = gm.getGaugeMap().get(QUEUE);
assertEquals(1l, queueSize);

.
}

» public GrpcThreadPoolExecutor {

public GrpcThreadPoolExecutor {
private final GRPCMetrics gm;
public GrpcThreadPoolExecutor(GRPCMetrics gm) {

this.gm = gm;

}

@verride

protected void beforeExecute(Thread t, Runnable r) {
gm. incGauge (THREADS) ;
gm.setGauge (QUEUE, getQueue().size());

+ hasExecuted = true;

super.beforeExecute(t, r);

}

}

Figure 1: Example flaky test from apache/incubator-uniffle

Summary

» Jest flakiness is a simple yet extremely important problem in industry
(especially under CI/CD practice).

 Empirical evidence suggests that, as long as you automate your test, you
probably cannot avoid flakiness entirely.

o Solving it will require testable design that considers flakiness from the early
development stage.

 There are research that tries to detect, predict, and repair flakiness.

