Fault Localisation

CS453 Automated Software Engineering

Shin Yoo | COINSE@KAIST

Process of Debugging

is-1QQ.lQng.Qr too complex. e

Issue 2. It is not obvious from
test results where the fault is.

Fault Localisation

e Hard for humans: we

iIncreasingly have to work on and

with large code base written by
others.

: It KS....... hy?
 Hard for machines: automated WOTES i
repair techniques rely heavily on

automated fault localisation. A\ o
) 1

Fault Localisation

e Machines are bad at semantic
reasoning (yet).

* We need to convert the fault
localisation problem into something
quantitative, something less than the
full semantic.

e How do we reason about the
location of a fault, using available
information?

e What are the available
information?

Fault Localisation

 Here, we consider four different techniques.
* Delta debugging (a slightly different approach, but highly relevant)
* |nformation Retrieval Technique
e Spectrum Based Fault Localisation
 Mutation Based Fault Localisation
 For a complete overview:

« W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. A survey on software fault
localization. I[EEE Transactions on Software Engineering, 42(8):707, August 2016.

A Motivating Example

<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All1">Al11<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="0penBSD" >0penBSD<OPTION VALUE="AIX">AIX<OPTION
VALUE="Be0S" >BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION
VALUE="0penVMS" >0penVMS<OPTION VALUE="0S/2">0S/2<OPTION VALUE="OSF/1">0SF/1<OPTION VALUE="Solaris">Solaris<OPTION
VALUE="SunOS">Sun0OS<OPTION VALUE="other">other</SELECT></td> <td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>
</td>

<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION
VALUE="normal">normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

This HTML code caused Mozilla to crash: what is the actual cause?

Delta Debugging

* Delta debugging is a technique designed to minimise failure inducing inputs.

* Given along input that causes a program to fail, delta debugging returns
the shortest input that still causes the failure.

* |t is based on a simple idea: binary search.

A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering,
28(2):183—200, Feb. 2002.

Delta Debugging

ENEEEEE EEEEEEEE
HEEEEEEEN -

m T M U T

Delta Debugging

* [he basic binary search version Is simple:
 Cut and throw away half of the input, and see if the output is still wrong
* |f so, go back to the first step

* |f not, go back to the previous state, and throw away the other half

Issues to Consider

* Given N parts, delta debugging requires O(logN) steps to find the root cause
(binary search). Depending on problems, this may or may not be acceptable.

|t requires fully automated oracle.

 What if the root cause of the failure is actually composed of two separate
parts”?

 What if the failure inducing input cannot be cut in half?

DD: What if the root cause of the failure is actually composed of two separate
parts?

HEEEEEEE EEEN EEE
ENEEEEE P
HEEETEEN -

?

This is a not uncommon case. To deal with such disjoint causes,
the actual Delta Debugging algorithm is more than the basic binary search.

Recursive Delta Debugging

* Line 1: if there is a single input left, return DD(P, {i1, ... in})
It. (1) if n == 1 then return 7
» Line 2-7: see if program still fails with) P=(P+ {Z?n’ oty })
halves of the given input - if it does, (3) Py = (P +{i5+ 1. in})
continue halving recursively (4) it Py fails
(5) return DD (P, {il, N })
* Line 8-10: otherwise, make two recursive (6) else if P, fails
calls (7) return DD (P, {iZ +1,...,0,})
(8) else
* First: keep the first half of the given (9) return DD (Py, {i1,...,in }) +
input, and apply DD to the second half (10) DD (P, {73%+1, o in))

 Second: keep the second half of the
given input, and apply DD to the first
half

HEEEEEEE EEEN EEE
ENEEEEE P
HEEEETEEN -

DD: What if the failure inducing
input cannot be cut in half?

 Suppose we are testinga C
compiler. The following code

actually made GCC 2.95.2 crash.

 What if we try to cut this faulty
source code in two halves?

* Neither is a valid C code
anymore, not to mention a failure
Inducing input.

R MW HAhu ONOS

20

20 | ;

20

20) ;

20+1.0);

Hierarchical Delta Debugging

 When input is highly structured, simply cutting it in half is likely to invalidate
the input structure, damaging the efficiency of DD.

* Cutting C source code by halves will eventually work: DD will recurse down
to the single character level, and find the structural boundaries that will
Wwork.

* But this will take a significant amount of test execution that is just invalid.

G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06, pages 142—-151, New York,
NY, USA, 2006. ACM.

Hierarchical Delta Debugging

* Hierarchical Delta Debugging (HDD) does not cut at the raw data level, but handles structural
elements.

* |If the input is source code, HDD deletes Abstract Syntax Tree nodes, instead of half of the
lines.

* |f the input is HTML, HDD deletes XML nodes.

* |nstead of recursive binary search based deletions, HDD recursively goes into deeper nested
structures.

 For example, HDD first tries to delete an entire function from source code; if this fails, HDD
then tries to delete half of the basic blocks inside the function, etc.

« HDD always produce syntactically correct output, and preserves atomic elements such as
identifiers.

- Delta Debugging (dd) HDD
“ : mult(double *z, int n)

- - {
int i; 1nt i;
int ™ int j;
for (Gl3+4) { for (;3) 4
2[i]=2[1]*(2[0]+0) : } z[i]=z[i]*(z[@]+0);
¥
}

¥

DD is sensitive to whitespaces and deletion boundaries.

Consider the int, or j++: in both cases, ddmin can delete them only when its binary search deletion has
the deletion size of 3 and matches these characters exactly.

Note that ddmin also reduced mult to t.

Delta Debugging Tools

 DD.py (https://www.st.cs.uni-saarland.de/dd/DD.py) and tutorial (https://
www.st.cs.uni-saarland.de/dd/ddusage.php3)

e delta (http://delta.tigris.org) which implements HDD

o Lithium (http://www.squarefree.com/lithium/using.html), a python
implementation of DD

o (it Bisect (https://qgit-scm.com/docs/qit-bisect), which performs DD to a
series of git commits

https://www.st.cs.uni-saarland.de/dd/DD.py
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
https://www.st.cs.uni-saarland.de/dd/ddusage.php3
http://delta.tigris.org
http://www.squarefree.com/lithium/using.html
https://git-scm.com/docs/git-bisect

Let’s have a look at a real bug report

m Bugzi[[a Q, i® Browse [BY Advanced Search » New Account LogIn Forgot Password

Bug 1001903

thorstenr 42 (Reporter)
Description « 5 years ago

User Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:28.0) Gecko/20100101 Firefox/28.0 (Beta/Release)
Build 1ID: 20149410211200

Steps to reproduce:

1. create a folder in the bookmarks-toolbar and fill it with some bookmarks (one is enough)

2. opening the folder per mouse-leftclick works flawlessly but per touch-click it just opens for a fraction of a second and is
immediately collapsed again

(Tested with installed ubuntu 14.04 and untouched live version on t440s with touchscreen)

Actual results:

Bocokmarks-folders is immediateky closed again if opened per touchscreen

Expected results:

It should just open the folder and show the contents

https://bugzilla.mozilla.org/show bug.cqi?id=1001903

https://bugzilla.mozilla.org/show_bug.cgi?id=1001903

FireFox Bug 1001903

» After creating a folder in the bookmark toolbar and a bookmark inside the

folder, mouse left-click successfully opens the folder but touch-click fails to
open it: it opens but immediately closes itself.

 While we do not know the internals of FireFox, it is easy to guess which parts
of the overall system is most likely to contain this fault.

FireFox Bug 1001903

o After a in the and a iInside the
, mouse left-click successfully opens the folder but - falls to
it: it but Immediately itself.

 While we do not know the internals of FireFox, it is easy to guess which parts
of the overall system is most likely to contain this fault.

IR based Fault Localisation

* |Information Retrieval technigues help a user to quickly obtain resources relevant
to an information need, from a large collection of information resources.

* Fault localisation can be thought of as finding a resource (a program element)
that is relevant to an information need (the reported symptoms of the failure),
from a large collection of information resources (the entire system).

* [he bug report becomes our query.
e The entire source code becomes our collection of documents.

* Fault localisation is to find the source code that matches the bug report the
best.

How do we do the matching?

* [here are many ways to represent documents in IR: here, we are going to look
at one of the basic model, called Vector Space Model (VSM).

 VVSM allows us to represent queries and documents as vectors.

* This, in turn, allows us to calculate distances between our query and
documents easily.

Vector Space Model

* First, define the vocabulary, a set of words that are meaningful to us.

* Given a vocabulary with N terms, we represent both the query and the documents as
vectors:
Clj — (Wl,j’ W2,j, cees WN,])

g = (wl,q, W gs oo wN,q)

* The dimensionality of these vectors is equal to the number of terms in the vocabulary,
N.

* |f the term w2 appears in dj, w2 iIs a non-zero number; otherwise, it Is a zero. There are
many ways to set the non-zero number: we are going to study tf-idf.

Tf-1df

* Term frequency of a term t in document d, tf(t, d), is simply the number of
times t appears in d.

* |nverse document frequency of a term t in a set of documents D, idf(t, D), is
the logarithmically scaled inverse fraction of the documents that contain the
term {.

* A higher idf(t, D) means that only a few documents in D contains the term t:
In other words, t Is not common.

* A lower idf(t, D) means that most of the documents in D contain the term t:

In other words, t Is very common. idf(t, D) = log N
’ [{deD:ted}]

Tf-1df

* Tf-ldf is simply the product of tf(t, d) and idf(t, D).

* A high tfidf(t, d, D) means that t happens specifically in d, but not

commonly in D. In other words, t is unigue to d, and not other documents In
D.

* A low tfidf(t, d, D) means that either t does not appear frequently in d, or if it

does then it appears frequently in most of the documents in D. In other
words, t Is not unigque to d.

tfidf(t,d, D) = tf(t,d) - idf(¢, D)

Preparing bug reports for IR based Fault Localisation

* We follow the standard text cleansing process used in many IR and machine learning
applications.

* Jokenisation: we break down the bug report to a list of word tokens.
 Remove punctuation: for example, “file’s” becomes “file”
 Case normalisation: for example, “File” and “FILE” all become “file”

e Stop word filtering: some words are extremely common in English (e.g., “a”, “an”, “and”...)
and best left out. These words are called stop words.

 Stemming: reduce each word to its root (e.g., “opens” and “opening” both become “open”).

* There are many widely used libraries that will perform all of these steps.

'Steps to reproduce:\n\nl. create a folder in the bookmarks-

toolbat

Opening['Steps', ‘to’', 'reproduce’', ':', '1l.', 'create', 'a’,

per tol folder®, "in®, "the’, 'bookmarks-toolbar®, ‘"and’, 'fill’,

is imme it', 'with', 'some', 'bookmarks', '(', 'one', 'is',

ubuntuy enough', ')', '2.', 'opening', 'the', 'folder', 'per',

touchs¢ mouse-leftclick', 'works', 'flawlessly', 'but', 'per’,

immedi: touch-click', 'it', 'just', ‘'opens', ‘for', 'a’,

tOUCth,friitli['Steps', 'to', 'reproduce', 'create', 'a', 'folder', 'in'

the fo-,co apj'the', ‘and', 'fill', 'it', 'with', 'some', 'bookmarks',

Ubuntu 1 1 U = | 1 1 { | Q 1 1 1 1 1 1 1

: one', 'is', 'enough', ‘'opening', ‘'the', 'folder', 'per’,
'works', ‘'flawlessly', 'but', 'per', "'it', 'just', 'opens’,

‘a', 'fraction', 'of', 'a', 'second', 'and', 'is',
122$21i2§['step5', 'to’', 'reproduce’', 'create', 'a', 'folder', 'in'
, . , the', 'and', 'fill', 'it', 'with', 'some', 'bookmarks',
version', , . aea . ST . . .
cict tgmo ONE, 1S, enough', 'opening', 'the', 'folder', 'per’',
, > .. 'works', 'flawlessly', 'but', ‘'per', 'it', 'just', 'opens’,
per] tc 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 | 1
iust! . ! for', 'a', 'fraction', 'of', 'a', 'second', 'and', 'is',

,J >, 'immediately', 'collapsed', ‘'again', 'tested', 'with',

contents "installed’ "tihiintn! -1aYs "tintniichad! "Tawva'
'versior ['reproduce’', 'create', 'folder', 'fill', 'bookmarks',
'is', 'j'one’, ‘enough', 'opening', 'folder', ‘'per’', 'works’,
‘per', ''flawlessly', 'per', ‘opens', 'fraction', 'second’,
‘just', 'immediately’, 'collapsed’, 'tested', 'installed', ‘ubuntu’,
'content 'untouch

J

on',

J
1

['reproduc', ‘creat', 'folder', 'fill', 'bookmark', ‘one',
enough', ‘'open', 'folder', 'per', 'work', 'flawlessli',
per', 'open', ‘'fraction', 'second', 'immedi', ‘'collaps’,
‘test', 'instal', 'ubuntu', ‘'untouch', 'live', 'version',
‘touchscreen’, 'actual', 'result', 'immedi', 'close',
‘open', 'per', 'touchscreen', ‘'expect', 'result', 'open',
‘folder', 'show', €‘content’]

"results .
"touchsci.

Stemming Applied

Preparing code for IR based Fault Localisation

* The standard text cleansing process also allies to source code.

* With source code, stop words should also include the reserved keywords of
the used programming language.

* |n addition, we usually apply additional normalisation to identifiers:

 Camel case breakdown: for example, divide “openDialog” to “open” and
“dialog”.

 Snake case breakdown: for example, divide “create_bookmarks” to
“create” and “bookmarks”

VSM and Distance

» After cleansing, using a predefined vocabulary, we can calculate tfidf(t, d, D) for

each t (word) and d (the query or a source code file). This converts the query
and each source code file to a vector.

* (Given two vector, one representing the query and another representing a

source code file, the distance between two vectors can be calculated using the
cosine distance:

N
_ di* q _ 2oy WiWig
di|[1l4]l N o N 0
! 2 Wi\ Zimy Wiy

 Choose the file that has the shortest distance to the query, and it is more likely

to contain the fault that is responsible for the symptom described in the query
(i.e., the bug report).

cos(d;, q)

IR Based Fault Localisation

o Strengths

e Simple and available: many existing work on IR already improved the accuracy of
textual queries - we get free ride!

* |ntuitive, easy to understand.
 \WWeaknesses
* Requires a (very good and detailed) bug report.

* There is inherent limit to accuracy, because the document to be matched (i.e., the
unit of localisation) needs to be of certain size (otherwise lexical similarity
becomes more random).

Spectrum Based Fault Localisation

* |ntuition: If there is a faulty line, executing it is likely to increase the probability
of a failure. Similarly, not executing the faulty line is likely to decrease the

probability of a failure.

* This decision process

* requires only test results and structural coverage, but
* |s essentially a statistical inference, and does not give any guarantee

* Question: how do we formalise the above intuition in a computable form?

Spectrum Based Fault Localisation

Cp
ep +1p + 1

Program Spectrum Risk Evaluation Formula

l

Higher ranking

Fewer statements
to check

Tests Ranking

Spectrum Based Fault Localisation

 Program Spectrum: for each structural unit (i.e. statements or branches),
summarise the test result AND coverage into a tuple of the following four
numbers

e ep: # of test cases that execute this unit and pass
e ef: # of test cases that execute this unit and fall
 np: # of test cases that do not execute this unit and pass

e nf: # of test cases that do not execute this unit and falil

Spectrum Based Fault Localisation

Structural | Test Test Test Spectrum Tarantula | Rank
Elements tq to ts3 ep €f Ny Ny

S1 o 1 0 0 2 0.00 9
S9 0.00 9
S3 0.00 9
54 Tarantula = 0.00)
Sx 0.00 9
s7 (faulty) 1.00
S8 0.33 4
S9 0.50 2
Result P F F

Tarantula (Jones & Harrold, 2001)

* Originally meant as a
visualization technique, later the e

) Defau

s Lode Ve 2 bSN
) Default) Summary (' Passes (Fails (Mixed ® Shaded Summary ik 1 Line: 3754
pOS’[er Chlld Of SBFL Test| T O
]

a—

G

|

o

!

LI

"

q' "o

State of the Art c.a. 2010

2€f i
er+mnyp+e er+n,+2(e, +nr)
ef ! ! p 2(€f _|_np) f p p f
Ef T Nf T € 2(ey +np) +ep + 1y €f
er +2(ny +ep)
e
! Over 30 formulee in the literature: none guaranteed et
nf T €p to perform best for all types of faults ;1P
P ng+e
p
6f 2€f
Er +ng+ep,+ ny €f+2§:zp+n 2ef +ny+ep
p p
1 e e 6f——np—nf—ep
(! !) =f er+nr+e,+n
2 ef T 1Ny €f + €p ert+ny p p

Name Formula Name Formula
-1 if n >0 ep
ERla {np othe{gvise ERlb ef_ epe+np+1
f f
ERSC {(1) loftligi;lfe GP2 2(6f+,/ep+np)+@
.. ef >
1
Jaccard ef+n§+ep GP13 ef(1+ TepTer)
e e
AMPLE |£-2| GP1g er lep—epF P
°f
4+ — — er+tn
Hamann L nf, ij’ el Tarantula o7 L =
) ef+nf T ep +np
. ef er
Dice r i . RusselRao o §f Ty
ef T’lp . ef
M1 nite, . SerensenDice 5 e Jj ey Ty
M2 e T, TN T, Kulczynskil ?f m eé’f .
Hamming ezj;+n’f e Kulczynski2 5 (o +f{; tete
f % : : S
Goodman 5 e Te, SimpleMatching cvey ; ny 7
. : P
Euclid Jertny RogersTanimoto > +gp ++2§f T2,
€f Telp
Wongl ef Sokal T f T, insie,
e
Wong2 er—ep Anderberg e 0e, 2y
(.
ep if e, <2
Wong3 ep—h,h=12+0.1(ep—2) if 2<e, <10
2.8+0.01(ep—10) if e5>10
ern
Ochiai2 L
\/(ef+ep)e(nf+np)(ef+np)(ep+nf)
Zoltar ! 100007 ¢ ep

°f

Parnin & Orso, ISSTA 2011

o Title: “Are Automated Debugging Technigues Actually Helping
Programmers?”

 Based on human studies, authors say “no, not really”!

 Some of the widely accepted assumptions, such as perfect bug
understanding, may not hold in reality.

« BIGGEST IMPACT: “percentage will not cut it” - later studies move away
from the Expense metric.

Yoo, 2012: Evolving Formulas

ef (2e, + 2e¢ —|— 3n,)
f
A (¢ %W%m 1

Program Spectrum Risk Evaluation Formula

Training Dat

Fithess
(minimise)

Tests Ranking

The Competition

e We choose 9 formulae from
Naish et al. 2011

 Op2 is the known best.

o Jaccard, Tarantula, Ochiai are

widely studied in SE.

 Wong & AMPLE are recent

additions.

AMPLE = |—4 ‘v

—1 itnse>0 e
Opl — f . Op2 = €f — b |
n, otherwise €p T Np +
e
Jaccard = /
ef +Nf T € e f
Tarantula = —; Rl T

€pTNp EfTNyf

Ef T Nf €p TNy

Ochiar = °f
Vieg+ng)-(ef +ep)

Wongl =er Wong2 =e¢e;—e,

€p if e, <2

WOnQSth,h{2+O.1(ep2) if 2 <e, <10

2.8 +0.001(e, — 10) if e, > 10

Results

©
W © S5 -~
— Al
S 7 ®§« E © o %
QN C O ®© < <C Cc
O Qo 6 =2 © § © O o
O O O < 8 g = =2 =

 Green: GP outperforms the other.
e Orange: GP exactly matches the other.

 Red: The other outperforms GP.

—30 GP Runs—

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

Results

AMPLE
Jaccard
Tarantula
Wong1
Wong?2
Wong3

©
Y QA e
O (@} @)
O O O

 GP completely outperforms Ochial,
Tarantula, Wong 1 & 2, and mostly
outperforms AMPLE.

* Op1, Jaccard, and Wong 3 are tough
to beat.

—30 GP Runs—

 Op2 is very good but it is not
Impossible to do better.

4 Unix tools w/ 92 faults: 20 for training, 72 for evaluation.

Evolved Formulae

ID Refined Formula ID Refined Formula
GPO1| ef(n, +er(1+ . /€f)) GP16 \/ e: +ny
GPO02| 2(ef + /np) + /€ GP17 y— \/_
GP03 \/ 2 — /5] GP18| €l +2n,
GP04 \/\epipnp — ey GP19| efv/lep, —ef +np —ny

(ef+np)/EF
GP05 GP20| 2
(ef+ep)(npny+./ep)(eptnp)y/lep—nyp] (ef i €p+np)
GPO06 | ern, 1 GP21| +/er + /ef +n,
GPO7 | 2e4(2np) +(1++2)/n, || GP22 e?c +er+ jn/np
GPO8| c%(2¢, + 2¢; + 3n,) GP23| /ef(e} + o T /Mp +ny+ np)
GP09 %—I—np—l—ef—l—e:} GP24| er+ /np
1 2 Ver
GP10 \/\ef—n—p\ GP25| €%+ /np + \/m—I— (6f e
GP11| ef(e7 + /mp) GP26 26%/—|— VT
— npy/(npnyg—ey)

GP12| /e, +ey j np — /€p GP27 Ry
GP13| ef(1+ ST) GP28| ef(efr +/np+1)
GP14| ef + /1, GP29 | ep(2et+ef+ny)+ (ef_ezp_)nvpnpef
GP15| ef + \/ns + /iy GP30 \/|ef — Lt

Theoretical Analysis of SBFL

* For all the gory detalils:

e X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu. A theoretical analysis of the risk
evaluation formulas for Spectrum-Based Fault Localization. ACM

Transactions on Software Engineering Methodology, 22(4):31:1- 31:40,
October 2013.

¢ X. Xie, F-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman. Provably optimal and
human-competitive results in SBSE for Spectrum Based Fault Localisation.
In G. Ruhe and Y. Zhang, editors, Search Based Software Engineering,
volume 8084 of Lecture Notes in Computer Science, pages 224-238.
Springer Berlin Heidelberg, 2013.

Crash Course into Our Proof System

* GGiven a test suite and a formula R, a program PG = {s1, s2, ..., Sn} can be
divided into the following three subsets:

o SRg: set of elements that are ranked higher than the faulty element, st
* SRE: set of elements that are tied to the faulty element, ss

o SRa: set of elements that are ranked lower than the faulty element, sq

Sy = {s; € S|R(s;)
St = {s; € S|R(s;)
S4 = {s; € S|R(s;)

R(sf),1 <i<n}
),1 <i<n}
R(sf),1 <i<n}

ANl V
v
2
—

Crash Course into Our Proof System

* Formula R1 dominates formula Rz (R1—Ry) if, for any combination of program,
faulty statement, test suite, and a consistent tie-breaking scheme, E1 < E»

. oR, R, . oR, R,
. Thatis, S5 C §% A SF C §*

 Formula R1 is equivalent to formula Rz (R1<R2) if, for any combination of

program, faulty statement, test suite, and a consistent tie-breaking scheme,
E1=E>

. Thatis, S;' = St A S, =St AST =8

e Finally, R1<Rz2iff R1—R2and Ra—R;

Crash Course into Our Proof System

Statement Ranking

Formula X

Formula Y

To show that Y dominates X,
we show that:

SL C S5 NSy CS%

(assuming that we break ties
in F sets consistently)

Equivalence is defined as:

XY «— X —=YANY - X

The Current Maximal Formulas

Name Formula expression
\Poe, ifer
FR1’ p JF—
Naish2 ef ~ o ;fp I
Wogl € f
ERS ef
Russel & Rao T ——
. 0 if er<F
Binary { 1 if ef=F
2(ef + /Mp) + /Ep
V0t — vl

Hybrid SBFL Approaches

* People are realising that a single formula is strongly limited.
e Hybridisation

 Use multiple formulas at the same time, or

 Use SBFL formulas with some additional input features

* As we accept more diverse input, fault localisation became a learning
problem, instead of a design-a-technique problem

Xuan & Monperrus (ICSME 2014)

« Simultaneously use 25 SBFL
formulas, using the weighted-
sum method.

» Use a learning-to-rank technique
to train the ranking model (i.e. to
optimize the weights that yield
best ranks for training set faults

Learning to Combine Multiple Ranking Metrics
for Fault Localization

Jifeng Xuan
INRIA Lille - Nord Europe
Lille, France
Jifeng xuan@inna.t

Abstract—Fault localization is an inevitable step in software
debugging. Spectrum-hased fault localization applies a ranking
metric to identify Taulty source code. Existing empirical studies
on [ault localization show that there is no optimal ranking metric
for all the Taults in practice. In this paper, we propose MurLTRIC, @
learning-hased approach to combining multiple ranking melrics
for effective fault localization. In MULTRIC, & suspiciousness score
of a program entity is a combination of existing ranking metrics.
MULTRIC consists two major phases: learning and ranking. Based
an training faulls, MuLTRIC builds a ranking model by learning
from pairs of faulty and non-faulty source code. When a new
fault appear, MurTkic compules the final ranking with the
learned maodel. Experiments are conducted on 5386 sceded faults
in ten open-source Java programs. We empirically compare
Murrric against four widelv-studied metrics and three recently-
proposed metrics. Our experimental results show that Morrric
localizes laults more effectively than state-of-art metrics, such as
Tarantula, Ochiai, and Ample,

[, INTRODUCTION

Debugging is an expensive task in software development,
Fawlt tocaltzanon eases debugging by automancally analyzing
bugs o find out the root cause — a1 specific location in seurce
code — of the problem. Spectrwm-based jault locqlization 1also
called coverage-based favlt locatizarion) 1s a class of faull
localization approaches, which leverages the exccution traces
of test cases to predict the likelihood — called suspteionsness
scores — of source code locauons to be tauly. In spectrum-
based tault localization, a faulty program is inscrumented tor
collecting the munning traces; then a ranking meine is applied
to compute suspiciousness scores for pmgram enfines (such
as methods [25]. [24], basic blocks |31], and statements [12],
2]} The most suspicious entities are given to 2 developer
for further analysis [21). The developer manually analyzes the
source code, from the most suspicious location and downward,
to confirm the inferred root cause of the bug,

The deal fault Jocalization anking metne would always
rank the faulty source code entity at the top, by giving highest
suspiciousness score. However, there 1s no such metric, and

Martin Monperrus
University of Lille & INRIA
Lille, France
martin.monpernrus @univ-lille l fr

2], Ochiai [2], Jaccard [2], and Ample [4]). Most of these
metrics are manually and analvtcally designed based on
assumptions on programs, test cases. and thewr relationship
with faults [16]. To our knowledge, only the work by Wang
et al, [27] considers the combmnation of muluple ranking
metrics. They propose search-based algorithms to torm such
a combinaton in fault localization. In this paper, we propose
the combination approach of multiple rmnking meltrics based
on machmme learning. Our idea 18 to leverage the diversity of
ranking metrics by automaocally combining muluple metrics.

We propose Murtric, a learning-based approach that com-
bines multiple fault locabization ranking metrics. MuLtric
consists i two major phases: leaming and ranking. In the
learning phase, a ranking model is learned based on the ranks
of program entties in traning faulty programs, When & new
fault happens, this 1s the ranking phase, in which the model
computes weights for combining metries and generating the
final ranking. In other words, MoLrric determines the final
ranking of program entities based on a combination of varous
SUSPICIOUSICSS SCOres

Fault localization cannot be transferred into a general
classification problem becavse the ranks of program entities
are hard to label as classes in machine kaming To solve this
problem, we use a leaming-to-rank method. Instead of classes
in classification, a leaming-to-rank method maodels orders be-
tween faulty entities and non-faulty entities and ophimizes the
maodel 1o satisfy those orderings. In other words, the ranking
of program entities is converted to indicate whether an actual
faulty one ranks above a non-faulty one. The learning-to-rank
method is used to to combine 25 existing ranking metrics

Experiments are conducted on S386 seeded faults in ten
open-source Java programs, We empirically compare MuLTRIC
against fow widely-studied ranking metrics (Tarantula |12,
Ochian 2], Jaccard (2], and Ample [4]) and three recently-
proposed ranking mewics (Naishl [15], Naush2 [18], and GPL3
33]). Experimental results show that Movreie can localize
faults more effectively than the ranking metrics,

Le et al. (ISSTA 2016)

e |n addition to 35 SBFL formulas,
Savant use invariant difference:

 Use Daikon to infer method
iInvariants twice: with passing
tests, and with failing test. For
the faulty method, two sets of
iInvariant will tend to be more
different.

A Learning-to-Rank Based Fault Localization Approach
using Likely Invariants

Tien-Duy B. Le’, David Lo', Claire Le Goues®, and Lars Grunske*
'School of Information Systems, Singapore Management University, Singapore
*School of Computer Science, Carnegie Mellon University, USA
*Humboldt University of Berlin, Germany

{btdle.2012,davidlo}@smu.edu.sg, clegoues@cs.cmu.edu, grunske@informatik.hu-berlin.de

g g
ABSTRACT

Debugging is a enstly pracess that consnmes mnch devel
oper time and cenergy. To help reduce debugging cffort,
muny studies have proposed varwous fault localization

approaches. These ;11)1‘|l:'m|"|'|r':n take as input a set of test
CASCS (Somn T-;'lilinE_". some passing) and lnm]m"t' a ranked
list of program eclements that arve likely to he the root
causc of the failures (i.¢.. failing test cases). In this work,
we propose Savant, a new fault localzation approach that
emnploys a learning-to-rank strategy, using likely iovariant
l""lff\‘-' illl'.l “~||.‘-I)il'i("|l?v|]l =S SCOores as fl”n‘l’l”('.\. 1O '}Anl\ ||||A"Illrvll.‘-
based an their likelihaod of being a raat canse of a failure.
Savant has four steps: method clustering and test case
sclection, invariant omuning, frature extraction, and method
ranking. At the end of these four steps. Savant produces
a short ranked list of potentially bugey methods. We have
evaluated Savant on 357 rcal-life bugs from 5 programs
from the Defects4] benchmark, We Gnd that, on average,
Savant can identify the correet bugsy method for 63.03,
101.72, and 122 bugs at the top 1, 3. and 5 positions in the
produced ranked lists. We have compared Savant apgsinst
several state-of-the-art spectrum-hased fanlt localization
basclines. We show that Suvant can successfully locate
7. T3%., 56.69%. and 43.13% morc bugs at top L, top 3,
and top 5 positions than the best performing baseline,
respectively.

CCS Concepts: Software and its engineering — Software
testing and debugFing

Keywords: Learning to Rank, Program Invariants, Auto-
mated Debngging

1. INTRODUCTION

Software SVStems are nften l’llh,J'Hml with llll,_l;.\ that come
promise system reliability, nsability. and seenrity. One of the
main tasks invalved in fixing such bugs is identifying the
associated buggy program clements. Devdopers can then
study the mnplicated program clements and their context,

and make necessury modifications to resolve the bug. This
is a time consnming and expensive process. Many real-waorkl
prajects roneive 2 lnlg‘n" number of llll}:_ reports |];‘|i|) 6/, and
addressing them requires considerable time and cfifort. De
bugging can contribute up to 305% of the total software cost
for some projects [30]. Thus, thereis a pressing need for au-
tomatex| Tt'l’*lllil'lll:'.\ that ht"l[n n.lr\r"h‘-l'wlh debng. This l‘)l-‘llr
lem has motivaterd considerable work praposing antamatexd
debugging solutions for a varicty of scenarios, ¢.g., [4. 7. 8.
14, 21, 30, 32, 36. 44. 48 53. 54, 55. 62, 63, 64].

In addition to potentially providing direct developer sup-
purt, sutomsted debugeing approaches are also used by re-
cent work in antomated program repair (including [28, 40.
35]. and many others). Such tools usc automated debugging
approaches as a first step to wdentify hikely fuulty progrum
elements. These lists guide program repair tools to generate
program patches that lead previously-failing tests o pass.
The accuracy of antamated debupgging approaches therefore
plays an important rele in the effectivencess of program re
piir tools. Thus, there 5 a need to improve the cifectiveness
of automated debugging tools further to support both de-
velopers and current program repair technigques

In this wark, we are particularly interested in a family of
automated debugging solutions that takes as input a sct of
fatling und passing test cases and then highlights the sus
picious program elements that are likely responsible for the
failures (failing test cases), ez, l 7.8, L1, 21, 30, 32, 36,
53, 01, 55, G2, 63]. While these technirmes have been shown
effective in many contexts, thei effectiveness needs ta be
further improved to localize more bugs more accurately.

We propuse a novel technique, Savant. for elfective au-
tomated fault localization. Suvunt uses a learning-to-rank
machine learning approach ta identifv bugpgy methods from
failures by analyzing bath rlassic SUSPICIONSNESS SOOTeS and
inferved likely invariants ohserved on passing and failing test
cases. Savant is built on three high-level intuitions. IMirst.
program elements which follow different invariants when run
in failing versus carrect executians are suapicions. Second.
such program elements are even more suspicions if they are

assigned higher suspicionsness scores computed by existing

Sohn & Yoo (ISSTA 2017)

* A simple and naive insight: we
already have a technique that
claims it can tell us where the
faults are - even before we test!

* But, seriously, we present
FLUCCS - Fault Localisation
Using Code and Change Metrics.

DEFECT PREDICTION

FLUCCS: Code and Change Metrics Features

 Age: how long has the given element existed in the code base”
 Churn: how frequently has the given element been changed?

 Complexity: how complex is the given element

Learning to

Rank Ranking
(GP / SVM)

SBFL
Features

Known Faults (Training Data)

SBFL

e Strengths
* Only requires what is already there: coverage and test results
* Relatively intuitive
 Weaknesses
* Single formulas are usually limited. In fact,
* There exists a theoretical proof that no single formula works the best against all faults
* Does not work against omission faults

* Does not work well against multiple faults

Mutation Based Fault Localisation

« How do we use mutants to localise a fault? Mutants are injected faults
themselves!!

* Consider this: what would happen if you mutate a program you know to be
faulty?

Case 1: Mutating Correct Statements

New Fault

Mask

P+ F-

CASE 2: mutating Faulty Statement

(Partial) Fix (New) Fault
P+F- P?F?

Equivalent Mask

P F P+F-

Hypotheses

* An arbitrary mutation operator applied to a correct statement is likely to
introduce a new fault

* An arbitrary mutation operator applied to a faulty statement is either likely to
keep the program still faulty or, even better, (partially) fix the program

* The majority of statements in a faulty program is correct; we detect the faulty
one by observing the anomaly from our hypotheses

MUSE (Moon et al., 2014)

Proportion of test cases

that mutant m turns
from fail to pass

Proportion of test cases
Average over all that mutant m turns

mutation applied from pass to fail
to statements

ot mut(P)|- o
mut(P)[- 1frl p2f

Ahead of Time MBFL

Seshat (Kim et al., ISSRE 2021)

* Perform mutation analysis (i.e., inject faults into
different locations, and record which tests fail)

* Using this information, learn the reverse
relationship. The ML model is designed to
answer this question: “if these test cases
failed, where is the mutant?”

* When real faults occur, give the test outcome
to the trained model, and ask where the
mutant (=real fault) is.

* Promising results (113 out of 203 faults ranked
at the top, method level FL on Java)

Summary

* Delta Debugging minimises a failure-inducing input, thereby helping the
developer to localise the corresponding part in the program.

* |R based FL queries the documents (source code files) using symptoms of the
failure (bug report) as the query text.

 SBFL capsulate the intuition about test results and coverage into risk
evaluation formula.

 MBFL is based on the idea that mutating an already faulty program can reveal
insights about the fault (further damage or partial fix).

