
Shin Yoo | COINSE@KAIST

Fault Localisation
CS453 Automated Software Engineering

Process of Debugging

Test
Results

Locate
Faults

Test Input Execution

Design
Patch

Apply
Patch

Issue 1. Failure inducing input is too long or too complex.

Issue 2. It is not obvious from

test results where the fault is.

• Hard for humans: we
increasingly have to work on and
with large code base written by
others.

• Hard for machines: automated
repair techniques rely heavily on
automated fault localisation.

Fault Localisation

• Machines are bad at semantic
reasoning (yet).

• We need to convert the fault
localisation problem into something
quantitative, something less than the
full semantic.

• How do we reason about the
location of a fault, using available
information?

• What are the available
information?

Fault Localisation

Fault Localisation

• Here, we consider four different techniques.

• Delta debugging (a slightly different approach, but highly relevant)

• Information Retrieval Technique

• Spectrum Based Fault Localisation

• Mutation Based Fault Localisation

• For a complete overview:

• W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707, August 2016.

A Motivating Example

<td	align=left	valign=top>	
<SELECT	NAME="op	sys"	MULTIPLE	SIZE=7>	

<OPTION	VALUE="All">All<OPTION	VALUE="Windows	3.1">Windows	3.1<OPTION	VALUE="Windows	95">Windows	95<OPTION	VALUE="Windows	
98">Windows	98<OPTION	VALUE="Windows	ME">Windows	ME<OPTION	VALUE="Windows	2000">Windows	2000<OPTION	VALUE="Windows	

NT">Windows	NT<OPTION	VALUE="Mac	System	7">Mac	System	7<OPTION	VALUE="Mac	System	7.5">Mac	System	7.5<OPTION	VALUE="Mac	
System	7.6.1">Mac	System	7.6.1<OPTION	VALUE="Mac	System	8.0">Mac	System	8.0<OPTION	VALUE="Mac	System	8.5">Mac	System	

8.5<OPTION	VALUE="Mac	System	8.6">Mac	System	8.6<OPTION	VALUE="Mac	System	9.x">Mac	System	9.x<OPTION	VALUE="MacOS	X">MacOS	
X<OPTION	VALUE="Linux">Linux<OPTION	VALUE="BSDI">BSDI<OPTION	VALUE="FreeBSD">FreeBSD<OPTION	VALUE="NetBSD">NetBSD<OPTION	

VALUE="OpenBSD">OpenBSD<OPTION	VALUE="AIX">AIX<OPTION	
		VALUE="BeOS">BeOS<OPTION	VALUE="HP-UX">HP-UX<OPTION	VALUE="IRIX">IRIX<OPTION	VALUE="Neutrino">Neutrino<OPTION	

VALUE="OpenVMS">OpenVMS<OPTION	VALUE="OS/2">OS/2<OPTION	VALUE="OSF/1">OSF/1<OPTION	VALUE="Solaris">Solaris<OPTION	
VALUE="SunOS">SunOS<OPTION	VALUE="other">other</SELECT></td>	<td	align=left	valign=top>	

<SELECT	NAME="priority"	MULTIPLE	SIZE=7>	
<OPTION	VALUE="--">--<OPTION	VALUE="P1">P1<OPTION	VALUE="P2">P2<OPTION	VALUE="P3">P3<OPTION	VALUE="P4">P4<OPTION	

VALUE="P5">P5</SELECT>	
</td>	

<td	align=left	valign=top>	
<SELECT	NAME="bug	severity"	MULTIPLE	SIZE=7>	

<OPTION	VALUE="blocker">blocker<OPTION	VALUE="critical">critical<OPTION	VALUE="major">major<OPTION	
VALUE="normal">normal<OPTION	VALUE="minor">minor<OPTION	VALUE="trivial">trivial<OPTION	VALUE="enhancement">enhancement</SELECT>	

</tr>	
</table>

This HTML code caused Mozilla to crash: what is the actual cause?

Delta Debugging

• Delta debugging is a technique designed to minimise failure inducing inputs.

• Given a long input that causes a program to fail, delta debugging returns
the shortest input that still causes the failure.

• It is based on a simple idea: binary search.

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, Feb. 2002.

Delta Debugging

F

P

F

P

F

F

F

Delta Debugging

• The basic binary search version is simple:

• Cut and throw away half of the input, and see if the output is still wrong

• If so, go back to the first step

• If not, go back to the previous state, and throw away the other half

Issues to Consider

• Given N parts, delta debugging requires O(logN) steps to find the root cause
(binary search). Depending on problems, this may or may not be acceptable.

• It requires fully automated oracle.

• What if the root cause of the failure is actually composed of two separate
parts?

• What if the failure inducing input cannot be cut in half?

DD: What if the root cause of the failure is actually composed of two separate
parts?

F
P
P

?

This is a not uncommon case. To deal with such disjoint causes,

the actual Delta Debugging algorithm is more than the basic binary search.

• Line 1: if there is a single input left, return
it.

• Line 2-7: see if program still fails with
halves of the given input - if it does,
continue halving recursively

• Line 8-10: otherwise, make two recursive
calls

• First: keep the first half of the given
input, and apply DD to the second half

• Second: keep the second half of the
given input, and apply DD to the first
half

Recursive Delta Debugging

DD(P, {i1, . . . , in})
(1) if n == 1 then return i1
(2) P1 =

�
P +

�
i1, . . . , in

2

 �

(3) P2 =
�
P +

�
in2 + 1, . . . , in

 �

(4) if P1 fails
(5) return DD

�
P,
�
i1, . . . , in

2

 �

(6) else if P2 fails
(7) return DD

�
P,
�
in2 + 1, . . . , in

 �

(8) else
(9) return DD

�
P2,

�
i1, . . . , in

2

 �
+

(10) DD
�
P1,

�
in

2 +1, . . . , in
 �

<latexit sha1_base64="oaLJudrK9f9Rvi0Qh2HaGwGrsOc=">AAAEsnicnVNda9swFFUTb+uyr3R7HAyxeNCREOxQ6F4CZcvDXjYyWNqyKgRZkR1RWTaSPAjCv2u/Zc/7I5Mc06ZOYSMC46sr3XOODvdGOWdKB8Hvg1bbe/Dw0eHjzpOnz56/6B69PFdZIQmdkYxn8jLCinIm6EwzzellLilOI04voutP7vziJ5WKZeK7Xud0nuJEsJgRrG1qcdT6hSKaMGEwTzLJ9CotO8jGAqfUTCal8acDZNjChOUAIr7MtBpAuxUlKn179aZY42hTyWK9osL4YjwO/dK4lKS6kAL6FYyt8qcuGCNOY3087Vf/W5IbDhRLTCyTGZUlkixZaVT/3/sIVSijXRS4VdYPm6J3YTaazUaTD2PMuCo7EG4LRynWK5k6Q2q6QUM0/1/VDpZyRWvK0R6U+7zQUf6TwcnZ62F9RwPvhwy3Ie8o3+mohvQOomJ521v1pu7SRbcXDINqwd0grIMeqNd00f1jO4sUKRWacKzUVRjkem6w1IxwavELRXNMrnFCr2zoBkDNTTVhJXxnM0sYZ9J+QsMqu11hcKrUOo3sTWeBap655P1nPGlQ6/jD3DCRF5oKsmGOCw51Bt38wiWTlGi+tgEm1gpGIFlh66q2U96xroRND3aD89EwPBmefhv1zj7W/hyC1+AtOAYhOAVn4DOYghkg7TftSftL+6t34v3wsEc2V1sHdc0rcGd5/C/UlJBT</latexit>

F
P
P
F
F
F
F
F
F
F

• Suppose we are testing a C
compiler. The following code
actually made GCC 2.95.2 crash.

• What if we try to cut this faulty
source code in two halves?

• Neither is a valid C code
anymore, not to mention a failure
inducing input.

DD: What if the failure inducing
input cannot be cut in half?

								case	5:	*to++	=	*from++;	
								case	4:	*to++	=	*from++;	
								case	3:	*to++	=	*from++;	
								case	2:	*to++	=	*from++;	
								case	1:	*to++	=	*from++;	
				}	while	(--n	>	0);	
				return	(int)mult(to,2);	
}	

int	main(int	argc,	char	*argv[])	{	
				double	x[20],	y[20];	
				double	*px=	x;	
					
				while	(px	<	x	+	20)	
								px++	=	(px-x)(20+1.0);	
				return	copy(y,x,20);	
}

double	mult(double	z[],	int	n)	{	
				int	i;	
				int	j;	
				for	(j=	0;	j<	n;	j++)	{	
								i=	i+j+1;	
								z[i]=z[i]*(z[0]+0);	
				}	
				return	z[n];	
}	

int	copy(double	to[],	double	from[],	int	count)		
{	
				int	n=	(count+7)/8;		
				switch	(count%8)	do	{	
								case	0:	*to++	=	*from++;	
								case	7:	*to++	=	*from++;	
								case	6:	*to++	=	*from++;

Hierarchical Delta Debugging

• When input is highly structured, simply cutting it in half is likely to invalidate
the input structure, damaging the efficiency of DD.

• Cutting C source code by halves will eventually work: DD will recurse down
to the single character level, and find the structural boundaries that will
work.

• But this will take a significant amount of test execution that is just invalid.

G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06, pages 142–151, New York,
NY, USA, 2006. ACM.

Hierarchical Delta Debugging

• Hierarchical Delta Debugging (HDD) does not cut at the raw data level, but handles structural
elements.

• If the input is source code, HDD deletes Abstract Syntax Tree nodes, instead of half of the
lines.

• If the input is HTML, HDD deletes XML nodes.

• Instead of recursive binary search based deletions, HDD recursively goes into deeper nested
structures.

• For example, HDD first tries to delete an entire function from source code; if this fails, HDD
then tries to delete half of the basic blocks inside the function, etc.

• HDD always produce syntactically correct output, and preserves atomic elements such as
identifiers.

Delta Debugging (ddmin) HDD

DD is sensitive to whitespaces and deletion boundaries.

Consider the int, or j++: in both cases, ddmin can delete them only when its binary search deletion has
the deletion size of 3 and matches these characters exactly.

Note that ddmin also reduced mult to t.

t(double z[], int)
{
 int i;
 int j;
 for(;;j++) {
 i=i+j+1;
 z[i]=z[i]*(z[0]+0);
 }
}

mult(double *z, int n)
{
 int i;
 int j;
 for (;;) {
 i=i+j+1;
 z[i]=z[i]*(z[0]+0);
 }
}

Delta Debugging Tools

• DD.py (https://www.st.cs.uni-saarland.de/dd/DD.py) and tutorial (https://
www.st.cs.uni-saarland.de/dd/ddusage.php3)

• delta (http://delta.tigris.org) which implements HDD

• Lithium (http://www.squarefree.com/lithium/using.html), a python
implementation of DD

• Git Bisect (https://git-scm.com/docs/git-bisect), which performs DD to a
series of git commits

https://www.st.cs.uni-saarland.de/dd/DD.py
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
http://delta.tigris.org
http://www.squarefree.com/lithium/using.html
https://git-scm.com/docs/git-bisect

Let’s have a look at a real bug report

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

FireFox Bug 1001903

• After creating a folder in the bookmark toolbar and a bookmark inside the
folder, mouse left-click successfully opens the folder but touch-click fails to
open it: it opens but immediately closes itself.

• While we do not know the internals of FireFox, it is easy to guess which parts
of the overall system is most likely to contain this fault.

FireFox Bug 1001903

• After creating a folder in the bookmark toolbar and a bookmark inside the
folder, mouse left-click successfully opens the folder but touch-click fails to
open it: it opens but immediately closes itself.

• While we do not know the internals of FireFox, it is easy to guess which parts
of the overall system is most likely to contain this fault.

IR based Fault Localisation

• Information Retrieval techniques help a user to quickly obtain resources relevant
to an information need, from a large collection of information resources.

• Fault localisation can be thought of as finding a resource (a program element)
that is relevant to an information need (the reported symptoms of the failure),
from a large collection of information resources (the entire system).

• The bug report becomes our query.

• The entire source code becomes our collection of documents.

• Fault localisation is to find the source code that matches the bug report the
best.

How do we do the matching?

• There are many ways to represent documents in IR: here, we are going to look
at one of the basic model, called Vector Space Model (VSM).

• VSM allows us to represent queries and documents as vectors.

• This, in turn, allows us to calculate distances between our query and
documents easily.

Vector Space Model

• First, define the vocabulary, a set of words that are meaningful to us.

• Given a vocabulary with N terms, we represent both the query and the documents as
vectors: 
 
 
 

• The dimensionality of these vectors is equal to the number of terms in the vocabulary,
N.

• If the term w2 appears in dj, w2,j is a non-zero number; otherwise, it is a zero. There are
many ways to set the non-zero number: we are going to study tf-idf.

dj = (w1,j, w2,j, …, wN,j)

q = (w1,q, w2,q, …, wN,q)

Tf-Idf

• Term frequency of a term t in document d, tf(t, d), is simply the number of
times t appears in d.

• Inverse document frequency of a term t in a set of documents D, idf(t, D), is
the logarithmically scaled inverse fraction of the documents that contain the
term t.

• A higher idf(t, D) means that only a few documents in D contains the term t:
in other words, t is not common.

• A lower idf(t, D) means that most of the documents in D contain the term t:
in other words, t is very common. idf(t, D) = log

N
|{d ∈ D : t ∈ d} |

Tf-Idf

• Tf-Idf is simply the product of tf(t, d) and idf(t, D).

• A high tfidf(t, d, D) means that t happens specifically in d, but not
commonly in D. In other words, t is unique to d, and not other documents in
D.

• A low tfidf(t, d, D) means that either t does not appear frequently in d, or if it
does then it appears frequently in most of the documents in D. In other
words, t is not unique to d.

tfidf(t, d, D) = tf(t, d) ⋅ idf(t, D)

Preparing bug reports for IR based Fault Localisation

• We follow the standard text cleansing process used in many IR and machine learning
applications.

• Tokenisation: we break down the bug report to a list of word tokens.

• Remove punctuation: for example, “file’s” becomes “file”

• Case normalisation: for example, “File” and “FILE” all become “file”

• Stop word filtering: some words are extremely common in English (e.g., “a”, “an”, “and”…)
and best left out. These words are called stop words.

• Stemming: reduce each word to its root (e.g., “opens” and “opening” both become “open”).

• There are many widely used libraries that will perform all of these steps.

'Steps	to	reproduce:\n\n1.	create	a	folder	in	the	bookmarks-
toolbar	and	fill	it	with	some	bookmarks	(one	is	enough)\n2.	
opening	the	folder	per	mouse-leftclick	works	flawlessly	but	
per	touch-click	it	just	opens	for	a	fraction	of	a	second	and	
is	immediately	collapsed	again\n	\n(Tested	with	installed	
ubuntu	14.04	and	untouched	live	version	on	t440s	with	
touchscreen)\n\n\nActual	results:\n\nBookmarks-folders	is	
immediately	closed	again	if	opened	per	
touchscreen\n\n\nExpected	results:\n\nIt	should	just	open	
the	folder	and	show	the	contents'

FireFox bug report 1001903 as a Python string

['Steps',	'to',	'reproduce',	':',	'1.',	'create',	'a',	
'folder',	'in',	'the',	'bookmarks-toolbar',	'and',	'fill',	
'it',	'with',	'some',	'bookmarks',	'(',	'one',	'is',	
'enough',	')',	'2.',	'opening',	'the',	'folder',	'per',	
'mouse-leftclick',	'works',	'flawlessly',	'but',	'per',	
'touch-click',	'it',	'just',	'opens',	'for',	'a',	
'fraction',	'of',	'a',	'second',	'and',	'is',	'immediately',	
'collapsed',	'again',	'(',	'Tested',	'with',	'installed',	
'ubuntu',	'14.04',	'and',	'untouched',	'live',	'version',	
'on',	't440s',	'with',	'touchscreen',	')',	'Actual',	
'results',	':',	'Bookmarks-folders',	'is',	'immediately',	
'closed',	'again',	'if',	'opened',	'per',	'touchscreen',	
'Expected',	'results',	':',	'It',	'should',	'just',	'open',	
'the',	'folder',	'and',	'show',	'the',	‘contents']

After Word Tokenisation

['Steps',	'to',	'reproduce',	'create',	'a',	'folder',	'in',	
'the',	'and',	'fill',	'it',	'with',	'some',	'bookmarks',	
'one',	'is',	'enough',	'opening',	'the',	'folder',	'per',	
'works',	'flawlessly',	'but',	'per',	'it',	'just',	'opens',	
'for',	'a',	'fraction',	'of',	'a',	'second',	'and',	'is',	
'immediately',	'collapsed',	'again',	'Tested',	'with',	
'installed',	'ubuntu',	'and',	'untouched',	'live',	
'version',	'on',	'with',	'touchscreen',	'Actual',	'results',	
‘is',	'immediately',	'closed',	'again',	'if',	'opened',	
'per',	'touchscreen',	'Expected',	'results',	'It',	'should',	
'just',	'open',	'the',	'folder',	'and',	'show',	'the',	
'contents']

After Filtering Out Punctuations

['steps',	'to',	'reproduce',	'create',	'a',	'folder',	'in',	
'the',	'and',	'fill',	'it',	'with',	'some',	'bookmarks',	
'one',	'is',	'enough',	'opening',	'the',	'folder',	'per',	
'works',	'flawlessly',	'but',	'per',	'it',	'just',	'opens',	
'for',	'a',	'fraction',	'of',	'a',	'second',	'and',	'is',	
'immediately',	'collapsed',	'again',	'tested',	'with',	
'installed',	'ubuntu',	'and',	'untouched',	'live',	
'version',	'on',	'with',	'touchscreen',	'actual',	'results',	
'is',	'immediately',	'closed',	'again',	'if',	'opened',	
'per',	'touchscreen',	'expected',	'results',	'it',	'should',	
'just',	'open',	'the',	'folder',	'and',	'show',	'the',	
'contents']

Case Normalisation

['reproduce',	'create',	'folder',	'fill',	'bookmarks',	
'one',	'enough',	'opening',	'folder',	'per',	'works',	
'flawlessly',	'per',	'opens',	'fraction',	'second',	
'immediately',	'collapsed',	'tested',	'installed',	'ubuntu',	
'untouched',	'live',	'version',	'touchscreen',	'actual',	
'results',	'immediately',	'closed',	'opened',	'per',	
'touchscreen',	'expected',	'results',	'open',	'folder',	

Stopword Filtering

['reproduc',	'creat',	'folder',	'fill',	'bookmark',	'one',	
'enough',	'open',	'folder',	'per',	'work',	'flawlessli',	
'per',	'open',	'fraction',	'second',	'immedi',	'collaps',	
'test',	'instal',	'ubuntu',	'untouch',	'live',	'version',	
'touchscreen',	'actual',	'result',	'immedi',	'close',	
'open',	'per',	'touchscreen',	'expect',	'result',	'open',	
'folder',	'show',	‘content']

Stemming Applied

Preparing code for IR based Fault Localisation

• The standard text cleansing process also allies to source code.

• With source code, stop words should also include the reserved keywords of
the used programming language.

• In addition, we usually apply additional normalisation to identifiers:

• Camel case breakdown: for example, divide “openDialog” to “open” and
“dialog”.

• Snake case breakdown: for example, divide “create_bookmarks” to
“create” and “bookmarks”

VSM and Distance

• After cleansing, using a predefined vocabulary, we can calculate tfidf(t, d, D) for
each t (word) and d (the query or a source code file). This converts the query
and each source code file to a vector.

• Given two vector, one representing the query and another representing a
source code file, the distance between two vectors can be calculated using the
cosine distance:

• Choose the file that has the shortest distance to the query, and it is more likely
to contain the fault that is responsible for the symptom described in the query
(i.e., the bug report).

cos(dj, q) =
dj ⋅ q

∥dj∥∥q∥
=

∑N
i=1 wi,jwi,q

∑N
i=1 w2

i,j ∑N
i=1 w2

i,q

IR Based Fault Localisation

• Strengths

• Simple and available: many existing work on IR already improved the accuracy of
textual queries - we get free ride!

• Intuitive, easy to understand.

• Weaknesses

• Requires a (very good and detailed) bug report.

• There is inherent limit to accuracy, because the document to be matched (i.e., the
unit of localisation) needs to be of certain size (otherwise lexical similarity
becomes more random).

Spectrum Based Fault Localisation

• Intuition: If there is a faulty line, executing it is likely to increase the probability
of a failure. Similarly, not executing the faulty line is likely to decrease the
probability of a failure.

• This decision process

• requires only test results and structural coverage, but

• is essentially a statistical inference, and does not give any guarantee

• Question: how do we formalise the above intuition in a computable form?

Spectrum Based Fault Localisation

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

Higher ranking

=

Fewer statements

to check

Spectrum Based Fault Localisation

• Program Spectrum: for each structural unit (i.e. statements or branches),
summarise the test result AND coverage into a tuple of the following four
numbers

• ep: # of test cases that execute this unit and pass

• ef: # of test cases that execute this unit and fail

• np: # of test cases that do not execute this unit and pass

• nf: # of test cases that do not execute this unit and fail

Spectrum Based Fault Localisation

Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Tarantula =

ef
ef+nf

ep
ep+np

+ ef
ef+nf

• Originally meant as a
visualization technique, later the
poster child of SBFL.

Tarantula (Jones & Harrold, 2001)

Figure 1: An screen snapshot of the Tarantula system in Shaded Summary mode.

lines executed in both passed and failed test cases. In each of these modes, the brightness for each line is set
to the percentage of test cases that execute the respective statement for that mode.

The final mode, Shaded Summary, is the most informative and complex mapping. It renders all executed
statements on a spectrum from red to green. The hue of a line is determined by the percentage of the
number of failed test cases executing statement s to the total number of failed test cases in the test suite
T and the percentage of the number passed test cases executing s to the number of passed test cases in T .
These percentages are used to gauge the point in the hue spectrum from red to green for which to color s.
The brightness is determined by the greater of the two percentages, assuming brightness is measured on a 0
to 100 scale. Specifically, the color of the line for a statement s that is executed by at least one test case is
determined by the following equations.

hue(s) = low hue (red) + %passed(s)
%passed(s)+%failed(s) ∗ hue range

bright(s) = max(% passed(s),% failed(s))

For example, for a test suite of 100 test cases, a statement s that is executed by 15 of 20 failed test cases
and 40 of 80 passed test cases, and a hue range of 0 (red) to 100 (green), the hue and brightness are 40 and
75, respectively.

The long, thin rectangular region located above and to the right of the code view area shows graphically
the results of the entire test suite. A small rectangle is drawn for each test case from left-to-right and is
color coded to its outcome—green for success and red for failure. This lets the viewer, at a glance, see the

State of the Art c.a. 2010

ef
ef + nf + ep ef

ef + 2(nf + ep)

2ef
2ef + nf + ep

2ef
ef + nf + ep

ef
nf + ep

1

2
(

ef
ef + nf

+
ef

ef + ep
)

ef
ef + nf + ep + np

ef + np � nf � ep
ef + nf + ep + np

ef + np

ef + nf + ep + np

2(ef + np)

2(ef + np) + ep + nf

ef
ef + np + 2(ep + nf)

ef + np

nf + ep

ef
ef+nf

ep
ep+np

+ ef
ef+nf

Over 30 formulæ in the literature: none guaranteed

to perform best for all types of faults

Conference’17, July 2017, Washington, DC, USA

fault localisation: defect prediction can be interpreted as aiming
to localise faults a priori (i.e. before testing and actual detection),
whereas fault localisation simply does so post hoc.

We empirically evaluate FLUCCS using 210 real world faults from
Defects4J repository [19]. The method level localisation results
obtained by FLUCCS have been compared to those from existing
SBFL baselines, FLUCCS with different learning mechanism, as
well as FLUCCS without the additional source code metric features.
FLUCCS with Genetic Programming convincingly outperforms
all the other approaches, placing the faulty method at the top of
the ranking for 106 faults out of 210. The final result shows that
source codemetrics that are relatively easy to collect may effectively
augment existing SBFL techniques for higher accuracy.

The technical contribution of this paper can be summarised as
follows:

• We present FLUCCS, a fault localisation technique that
learns to rank program elements using Genetic Program-
ming, existing SBFL techniques, and source code metrics1.

• We empirically evaluate FLUCCS using 210 real world
faults from Defects4J. FLUCCS ranks 50% of the stud-
ied faults at the top, and about 82% of the studied faults
within the top 5 of the ranking.

• We introduce a new way of computing method level SBFL
scores called method level aggregation. Empirical evalua-
tion of this technique applied to existing state-of-the-art
SBFL formulæ shows that formulæ with method level ag-
gregation can rank about 42% more faults at the top.

• We show that simple source code metrics can effectively
augment existing SBFL techniques for more accurate locali-
sation, prompting further study of the connection between
defect prediction and fault localisation.

The rest of the paper is organised as follows: Section 2 formu-
lates fault localisation as a learning to rank problem and introduces
the features FLUCCS uses. Section 3 describes the learning algo-
rithms that we use in the paper. Section 4 presents the set-up for
the empirical evaluation, the results of which are discussed in Sec-
tion 5. Section 6 discusses the potential threats to validity. Section 7
presents the related work and Section 8 concludes.

2 FEATURES USED BY FLUCCS
Figure 1 shows the overall architecture of FLUCCS. FLUCCS ex-
tracts two sets of features from a source code repository. The first is
a set of SBFL scores using different SBFL formulæ: this requires test
execution on source code instrumented for structural coverage. The
second is a set of code and change metrics: this requires lightweight
static analysis and version mining. In training phase, these features,
along with locations of known faults, are fed into learning algo-
rithms, which produce ranking models that rank the faulty method
as high as possible. In deployment phase, these learnt models take
the features from source code with unknown faults, and produce
rankings of methods according to their likelihood of being faulty.
In this section, we describe the features used by FLUCCS, as well
as how these features are extracted and processed.

1FLUCCS and the data used for the empirical evaluation are made available at http:
//Redacted.For.Double.Blind.Review

2.1 SBFL Scores
SBFL formulæ take program spectrum data as input and return
risk scores (also known as suspiciousness scores). For a structural
program element (such as a statement or a method), the spectrum
data consists of four variables that are aggregated from test cover-
age and pass/fail results: (ep , ef ,np ,nf): ep and ef represent the
number of passing and failing test cases that execute the given
structural element, respectively. Similarly, np and nf represent the
number of passing that failing test cases that do not execute the
given structural element. SBFL formulæ tend to assign higher risk
scores to elements wigh higher ef and np values, which suggest
executing those elements tend to result in failing test executions,
while not executing them tend to result in passing test executions.

Table 1: SBFL formulæ used by FLUCCS as features

Name Formula Name Formula

ER1a
⎧⎪⎨
⎪
⎩

−1 if nf >0

np otherwise
ER1b ef −

ep
ep+np+1

ER5a ef −
ef

ep+np+1
ER5b

ef
ef +nf +ep+np

ER5c
⎧⎪⎨
⎪
⎩

0 if ef <F

1 otherwise
GP2 2(ef +

√

ep+np)+
√
ep

Ochiai
ef

(ef +nf) (ef +ep)
GP3

√

|e2
f
−√ep |

Jaccard
ef

ef +nf +ep
GP13 ef (1+

1
2ep+ef

)

AMPLE |
ef
F −

ep
P | GP19 ef

√

|ep−ef +F−P |

Hamann
ef +np−ep−nf

P+F Tarantula

ef
ef +nf

ef
ef +nf

+
ep

ep+np

Dice
2ef

ef +ep+nf
RusselRao

ef
ep+ef +np+nf

M1
ef +np
nf +ep

SørensenDice
2ef

2ef +ep+nf

M2
ef

ef +np+2nf +2ep
Kulczynski1

ef
nf +ep

Hamming ef +np Kulczynski2 1
2 (

ef
ef +nf

+
ef

ef +ep
)

Goodman
2ef −nf −ep
2ef +nf +ep

SimpleMatching
ef +np

ep+ef +np+nf

Euclid
√

ef +np RogersTanimoto
ef +np

ef +np+2nf +2ep

Wong1 ef Sokal
2ef +2np

2e f +2np+nf +ep

Wong2 ef −ep Anderberg
ef

ef +2ep+2nf

Wong3 ef −h,h=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

ep if ep≤2
2+0.1(ep−2) if 2<ep≤10
2.8+0.01(ep−10) if ep>10

Ochiai2
ef np√

(ef +ep) (nf +np) (ef +np) (ep+nf)

Zoltar
ef

ef +ep+nf +
10000nf ep

ef

FLUCCS uses 33 SBFL formulæ to generate score metrics, which
are listed in Table 1 We include both the state-of-the-art human
generated SBFL formulæ and GP evolved SBFL formulæ. Of these,
25 formulæ have been used in combination with each other in
previous work [3, 40], while eleven formulæ have been proven to
be maximal [39].

Parnin & Orso, ISSTA 2011

• Title: “Are Automated Debugging Techniques Actually Helping
Programmers?”

• Based on human studies, authors say “no, not really”!

• Some of the widely accepted assumptions, such as perfect bug
understanding, may not hold in reality.

• BIGGEST IMPACT: “percentage will not cut it” - later studies move away
from the Expense metric.

Yoo, 2012: Evolving Formulas

ef � ep
ep + np + 1

Risk Evaluation Formula

Ranking

Program

Tests

Spectrum

Pr

T

S

Pr

T

S

GP

Fitness
(minimise)

e2f (2ep + 2ef + 3np)

e2f (e
2
f +

p
np)

. . .

Training Data

• We choose 9 formulæ from
Naish et al. 2011:

• Op2 is the known best.

• Jaccard, Tarantula, Ochiai are
widely studied in SE.

• Wong & AMPLE are recent
additions.

The Competition

Op1 =

(
�1 if nf > 0

np otherwise
Op2 = ef � ep

ep + np + 1

Tarantula =

ef
ef+nf

ep
ep+np

+ ef
ef+nf

Jaccard =
ef

ef + nf + ep

Ochiai =
efp

(ef + nf) · (ef + ep)

AMPLE = | ef
ef + nf

� ep
ep + np

|

Wong1 = ef Wong2 = ef � ep

Wong3 = ef � h, h =

8
><

>:

ep if ep 2

2 + 0.1(ep � 2) if 2 < ep 10

2.8 + 0.001(ep � 10) if ep > 10

• Green: GP outperforms the other.

• Orange: GP exactly matches the other.

• Red: The other outperforms GP.

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from groupX has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Results

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

O
p1

O
p2

O
ch

ia
i

AM
PL

E

Ja
cc

ar
d

Ta
ra

nt
ul

a

W
on

g1

W
on

g2

W
on

g3

⟵
30

 G
P

Ru
ns

⟶

• GP completely outperforms Ochiai,
Tarantula, Wong 1 & 2, and mostly
outperforms AMPLE.

• Op1, Jaccard, and Wong 3 are tough
to beat.

• Op2 is very good but it is not
impossible to do better.

Table 5. Comparison of mean Expense for 72 faults in evaluation sets. Rows in bold
correspond to GP-results that perform as well as or better than any human-designed
formulæ.

ID GP Op1 Op2 Ochiai AMPLE Jacc’d Tarant. Wong1 Wong2 Wong3

GP01 5.73 9.20 5.30 32.66 10.96 6.10 15.06 22.24 17.10 6.63
GP02 12.04 9.67 5.72 32.60 11.91 6.63 14.92 23.45 19.49 8.92
GP03 14.46 11.35 6.11 29.99 12.18 6.99 15.68 23.55 18.55 8.85
GP04 7.80 9.70 4.46 30.98 8.83 5.03 13.88 22.62 14.64 6.33
GP05 9.35 11.04 5.80 29.95 10.63 6.42 14.46 23.15 18.54 8.53
GP06 12.15 11.11 5.87 28.02 12.51 6.79 15.35 23.12 16.70 7.01
GP07 8.93 11.18 5.94 29.53 12.19 6.85 14.81 23.88 19.74 8.68
GP08 6.32 10.23 6.34 30.91 11.67 7.04 16.21 23.54 19.94 9.05
GP09 9.66 10.58 5.33 31.56 11.40 6.17 14.06 22.58 18.31 8.20
GP10 6.31 11.55 6.31 29.83 12.51 7.16 15.79 22.99 19.74 8.56

GP11 5.83 11.07 5.83 33.52 12.12 6.69 16.77 22.05 18.16 6.96
GP12 12.09 8.84 6.23 32.15 11.65 7.02 16.65 22.91 19.42 9.09
GP13 5.11 9.05 5.11 31.67 10.27 5.90 15.92 22.03 17.00 6.69
GP14 9.91 8.52 5.91 31.69 11.10 6.55 15.88 23.15 18.10 8.65
GP15 5.62 9.54 5.59 33.02 10.23 6.19 15.16 23.85 17.17 8.44
GP16 6.79 8.32 5.71 30.52 10.74 6.41 14.60 23.06 18.36 8.42
GP17 7.67 11.46 6.22 33.62 12.06 6.98 16.85 22.44 17.94 8.59
GP18 9.42 10.78 5.54 34.17 11.46 6.33 15.45 22.17 17.46 8.14
GP19 6.42 9.01 5.11 31.28 10.18 5.78 15.03 22.84 15.26 7.79
GP20 5.69 10.93 5.69 29.34 10.88 6.38 15.23 23.41 19.30 8.42

GP21 10.17 10.13 6.24 29.82 10.86 6.89 15.70 23.01 19.85 9.43
GP22 7.58 8.50 5.91 28.06 10.46 6.60 13.67 23.25 18.60 8.63
GP23 6.14 10.76 5.52 30.86 10.57 6.16 14.69 21.77 16.90 7.25
GP24 9.18 10.15 6.21 28.74 12.53 7.10 15.76 23.41 20.16 8.35
GP25 9.34 10.19 6.29 32.56 12.36 7.18 17.59 22.63 20.19 9.48
GP26 6.38 11.62 6.38 32.83 12.27 7.25 18.28 23.77 16.18 7.69
GP27 9.75 8.53 5.89 33.28 12.01 6.85 16.42 22.99 19.23 7.81
GP28 5.56 9.18 5.25 30.02 11.18 6.15 13.52 22.86 17.17 6.85
GP29 7.16 10.12 6.17 34.17 12.83 7.14 17.00 22.94 20.18 8.88
GP30 10.68 9.10 5.14 30.02 10.17 5.78 14.49 22.79 17.09 8.34

of one sample X over another sample Y : the value of A is the probability that a
single subject taken randomly from groupX has higher/lower value than another
single case randomly taken from group Y . For A(X > Y), the value of A closer
to 1 represents a higher probability of X > Y , 0 a higher probability of X < Y ,
and 0.5 no e↵ect (i.e., X = Y).

However, the statistical interpretation of the results should be treated with
caution. There is no guarantee that the studied programs and faults are represen-
tative of all possible programs and faults and, therefore, it is not clear whether
they are legitimate samples of the entire group. On the other hand, if the cost
of designing risk evaluation formulæ is significantly reduced by the use of GP,
the possibility of project-specific formalæ should not be entirely ruled out.

5 Results and Analysis

5.1 E↵ectiveness

Table 5 contains the mean Expense values for all 30 GP-evolved formulæ and
human-designed formulæ in Table 73. Each row reports the mean Expense values

3 The complete results for individual faults are available from: http://www.cs.ucl.
ac.uk/staff/s.yoo/evolving-sbfl.html.

Results

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

O
p1

O
p2

O
ch

ia
i

AM
PL

E

Ja
cc

ar
d

Ta
ra

nt
ul

a

W
on

g1

W
on

g2

W
on

g3

⟵
30

 G
P

Ru
ns

⟶

Evolved Formulæ
Table 7. GP-evolved risk evaluation formulæ. Trivial bloats, such as nf � nf , were
removed.

ID Refined Formula ID Refined Formula

GP01 ef (np + ef (1 +
p
ef)) GP16

q
e

3
2
f + np

GP02 2(ef +
p
np) +

p
ep GP17 2ef+nf

ef�np
+ npp

ef
� ef � e2f

GP03
q

|e2f �p
ep| GP18 e3f + 2np

GP04
q

| np

ep�np
� ef | GP19 ef

p
|ep � ef + nf � np|

GP05
(ef+np)

p
ef

(ef+ep)(npnf+
p
ep)(ep+np)

p
|ep�np|

GP20 2(ef + np

ep+np
)

GP06 efnp GP21
p

ef +
p
ef + np

GP07 2ef (1 + ef + 1
2np

) + (1 +
p
2)
p
np GP22 e2f + ef +

p
np

GP08 e2f (2ep + 2ef + 3np) GP23
p
ef (e2f + np

ef
+

p
np + nf + np)

GP09
ef

p
np

np+np
+ np + ef + e3f GP24 ef +

p
np

GP10
q

|ef � 1
np

| GP25 e2f +
p
np +

p
efp

|ep�np|
+ np

(ef�np)

GP11 e2f (e
2
f +

p
np) GP26 2e2f +

p
np

GP12
p

ep + ef + np �
p
ep GP27

np

p
(npnf�ef)

ef+npnf

GP13 ef (1 +
1

2ep+ef
) GP28 ef (ef +

p
np + 1)

GP14 ef +
p
np GP29 ef (2e2f +ef +np)+

(ef�np)
p
npef

ep�np

GP15 ef +
p

nf +
p
np GP30

q
|ef � nf�np

ef+nf
|

All existing metrics have been designed by human; this paper present the first
GP-based approach to the design of risk evaluation formulæ, reformulating it
as a predictive modelling based on GP. Machine learning techniques have been
also applied to fault localisation work, but the aim was to classify failing tests
together rather than to identify the location of the fault directly [23].

Although SBFL originally started as a debugging aid for human develop-
ers, the technique is increasingly used to enable other automated Search-Based
Software Engineering (SBSE) techniques. Goues et al. use SBFL to identify the
parts of a program that needs to be automatically patched [7]. Yoo et al. use
SBFL to measure the Shannon entropy of fault locality, so that the test suite
can be prioritised for faster fault localisation [25]. GP may be able to help these
techniques by evolving SBFL techniques with a specific set of characteristics,
improving the synergy between predictive modelling and SBSE even further [9].

Other approaches towards fault localisation include slicing [2], consideration
of test similarity [3, 8], delta debugging [27, 28], and causal inference [4]. While
this paper only concerns the spectra-based approach, the positive results sug-
gest that GP may be successfully employed to evolve a wider range of fault
localisation techniques.

7 Conclusion

This paper reports the first application of Genetic Programming to evolving
risk evaluation formulæ for Spectra-Based Fault Localisation. We use a simple
tree-based GP to evolve risk evaluation formulæ that take program spectra ele-
ments as terminals. Empirical evaluation based on 92 di↵erent faults from four
Unix utilities shows three important findings. First, GP-evolved formulæ can
outperform widely studied human-designed formulæ by up to 5.9 times. Second,

Theoretical Analysis of SBFL

• For all the gory details:

• X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the risk
evaluation formulas for Spectrum-Based Fault Localization. ACM
Transactions on Software Engineering Methodology, 22(4):31:1– 31:40,
October 2013.

• X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman. Provably optimal and
human-competitive results in SBSE for Spectrum Based Fault Localisation.
In G. Ruhe and Y. Zhang, editors, Search Based Software Engineering,
volume 8084 of Lecture Notes in Computer Science, pages 224–238.
Springer Berlin Heidelberg, 2013.

Crash Course into Our Proof System

• Given a test suite and a formula R, a program PG = {s1, s2, ..., sn} can be
divided into the following three subsets:

• SRB: set of elements that are ranked higher than the faulty element, sf

• SRF: set of elements that are tied to the faulty element, sf

• SRA: set of elements that are ranked lower than the faulty element, sf

SR
B = {si 2 S|R(si) > R(sf), 1 i n}

SR
F = {si 2 S|R(si) = R(sf), 1 i n}

SR
A = {si 2 S|R(si) < R(sf), 1 i n}

Crash Course into Our Proof System

• Formula R1 dominates formula R2 (R1→R2) if, for any combination of program,
faulty statement, test suite, and a consistent tie-breaking scheme, E1 ≤ E2

• That is,

• Formula R1 is equivalent to formula R2 (R1↔R2) if, for any combination of
program, faulty statement, test suite, and a consistent tie-breaking scheme,
E1 = E2

• That is,

• Finally, R1↔R2 iff R1→R2 and R2→R1

SR1
B ⊆ SR2

B ∧ SR2
A ⊆ SR1

A

SR1
B = SR1

B ∧ SR1
F = SR1

F ∧ SR1
A = SR1

A

Crash Course into Our Proof System

Formula X Formula Y

SX
B

SY
B

SX
F

SX
A

SY
A

SY
F

SY
B ✓ SX

B ^ SX
A ✓ SY

A

To show that Y dominates X,

we show that:

(assuming that we break ties

in F sets consistently)

Statement Ranking

Equivalence is defined as:

X $ Y () X ! Y ^ Y ! X

The Current Maximal Formulas

Name Formula expression

ER1’
Naish1

⇢
�1 if ef<F
P � ep if ef=F

Naish2 ef � ep
ep+np+1

GP13 ef (1 +
1

2ep+ef
)

ER5
Wong1 ef

Russel & Rao ef
ef+nf+ep+np

Binary

⇢
0 if ef<F
1 if ef=F

GP02 2(ef +
p
np) +

p
ep

GP03
q

|e2f �p
ep|

GP19 ef
p
|ep � ef + nf � np|

Hybrid SBFL Approaches

• People are realising that a single formula is strongly limited.

• Hybridisation

• Use multiple formulas at the same time, or

• Use SBFL formulas with some additional input features

• As we accept more diverse input, fault localisation became a learning
problem, instead of a design-a-technique problem

• Simultaneously use 25 SBFL
formulas, using the weighted-
sum method.

• Use a learning-to-rank technique
to train the ranking model (i.e. to
optimize the weights that yield
best ranks for training set faults)

Xuan & Monperrus (ICSME 2014)

• In addition to 35 SBFL formulas,
Savant use invariant difference:

• Use Daikon to infer method
invariants twice: with passing
tests, and with failing test. For
the faulty method, two sets of
invariant will tend to be more
different.

Le et al. (ISSTA 2016)

• A simple and naive insight: we
already have a technique that
claims it can tell us where the
faults are - even before we test!

• 😰

• But, seriously, we present
FLUCCS - Fault Localisation
Using Code and Change Metrics.

Sohn & Yoo (ISSTA 2017)

DEFE
CTS

DEFECT PREDICTION

FLUCCS: Code and Change Metrics Features

• Age: how long has the given element existed in the code base?

• Churn: how frequently has the given element been changed?

• Complexity: how complex is the given element

FLUCCS
Code & Change

Features

SBFL
Features

Learning to
Rank

(GP / SVM)

Known Faults (Training Data)

Ranking

SBFL

• Strengths

• Only requires what is already there: coverage and test results

• Relatively intuitive

• Weaknesses

• Single formulas are usually limited. In fact,

• There exists a theoretical proof that no single formula works the best against all faults

• Does not work against omission faults

• Does not work well against multiple faults

Mutation Based Fault Localisation

• How do we use mutants to localise a fault? Mutants are injected faults
themselves!!

• Consider this: what would happen if you mutate a program you know to be
faulty?

Case 1: Mutating Correct Statements

P F
Equivalent P-F+

New Fault

P+ F-
Mask

CASE 2: mutating Faulty Statement

P+F-
(Partial) Fix

P?F?
(New) Fault

P+F-
Mask

P F
Equivalent

Hypotheses

• An arbitrary mutation operator applied to a correct statement is likely to
introduce a new fault

• An arbitrary mutation operator applied to a faulty statement is either likely to
keep the program still faulty or, even better, (partially) fix the program

• The majority of statements in a faulty program is correct; we detect the faulty
one by observing the anomaly from our hypotheses

MUSE (Moon et al., 2014)

µ(s) =
1

|mut(s)|
X

m2mut(s)

(
|fP (s) \ pm|

|fP |
� ↵ · |pP (s) \ fm|

|pP |
)

Proportion of test cases
that mutant m turns

from fail to pass

Proportion of test cases
that mutant m turns

from pass to fail
Average over all
mutation applied

to statement s

↵ =
f2p

|mut(P)| · |fP |
· |mut(P)| · |pP |

p2f

Ahead of Time MBFL
Seshat (Kim et al., ISSRE 2021)

• Perform mutation analysis (i.e., inject faults into
different locations, and record which tests fail)

• Using this information, learn the reverse
relationship. The ML model is designed to
answer this question: “if these test cases
failed, where is the mutant?”

• When real faults occur, give the test outcome
to the trained model, and ask where the
mutant (=real fault) is.

• Promising results (113 out of 203 faults ranked
at the top, method level FL on Java)

Mutation

Training

ML

Real Fault

ML

Summary

• Delta Debugging minimises a failure-inducing input, thereby helping the
developer to localise the corresponding part in the program.

• IR based FL queries the documents (source code files) using symptoms of the
failure (bug report) as the query text.

• SBFL capsulate the intuition about test results and coverage into risk
evaluation formula.

• MBFL is based on the idea that mutating an already faulty program can reveal
insights about the fault (further damage or partial fix).

