Non-testable Programs and
Metamorphic Testing

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

How many digits of Pi can you
recall?

History of Pi

 BC 2000, Babylonia: 3 + 1/8 = 3.125

 BC 250, Archimedes: 223/ 71 <Pi<22/7

« AD 5, Lu Xin: 3.1457 (method not known)

* AD 150, Ptolemy: 377 /120 = 3.14166..

* AD 480, Zu Chongzhi: 355/ 133, 3.1415926 < Pi < 3.1415927

History of Pi

* 1400, Madhava: power series expansion (aka Leibniz formula), 10 decimal
places

e« 1706, William Jones: the first use of Greek letter 1
1775, Euler: used 1 in his book, assuring its popularity

1874, William Shanks: took 15 years to calculate 707 decimal places, but was
only correct up to 527th (error only found in 1946)

1949, ENIAC: 2,037 decimal places

https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-100

History of Pi

Record approximations of pi

[
NS

10
1012
0
s
(@)
-_E 1010
©
E 108
v
S
6
= 10
(o)
o
L2 10°
=
3 o
100 ~ ~
1
2000 250 480 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
BCE BCE

Year

https://en.wikipedia.org/wiki/Chronology_of_computation_of_tt

Two Questions

 How do you write a program that computes the value of Pi?

« How do you test the program you just wrote?

Background

* |tis impossible to test a program exhaustively: there are infinitely many inputs,
we cannot extrapolate how program will react to all inputs.

* We test the program anyway (better than nothing): test oracles check whether
programs behave correctly against sampled inputs

* Oracle: a mechanism that validates the correctness of a program under test.

Oracle Assumption

* The belief that Oracle can determine program correctness and, conseqguently,
without an oracle, we cannot test a program.

 This assumption is violated when:
e [t is not possible to write an oracle, at all, or
* Oracle may exist, but finding it requires impractical amount of effort

* We call these programs non-testable.

Types of Non-testable Programs

* Type 1: the program was written to determine the answer to a problem we
haven’t solved - if we knew the oracle, we would’ve solved the problem!

* Type 2: the program generates so much output that verifying all of them
becomes too expensive

* [ype 3: the program is misunderstood - testers act as human oracles, but
make bad decisions

 From our point of view, type 1 is the most interesting, as it touches on
something fundamental about testing.

Rising Number of Non-testable Programs

* Type 1: most scientific computation, certain branches of Artificial Intelligence/
Machine Learning

 What is the “correct” way to play a video game, if you are applying
reinforcement learning? What is the correct value of Pi? What is the
“correct” way of clustering objects in an arbitrary domain??

* Type 2: some other branches of Artificial Intelligence/Machine Learning

 Summarisation of biomedical literature using Natural Language Processing,
Image classification

Suppose you are implementing: double sin(double x)

 What can you test, using only your existing knowledge of the function sin,
without using a table of pre-calculated values?

e sin(0) should be O
e sin(r/2) should be 1, sin(rt) should be O
e sin(311/2) should be -1, sin(2m) should be O

e If 0 <X <T1/2, sin(X) < sin(x + €), etc

What can we do more?

2T

We can use a little bit more domain knowledge:

sin(r) =a — sin(m —) = «

Metamorphic Relationship

If the program p has metamorphic relationship f and g:

p(i) =r — p(f(i)) = g(r)

For example, if p is sin, f(z) =7 —x, g(z) = .

Metamorphic Testing

* Use metamorphic relationship to form a pseudo Oracle: existing input-out
pairs allow you to predict the input-output pairs using the metamorphic
relationship.

 While MT is about input/output relationship, we can also consider this as an
“Invariant” in a way. For example:

» Differential testing: if X is implementing spec A, then another
Implementation Y should agree with X on the same input

Metamorphic Testing: Challenges

* Learning metamorphic relationships: manual identification is too costly - can we automate it?

» So far, automated MR identification is mostly based on templates. For example: J. Zhang,
J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mel. Search-based inference of
polynomial metamorphic relations, ASE 2014. For example, quadratic:

c107 + ¢,0,0, + ¢;05 + d,0, + d,0, + ¢ = 0
* Non-numeric metamorphic relationships: what can we apply to input of non-numerical types?

* So far, non-numerical MRs are mostly combinatorial. For example: C. Murphy, K. Shen,
and G. Kaiser. Automatic system testing of programs without test oracles. ISSTA 2009 -
changes training sets of ML classifiers by: permutating datapoint order, add/multiply
constants to datapoint, reverse the order, etc.

...and then an unexpected
comeback!

Adversarial Examples

4+ .007 x =
° m afs
i Vel 020 aign(v,0(0,2,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 09.3 % confidence

Explaining and harnessing adversarial examples, Goodfellow et al., (https://arxiv.org/abs/1412.6572)

More importantly, it turns out that you can be much more systematic
than adding noise and hoping to get an adversarial example.

https://arxiv.org/abs/1412.6572

Adversarial Examples as Verification Counterexamples

automobile to bird automobile to frog ~ automobile to airplane automobile to horse

Fig. 1. Automobile l = l

vig 1. 2 e ol | | A4 -ﬂj q q

— - 9 to 4
- RS i 7 =
o u .
“stop” “80m speed limit” “go right” ; 7t09
to “30m speed limit” to “30m speed limit” to “go straight”
ned on MNIST

Fig. 11. Adversarial examples for the network trained on the GTSRB dataset by multi-
path search

Safety verification of deep neural networks,
Xiaowei Huang, Marta Kwiatkowska, Sen Wang, Min Wu (https://arxiv.org/abs/1610.06940)

https://arxiv.org/abs/1610.06940

This i1s extremely hard to test for.
To begin with, what is the oracle?

Metamorphic Oracles

Metamorphic testing is a surprisingly effective
conceptual tool for testing DNNs (at least so far).

Given that DNN() produces the output “car”,

MT suggests that DNN(

) should also produce the output “car”.

Input MR: Images are perceptively identical to human eyes.
Qutput MR: class labels should be identical.

Code-Documentation Inconsistency

public static String getPackageName(String className) {
if (StringUtils.isEmpty(className)) {

/%% return StringUtils.EMPTY;
* Gets the package name from a String. I

* The string passed in is assumed to be a class name - it //

is not checked. // < ... Omitted ...
x If the class 1is unpackaged, return an empty string. // @
* @param className the className to get the package name if (i ==-1) A

for, may be null return StringUtils.EMPTY;

* @return the package name or an empty string
*/

* Prone to get out of sync, which in turn harm maintainability of the code
* Requires semantic understanding of code to resolve —> HARD!

e Can LLMs help with this? &

Existing Approach

/%%
* Gets the package name from a String.
* The string passed in is assumed to be a class
name - it is not checked.
*x If the class is unpackaged, return an empty
string.
* @param className the className to get the

Is this documentation
consistent with the code?

public static String getPackageName(String
className) {

if (StringUtils.isEmpty(className)) {
return StringUtils.EMPTY;

¥
//

x < ... Omitted ... > mutatiOn

if (i == -1) {
return StringUtils.EMPTY;
}

o Straightforward prompting + mutation to evaluate the capabilities of LLMs to
understand the consistency between code and comments

* (Good starting point, but can still hallucinate + cannot capture detailed behaviour

MetaMon

Contributions

Select documented Generate tests Create Query LLM Score based on
methods using EvoSuite Metamorphic Prompts multiple times LLM Responses

* We capture dynamic behaviour of target methods using regression test cases
generated using EvoSuite.

 We propose metamorphic LLM queries, with metamorphic relations for
generated regression test assertions.

Comparing Assertions to Documentation

...might be easier...?

public static String getPackageName(String
className) {
if (StringUtils.isEmpty(className)) {
return StringUtils.EMPTY;
I3
//
// < ... Omitted ...
//
if (1 == -1) {
return StringUtils.EMPTY;
I3

// A, Bug! (should be substring(0, i);)
return className.substring(1, 1i);

/%%
*x Gets the package name from a String.
% The string passed in is assumed to be a class name - it
is not checked.
* If the class is unpackaged, return an empty string.
* @param className the className to get the package name
for, may be null
* @return the package name or an empty string

Does this code match the
documentation?

N
.C5-.§§

N
.f;~'§§

Does this assertion match
the documentation?

public void test() throws Throwable {
String string@ =
ClassUtils.getPackageName(" line.separator");
assertEquals("ine", stringo0);

VA S

* Gets the package name from a String.

% The string passed in is assumed to be a class name - it
is not checked.

*x If the class is unpackaged, return an empty string.

* @param className the className to get the package name
for, may be null

% @return the package name or an empty string

Metamorphic LLM Query

* A generated regression test case
assertion Is either correct or incorrect &

e If LLM(p) — band p’= —p, then
LLM(p’) — —b, where p is a
regression test assertion predicate, and

b is whether the assertion is consistent
with the documentation or not.

* For this work, we only target assertions
whose semantics are boolean and thus
can be easily flipped.

TABLE I: Oracle transformations based on MR

Transformation | Description

MR_T2F Replacing assertTrue to assertFalse
MR_F2T Replacing assertFalse to assertTrue
MR_N2NN Replacing assertNull to assertNotNull
MR_NN2N Replacing assertNotNull to assertNull
MR_E2NE Replacing assertEquals to assertNotEquals
MR_NE2E Replacing assertNotEquals to assertEquals
MR_S2NS Replacing assertSame to assertNotSame
MR_NS2S Replacing assertNotSame to assertSame

Metamorphic LLM Query

. A +1 if b = correct
833'&3' — b = LLM(p),s,,;,(b) =40 ifb=don't know
—1 if b = incorrect
. +1 if b = incorrect
gﬁé?;norphlc — b= LLM(p’), $,,014(b) = {4 O if b = don't know

—1 if b = correct

score = 2 score,,; (p) + Z score,,...(D'),
pEP()rig p/EPmeta

Experimental Settings

e Dataset & Setup

e Defects4j v2.0.1: 5 open source Java projects
(Chart, Closure, Lang, Math, Time)

e 9,482 method-documentation pairs
e Test generation Tool: EvoSuite v1.0.7
e LLM model: GPT-3.5-Turbo-0613

e Mutant generation Tool: Major v1.3.4

Projects

Test

w/ incorrect oracle w/ correct oracle

Chart
Closure

Lang
Math
Time

2,684 2,684
93 93
594 594
740 740
630 630

Total

4,741 4,741

Prompt consisted of <Test w/ incorrect oracle, Doc>
— Program behaviour & doc is inconsistent

Prompt consisted of <Test w/ correct oracle, Doc>
— Program behaviour & doc is consistent

RQ1. Effectiveness

)
1400 - Test w/ Correct Oracle | 1:0 (_Lé
Test w/ Incorrect Oracle S L. .
1200 - Proportion of - 0.8 . TABLE III: Precision, Recall, and F1 at different thresholds
~®= Test w/ Incorrect Oracle $
%) 60y & L Baseline L 06 =
D 8009 o TS RS Score Pre. Rec. F1 | Score Pre. Rec. F1
A 0,4'§ <-0.1 0722 0480 0576 | <—0.6 0967 0099 0.180
+ < -0.2 0808 0361 049 | <-0.7 0971 0.064 0.120
400 02 O <—0.3 0873 0267 0409 | <—0.8 0973 0.046 0.087
200 - S <-04 0926 0199 0328 | <-—-0.9 1.000 0.021 0.042
0 . | | | | | | | P 00y <-—-0.5 0952 0.134 0235 | <-1.0 1.000 0.014 0.027
~1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Normalized Score

METAMON is effective at detecting inconsistency between code and

documentations at extreme ends of scores, with precision of 0.722 for

score < — 0.1 and 1.0 for score < 0.9.

RQ2. Ablation

g ™0 DR Metamorphic prompting enables METAMON to reliably associate
G 0.8+ "7 ansformed promp! low scores with incorrect oracles.
S] — Without it, the results become nearly indistinguishable
E from random judgements.
2 0.4 -
g 0.2 -
= 0.0- | | | | , o ~ e

-1.0 -05 0.0 0.5 1.0 0.8 —— =3

Normalized Score n=2
0.6 - g:sleline

(a) metamorphic

_CD
N
|

I
N

Increasing the number of LLM queries improves performance:
— More queries lead to stronger distinction between correct | | | |
and incorrect oracles. -10 -05 00 05 10

Normalized Score

% of test w/incorrect oracle

O
o
I

(b) self-consistency

Summary

* Non-testable programs are the programs for which it is very difficult to
generate oracles. In some cases, they are the programs written to solve
problems, whose correct answers we do not know.

 Metamorphic relationship allows you to formulate a semi-oracle for non-
testable programs.

* |ncidentally, most of the learning tasks are non-testable: this is the bleeding
edge.

