Regression lesting

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

Overview

 What is “regression testing”? Why do we need one?
o Test Suite Minimisation

* Regression Test-case Selection

» Test Case Prioritisation

* Regression Testing and Continuous Integration

Regression Fault

http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
https://discussions.apple.com/thread/8083458

Regression Fault

http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
https://discussions.apple.com/thread/8083458

Regression Fault

* Regression fault occurs when new features or recent modifications to the
software causes existing functionalities to break.

* Those faults are typically called “regressions”, i.e., going back (regress) to an
earlier bad state.

Regression Testing

* You are releasing a new version of your software.
« The new features have been thoroughly tested (we assume 2).

* You want to check if you have created any regression fault.

 How would you go about it?

Retest-all

 The simplest approach is called retest-all.
* You just run all tests for the old features, not just ones for the new features.
 There is one problem - can you guess what?

* You eventually end up with too many tests and run out of time.

Inhibitive Cost

“For example, one of our industrial collaborators reports that
for one of its products of about 20,000 lines of code, the
entire test suite requires seven weeks to run.”

Prioritizing Test Cases for Regression Testing, IEEE Different
Transactions on Software Engineering, G.Rothermel, R.H. Configurations
Untch & M.J. Harrold (2001)

Types of

Test Cases

Regression lTesting Techniques

 Many techniques have been developed in order to cope with the high cost of
retest-all. They can be categorised into the following three categories:

e Test Suite Minimisation
* Regression Test-case Selection

e Test Case Prioritisation

Test Suite Minimisation

* [he Problem: Your regression test suite Is too large.
 The ldea: There must be some redundant test cases.

* The Solution: Minimise (or reduce) your regression test suite by removing all
the redundant tests.

Wait. “Redundant”?

 Redundant: “...could be omitted without loss of meaning or function...” (New
Oxford American Dictionary)

* A test case can be labeled “redundant” only according to a specific criteria.

« Remember DU-path? Statement coverage?

Test Suite Minimisation

Usually the information you need can be expressed as a matrix.

Things to tick off
rO r 2 — (branches, statements,
DU-paths, etc)
tO 1 1 0
{1 O 1 0
{2 0 0 1
Your tests

Now the problem becomes the following: what is the subset of
rows (i.e. tests) that, when combined, will cover (i.e. put ‘1’ on)
the most of the columns (i.e. things to tick off)?

Test Suite Minimisation

* The problem definition you just saw maps nicely into “set-cover” problem
(http://en.wikipedia.org/wiki/Set cover).

 Unfortunately, the problem is known to be NP-complete, meaning that there is
no known efficient AND exact algorithm.

* We rely on approximated heuristics.

http://en.wikipedia.org/wiki/Set_cover

Test Suite Minimisation

* The problem definition you just saw maps nicely into “set-cover” problem
(http://en.wikipedia.org/wiki/Set cover).

 Unfortunately, the problem is known to be NP-complete, meaning that there is
no known efficient AND exact algorithm.

* We rely on approximated heuristics.

http://en.wikipedia.org/wiki/Set_cover

Greedy Minimisation

greedy_minimisation(TestSuite T)

S = {}
while(True)

find t in T s.t. S U {t} covers max. cols.;
1t t exists:

S =S uU {t}
continue
else:
break
rO r r2 r3

tO 1 I 0 0
t1 0 0 1
2 0 0 I 1
13 O 0 0

1}
1t0}
{t0,

£2}

What about Cost?

e Suppose different test cases have different costs. For example, 12 takes 7
minutes to run, while t1 and t3 take 3 minutes each.

* |s it still sensible to minimise to {t0, t2}?

10 ' r2 r3 Time
to 1 1 0 0 2
{1 0 0 T 3
t2 0 0 1 /
t3 0 0 1 0 3

Greedy Minimisation w/ Cost

greedy_minimisation(TestSuite T)

S = {}

while(True)
find t in T w/ max. Acov./cost of t;
if t exists:

S =S u {t}
continue
else:
break
rO r r2 r3 Time

tO 1 1 0 0 7
t1 0 1 0 T 3
t? 0 0 1 /
13 0 0 0 3

I0:
Il:
I2:
I3:

0N 0N nn n

1}

1t0}
{to,
{t0,

t1}
t1,

t3}

Multi-Objectiveness : Problems

o “After performing minimisation, the test suite is still too big. What can |
actually do in the next 6 hours?”

* “| care not just code coverage, but something else too. Can | also achieve X
with the minimised suite”?”

Test Program Blocks .
-- Time
______ Case |11 2|/3|4|5/6|7|8|9 /10|
__________ TT XXX | X | X|X|X|X| | | 4"
__________ T2 X | X | X[X|X|X|X|X]|X] &
__________ T3 |x | x| X | | | | | Ix| |1 38"
T4 X | X | X | X | X 3

Single Objective Multi Obijective

Choose test case with highest block
per time ratio as the next one

- - Il - Additional Greedy
—4&— Pareto Frontier

1) TI (ratio = 2.0)
2) T2 (ratio=2/5 = 0.4)

»
(@]

2
O
o
©
S
o
>
o
@)

I
o

- {T1,T2} (takes 9 hours)

Execution Time

“But we only have 7 hours...?”

Code Coverage

1.0

0.8

0.6

0.4

0.2

0.0

2 Objectives, schedule

—+ Reference

X VNSGA-II
-A- NSGA-II

O Additional Greedy

I I
400 600

Cost

I
800

I
1000

1200

Code Coverage

1.0

0.8

0.6

0.4

0.2

0.0

2 Objectives, printtokens2

—+ Reference

- Additional Greedy
-X- VNSGA-II

A NSGA-II

200 400 600

Cost

800

Fault Coverage

0.2 0.3 0.4 0.5

0.1

0.0

printtokens

wX

X Reference

+ Weighted—sum Add. Greedy

500

1000 1500 2000

Cost

0.0

0.2

v.4

0.8

1.C

Code Coverage

Fault Coverage

0.2 0.3 0.4 0.5

0.1

0.0

printtokens2

bYa

X Reference

+ Weighted—sum Add. Greedy

0 200 400 600 800 1000 1200 1400

Cost

0.0

0.2

U.

~

o
o

o
oo

—
o

Code Coverage

Regression Test-case Selection

* [he Problem: Your regression test suite Is too large.
 The ldea: Not all of your tests are related to the recent changes in software.

 The Solution: Precisely select only those tests that will actually execute the
changed part of your software.

But how do we know?

* You have changed program P into P".

* You have a test suite T; you should also have “execution trace” of all the tests
iIn T (l.e. a mapping from tests to statements/branches/etc that they execute)

w.r.t. original P.

 Now pick your favourite methods, ‘cause there are tons :)

Textual Difference

e Just use stock Unix tool, diff

e Line 20 was modified into 2 lines; execute all tests that includes line 20 In
their trace.

e Simples!

20c20,21
< ex1t(0);

> printf("Illegal number of arguments\n'");
> ex1t(1);

Pythia: a regression test selection tool based on text differencing, ICRQSSIC, Vokolos & Frankl, 1997

Graph Walking

 Uses Control Flow Graph (CFQG) that you already learned.

 Which test would you select to test P->P’?

P P’
voild test _me(int x) void test_me_again(int x)

{ { .
Pf(x == 0){ if(x == 0){ Tteos.t Su_ltoe
print “Bwahaha”; print “Bwahaha”; © X }

} print x; tl: x =1
return; }
} return;
}

A safe and efficient algorithm for regression test selection, ICSM, Rothermel & Harrold, 1993

Graph Walking (Rothermel & Harrold, 1993)

P P

\ @ @
print \ print
“Bwa. . “Bwa. .
v / v @
print
® ® < . °
return return

P and P’ start to differ from @.

Test Suilte
t0: x =0 (©®, @, @)
tl: x =1 (©, @)

Therefore, any test that execute @ should be
selected to test the change.

We select {t0}.

And many more

* Design artefacts (UML), data-flow analysis, path analysis, symbolic execution
and many other techniques have been applied to aid precise selection of
tests.

Safe Selection

» Selection technigues do not consider the cost of tests. Why?

 Because they try to be “safe”, i.e., try to execute ALL tests that have the
remotest possibility of revealing a fault related to the recent modification.

* Realistically, by “the remotest possibility” we mean that the test executes the
modified parts of the program; we do not know any more than that!

Difficulties

* Data collection: collecting execution traces can be a hard task - especially if
your system Is big and consists of several different languages.

* Non-executable modifications: things like configuration changes can be tricky
to analyse.

o Safety can be expensive: what if your safe selection is still too expensive to
run‘?

Test Case Prioritisation

* [he Problem: Your regression test suite Is too large.
 The |ldea: Let’s execute tests following the order of importance.

* The Solution: Prioritise your test suite so that you get the most out of your
regression testing whenever it gets stopped.

A Simple Tip

* You built your test suite by adding new test case whenever you added new
feature: they are ordered from t1 to t100.

* Without using any complicated technique at all, which order will you execute
your test cases in?

 Backwards: newer faults are more likely to be detected by newer test.
 Random: choose the next test randomly.

 Both have good chance of being better than the given order (0 to 100).

Prioritising JUnit Test Cases: An Empirical Assessment and Cost-
Benefit Analysis, Empirical Software Engineering, Do et al., 2006

Test Case Prioritisation

 Suppose we knew about all the faults in advance (impossible, yes, but let’s

pretend).

* Which test would you run first if you knew this? What next?

* Obviously, it is 12 followed by t4.

fo

f1

fo

6

{8

X

X

X

o T B T I~ T e

Surrogate

* Again, we do not know about all the faults in advance; therefore, the ideal
ordering (one that finds all known faults as soon as possible) is not feasible.

* |nstead, we maximise the early realisation of some surrogate.

 Most common one is coverage; the assumption is that, if we cover the

program as much/as early as possible, we will also maximise the chance of
early fault detection.

Surrogate

* |t does not change things much; instead of trying to detect each fault, we try
to cover each statement(branch/block/etc).

* The ideal ordering still begins with t2-t4.

» After t4, we reset the coverage counter and start again, which gives t1;
similarly, tO and 3.

SO | S1 | s2 | S3 | sS4 | s5 | s6 | s7 | s8 | sO

to X X
{1 X X X X
{2 X X X)¢ X X X
{3 X

fo| f1 |fo |f3 | fg | f5 | f6 | f7 | 18 | fo
o | X X
{1 X X X X
t2 | x X X X X X X
t3 X
t4 X X X

Average Percentage of Fault Detection (APFD)

Measures how quickly your prioritisation detected the faults.

Intuitively, the metric measures
the area beneath.

Prioritising Test Cases for Regression Testing, ISSTA, Elbaum et al., 2000

What about Cost?

* Yes, It Is a recurring theme.

* Suppose test t0 achieves 100% code coverage in 5 hours. Tests t1 to t3

collectively achieve 80% coverage in 2 hours. Which one would you
prioritise?

APFDc (Elbaum et al., 2001)

 (C achieves 70% coverage in 7 minutes.

 E achieves 30% coverage in 30 seconds.

* As aresult, executing E first gives higher APFDc.

100
90
80
70
60
50
40
30
20
10
0

Percentage Total Test Case Cost Incurred

Test Case Order C-E-B-A-D

Ama=52ﬂﬁ%ii i

0 10 20 30 40 50 60 70 80 90 100

100
90
80
70
60
50
40
30
20
10
0

Test Case Order E-C-B-A-D

Area=68.93% ! | |

0 10 20 30 40 50 60 70 80 90 100

Percentage Total Test Case Cost Incurred

Cost-Cognisant Test Case Prioritisation, ICSE, Malishevsky et al., 2006

One versatile tool: clustering

* A technique that groups objects such that objects in the same group are the
most similar to each other (there are many approaches to this).

» Benefits for testing:

 Reduces the conceptual size of test suites (i.e. tester can think about
clusters, not test cases)

* Provides insights into what is the most common behaviour

Diversity Based Prioritization
Leon & Podgurski, ISSRE 2003

e (Given a distance metric that can
quantify distances between test

executions, you can both cluster and

visualize the diversity within a test
suite

Multi-dimensional Scaling of Test Case Profiles: space

Clustering Tests
Yoo et al., ISSTA 2009

Fault detected by a test with small coverage contribution

Fault-detecting test can be executed earlier.
Human engineer can compare buckets, not tests.

Similarity Measure

1. Test Suite 3. Random Projection
e Clustering only makes sense if (e e vtoor tie | (o BB
we can measure true similarity U B RET B E
t3: grep -F 'bar' file
between test cases \ A
\ Compl CompZ2 Comp3 /
¢ Semantic meaSU re y 2. Vector Space Model (Term Frequency)T
~ ™
. tl I I | | I | I
o State of the art is largely e ; ;
. t2 1 l
based on syntactic measures . . !
(meaning coverage, yet again) U e e v r e mar me

Fig. 1: Visual representation of FAST-R preparation phase.
« Can we do better? : P prep

Scalable Approaches for Test Suite Reduction, Cruciani et al., ICSE 2019

Summary

 Minimisation: keyword is redundancy - it saves effort but you are putting
yourself at the mercy of the criterion you are minimising with.

» Selection: keyword is safety - can be expensive; you want to be conservative

and execute any test that has potential to reveal fault regarding recent
changes.

* Prioritisation: keyword is asap/surrogate - you want to maximise the number

of faults you detect early on; since you do not know faults in advance, you
need to come up with smart surrogate.

Continuous Integration

* Cl means to merge all developer working copies into a single mainline daily,
or even more frequently.

* Developers usually ensure that their commits are correct by executing test
cases that are directly relevant at their local machines. This is sometimes
called pre-commit testing.

* Once changes are merged, the Cl system automatically executes all relevant
test cases, to ensure that individual changes correctly work with each other.
This iIs sometimes called post-commit testing.

Regression Testing and Cloud Computing

* All regression testing techniques we looked at assume limited resource for
testing, hence the need for optimisation.

* The elasticity of cloud computing has a significant implication on the way
these techniques are used.

 What happens if you can use unrestricted amount of computing resources”?

Single Testing Machine

Achievable Testing

Elastic Cloud Resource / Parallel Instances

Shorter Testing Time

If all test cases have to be executed
seqguentially, we have to optimise the
regression testing process as much as
possible, to get the most out of the
limited testing resources.

If all test cases can be executed In
parallel, the time needed for testing is
only as long as the longest test
execution.

So is it all useless?

 Many techniques are still meaningful even when test cases are executed in
parallel.

* Jest suite minimisation can still save redundant cloud computing cost.

* |Impact analysis used by safe test case selection is useful for many other
applications, such as automated debugging.

* There are cases when test cases have to be executed sequentially: for
example, pre-commit testing done at individual developer machines.

Redefining Prioritisation

* |In very large development environments, the Cl (Continuous Integration)
pipeline is easily with commits.

 Amazon engineers conduct 136,000 system deployments per day: one in
every 12 seconds.

* (Google engineers have to wait up to 9 hours to receive test results from
the CI pipeline.

* Prioritising test cases within test suites makes little impact at this scale.

* |nstead, prioritising commits to test has been proposed.

J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization: Continuous prioritization for continuous integration.
In Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 688—-698, New York, NY, USA, 2018. ACM.

Redefining Prioritisation

* The proposed technigue is essentially history based prioritisation: commits
relevant to test cases that have recently failed are given higher priority. If
tests really fall, this ensures quicker feedback to the responsible
developers.

 Assumptions

 Commits are independent from each other. In high volume environment,
this is not unrealistic.

* Relationships between code and test cases are known in advance (i.e.,
which test covers which parts of the code).

Regression Testing and CI

 Modern software development requires increasingly shorter release cycles:
time-to-market is extremely critical.

 Conseqguently, test executions are more frequently needed.

* While the CIl environment requires adaptations, regression testing technigues
are definitely relevant when test cases are repeatedly executed. In some
sense, all testing is like regression testing.

Reference

* S. Yoo and M. Harman. Regression testing minimisation, selection and
prioritisation: A survey. Software Testing, Verification, and Reliability, 22(2):67—-
120, March 2012.

