
Shin Yoo | COINSE@KAIST

Regression Testing
CS453 Automated Software Testing

Overview

• What is “regression testing”? Why do we need one?

• Test Suite Minimisation

• Regression Test-case Selection

• Test Case Prioritisation

• Regression Testing and Continuous Integration

Regression Fault

“After about 4 or 5 mins in a phone call my iPhone
3GS reboots itself for no apparent reason. This did not
happen before I put the iOS4 update on it. Is the some

way I can stop this happening, or revert back to the
previous version?”

http://discussions.apple.com/thread.jspa?
threadID=2471090&tstart=0

“After reading a text message, i cant arrow back to
next message. i have to close message program and

reopen? iphone 6 problem began after ios11 install??”
https://discussions.apple.com/thread/8083458

http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
https://discussions.apple.com/thread/8083458

Regression Fault

“After about 4 or 5 mins in a phone call my iPhone
3GS reboots itself for no apparent reason. This did not
happen before I put the iOS4 update on it. Is the some

way I can stop this happening, or revert back to the
previous version?”

http://discussions.apple.com/thread.jspa?
threadID=2471090&tstart=0

“After reading a text message, i cant arrow back to
next message. i have to close message program and

reopen? iphone 6 problem began after ios11 install??”
https://discussions.apple.com/thread/8083458

http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
http://discussions.apple.com/thread.jspa?threadID=2471090&tstart=0
https://discussions.apple.com/thread/8083458

Regression Fault

• Regression fault occurs when new features or recent modifications to the
software causes existing functionalities to break.

• Those faults are typically called “regressions”, i.e., going back (regress) to an
earlier bad state.

Regression Testing

• You are releasing a new version of your software.

• The new features have been thoroughly tested (we assume 🤠).

• You want to check if you have created any regression fault.

• How would you go about it?

Retest-all

• The simplest approach is called retest-all.

• You just run all tests for the old features, not just ones for the new features.

• There is one problem - can you guess what?

• You eventually end up with too many tests and run out of time.

Inhibitive Cost

“For example, one of our industrial collaborators reports that
for one of its products of about 20,000 lines of code, the

entire test suite requires seven weeks to run.”
Prioritizing Test Cases for Regression Testing, IEEE

Transactions on Software Engineering, G.Rothermel, R.H.
Untch & M.J. Harrold (2001)

Long
Product
History

Different
Configurations

Types of
Test Cases

Regression Testing Techniques

• Many techniques have been developed in order to cope with the high cost of
retest-all. They can be categorised into the following three categories:

• Test Suite Minimisation

• Regression Test-case Selection

• Test Case Prioritisation

Test Suite Minimisation

• The Problem: Your regression test suite is too large.

• The Idea: There must be some redundant test cases.

• The Solution: Minimise (or reduce) your regression test suite by removing all
the redundant tests.

Wait. “Redundant”?

• Redundant: “...could be omitted without loss of meaning or function...” (New
Oxford American Dictionary)

• A test case can be labeled “redundant” only according to a specific criteria.

• Remember DU-path? Statement coverage?

Test Suite Minimisation
Usually the information you need can be expressed as a matrix.

r0 r1 r2 ...

t0 1 1 0

t1 0 1 0

t2 0 0 1

...

Your tests

Things to tick off

(branches, statements,

DU-paths, etc)

Now the problem becomes the following: what is the subset of
rows (i.e. tests) that, when combined, will cover (i.e. put ‘1’ on)

the most of the columns (i.e. things to tick off)?

Test Suite Minimisation

• The problem definition you just saw maps nicely into “set-cover” problem
(http://en.wikipedia.org/wiki/Set_cover).

• Unfortunately, the problem is known to be NP-complete, meaning that there is
no known efficient AND exact algorithm.

• We rely on approximated heuristics.

http://en.wikipedia.org/wiki/Set_cover

r0

r3

r4

r2

r1

Test Suite Minimisation

• The problem definition you just saw maps nicely into “set-cover” problem
(http://en.wikipedia.org/wiki/Set_cover).

• Unfortunately, the problem is known to be NP-complete, meaning that there is
no known efficient AND exact algorithm.

• We rely on approximated heuristics.

http://en.wikipedia.org/wiki/Set_cover

Greedy Minimisation

r0 r1 r2 r3
t0 1 1 0 0
t1 0 1 0 1
t2 0 0 1 1
t3 0 0 1 0

greedy_minimisation(TestSuite T)
S = {}
while(True)
find t in T s.t. S ∪ {t} covers max. cols.;
if t exists:
S = S ∪ {t}
continue

else:
break

I0: S = {}
I1: S = {t0}
I2: S = {t0, t2}

What about Cost?

• Suppose different test cases have different costs. For example, t2 takes 7
minutes to run, while t1 and t3 take 3 minutes each.

• Is it still sensible to minimise to {t0, t2}?

r0 r1 r2 r3 Time
t0 1 1 0 0 2
t1 0 1 0 1 3
t2 0 0 1 1 7
t3 0 0 1 0 3

Greedy Minimisation w/ Cost

greedy_minimisation(TestSuite T)
S = {}
while(True)
find t in T w/ max. Δcov./cost of t;
if t exists:
S = S ∪ {t}
continue

else:
break

I0: S = {}
I1: S = {t0}
I2: S = {t0, t1}
I3: S = {t0, t1, t3}

r0 r1 r2 r3 Time
t0 1 1 0 0 2
t1 0 1 0 1 3
t2 0 0 1 1 7
t3 0 0 1 0 3

Multi-Objectiveness : Problems

• “After performing minimisation, the test suite is still too big. What can I
actually do in the next 6 hours?”

• “I care not just code coverage, but something else too. Can I also achieve X
with the minimised suite?”

Test
Case

Program Blocks Time
1 2 3 4 5 6 7 8 9 10

T1 x x x x x x x x 4
T2 x x x x x x x x x 5
T3 x x x x 3
T4 x x x x x 3

Single Objective

Choose test case with highest block
per time ratio as the next one

1) T1 (ratio = 2.0)
2) T2 (ratio = 2 / 5 = 0.4)

∴ {T1, T2} (takes 9 hours)

“But we only have 7 hours...?”

Multi Objective

0 2 4 6 8 10

Execution Time

0

20

40

60

80

100

C
o
v
e
ra

g
e
(%

)

Additional Greedy

Pareto Frontier

Regression Test-case Selection

• The Problem: Your regression test suite is too large.

• The Idea: Not all of your tests are related to the recent changes in software.

• The Solution: Precisely select only those tests that will actually execute the
changed part of your software.

But how do we know?

• You have changed program P into P’.

• You have a test suite T; you should also have “execution trace” of all the tests
in T (i.e. a mapping from tests to statements/branches/etc that they execute)
w.r.t. original P.

• Now pick your favourite methods, ‘cause there are tons :)

Textual Difference

• Just use stock Unix tool, diff

• Line 20 was modified into 2 lines; execute all tests that includes line 20 in
their trace.

• Simples!

20c20,21
< exit(0);

> printf("Illegal number of arguments\n");
> exit(1);

Pythia: a regression test selection tool based on text differencing, ICRQSSIC, Vokolos & Frankl, 1997

Graph Walking

• Uses Control Flow Graph (CFG) that you already learned.

• Which test would you select to test P->P’?

void test_me(int x)
{
if(x == 0){
print “Bwahaha”;

}
return;

}

void test_me_again(int x)
{
if(x == 0){
print “Bwahaha”;
print x;

}
return;

}

P P’

Test Suite
t0: x = 0
t1: x = 1

A safe and efficient algorithm for regression test selection, ICSM, Rothermel & Harrold, 1993

Graph Walking (Rothermel & Harrold, 1993)

P P’

Test Suite
t0: x = 0 (➀, ➁, ➂)
t1: x = 1 (➀, ➂)

➀
x == 0

➁
print
“Bwa..

➂
return

➀
x == 0

➃
print

x
➂

return

➁
print
“Bwa..

➘ ➘

✓ ✓

✓

✗

P and P’ start to differ from ➁.

Therefore, any test that execute ➁ should be
selected to test the change.

We select {t0}.

And many more

• Design artefacts (UML), data-flow analysis, path analysis, symbolic execution
and many other techniques have been applied to aid precise selection of
tests.

Safe Selection

• Selection techniques do not consider the cost of tests. Why?

• Because they try to be “safe”, i.e., try to execute ALL tests that have the
remotest possibility of revealing a fault related to the recent modification.

• Realistically, by “the remotest possibility” we mean that the test executes the
modified parts of the program; we do not know any more than that!

Difficulties

• Data collection: collecting execution traces can be a hard task - especially if
your system is big and consists of several different languages.

• Non-executable modifications: things like configuration changes can be tricky
to analyse.

• Safety can be expensive: what if your safe selection is still too expensive to
run?

Test Case Prioritisation

• The Problem: Your regression test suite is too large.

• The Idea: Let’s execute tests following the order of importance.

• The Solution: Prioritise your test suite so that you get the most out of your
regression testing whenever it gets stopped.

A Simple Tip

• You built your test suite by adding new test case whenever you added new
feature: they are ordered from t1 to t100.

• Without using any complicated technique at all, which order will you execute
your test cases in?

• Backwards: newer faults are more likely to be detected by newer test.

• Random: choose the next test randomly.

• Both have good chance of being better than the given order (0 to 100).

Prioritising JUnit Test Cases: An Empirical Assessment and Cost-
Benefit Analysis, Empirical Software Engineering, Do et al., 2006

Test Case Prioritisation

• Suppose we knew about all the faults in advance (impossible, yes, but let’s
pretend).

• Which test would you run first if you knew this? What next?

• Obviously, it is t2 followed by t4.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9

t0 x x

t1 x x x x

t2 x x x x x x x

t3 x

t4 x x x

Surrogate

• Again, we do not know about all the faults in advance; therefore, the ideal
ordering (one that finds all known faults as soon as possible) is not feasible.

• Instead, we maximise the early realisation of some surrogate.

• Most common one is coverage; the assumption is that, if we cover the
program as much/as early as possible, we will also maximise the chance of
early fault detection.

Surrogate

• It does not change things much; instead of trying to detect each fault, we try
to cover each statement(branch/block/etc).

• The ideal ordering still begins with t2-t4.

• After t4, we reset the coverage counter and start again, which gives t1;
similarly, t0 and t3.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

t0 x x

t1 x x x x

t2 x x x x x x x

t3 x

t4 x x x

Average Percentage of Fault Detection (APFD)

• Measures how quickly your prioritisation detected the faults.
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9

t0 x x
t1 x x x x
t2 x x x x x x x
t3 x
t4 x x x

0.6 0.8

10
20
30
40

60
70
80
90

Test Suite Fraction

100

0

0 0.2 0.4 1.0

50

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Test Case Order: A-B-C-D-E

1 2 3 4 5 6 7 8 9 10
x x
x x x x
x x x x x x x
 x
 x x x

A
B
C
D
E

test fault

A. Test suite and faults exposed B. APFD for prioritized suite T1 C. APFD for prioritized suite T2 D. APFD for prioritized suite T3

Area = 50%

0.2 0.4 0.6 0.8 1.0
0

0

10
20
30
40
50
60
70
80
90
100

Test Suite Fraction

Test Case Order: C-E-B-A-D

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

0.2 0.4 0.6 0.8 1.00

10
20
30
40
50
60
70
80
90

Test Case Order: E-D-C-B-A

100

0

Test Suite Fraction

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Area = 84%Area = 64%

4.2 Experiment Instrumentation
4.2.1 Programs

Siemens programs.

Space program.

Test Suites.

Versions.

Prioritising Test Cases for Regression Testing, ISSTA, Elbaum et al., 2000

Intuitively, the metric measures

the area beneath.

What about Cost?

• Yes, it is a recurring theme.

• Suppose test t0 achieves 100% code coverage in 5 hours. Tests t1 to t3
collectively achieve 80% coverage in 2 hours. Which one would you
prioritise?

APFDc (Elbaum et al., 2001)

• C achieves 70% coverage in 7 minutes.

• E achieves 30% coverage in 30 seconds.

• As a result, executing E first gives higher APFDc.

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 46.67%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 43.33%

Test Case Order B-A-C-D-E

A. APFDs corresponding to Example 1

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 53.64%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 51.82%

Test Case Order B-A-C-D-E

B. APFDs corresponding to Example 2

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 52.50%

Test Case Order C-E-B-A-D

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 68.93%

Test Case Order E-C-B-A-D

C. APFDs corresponding to Example 3

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 52.38%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred
Pe

rc
en

ta
ge

 T
ot

al
 F

au
lt

Se
ve

rit
y

D
et

ec
te

d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 54.76%

Test Case Order B-A-C-D-E

D. APFDs corresponding to Example 4

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

Figure 3: Examples illustrating the APFDC metric.

the test case order that reveals the more severe fault earlier (A–B–C–D–E), under the assumption that the
severity value assigned to each of faults 2–10 is 1 and the severity value assigned to fault 1 is 2. The pair of
graphs in Figure 3.C, corresponding to Example 3, show how the new metric distinguishes test case orders
involving a high-cost test case C: instead of undervaluing order E–C–B–A–D, the metric now assigns it
greater value than order C–E–B–A–D. Finally, the pair of graphs in Figure 3.D, corresponding to Example
4, show how the new metric distinguishes between test case orders when both test costs and fault severities
are non-uniform, under the assumptions that test case B has cost 2 while each other test case has cost 1, and
that faults 6 and 7 each have severity 3 while each other fault has severity 1. In this case, the new metric
assigns a greater value to order B–A–C–D–E than to order A–B–C–D–E.

The APFDC metric can be quantitatively described as follows. (Here, the formula for APFDC is
given; its derivation is presented in Appendix A.) Let T be a test suite containing n test cases with costs
t1, t2, . . . , tn. Let F be a set of m faults revealed by T , and let f1, f2, . . . , fm be the severities of those faults.
Let TFi be the first test case in an ordering T ′ of T that reveals fault i. The (cost-cognizant) weighted
average percentage of faults detected during the execution of test suite T ′ is given by the equation:

APFDC =
∑m

i=1 (fi × (
∑n

j=TFi
tj − 1

2 tTFi))∑n
j=1 tj ×

∑m
i=1 fi

(2)

10

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 46.67%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 43.33%

Test Case Order B-A-C-D-E

A. APFDs corresponding to Example 1

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 53.64%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 51.82%

Test Case Order B-A-C-D-E

B. APFDs corresponding to Example 2

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 52.50%

Test Case Order C-E-B-A-D

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 68.93%

Test Case Order E-C-B-A-D

C. APFDs corresponding to Example 3

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 52.38%

Test Case Order A-B-C-D-E

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

0
0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

100

100

Area = 54.76%

Test Case Order B-A-C-D-E

D. APFDs corresponding to Example 4

Percentage Total Test Case Cost Incurred

Pe
rc

en
ta

ge
 T

ot
al

 F
au

lt
Se

ve
rit

y
D

et
ec

te
d

Figure 3: Examples illustrating the APFDC metric.

the test case order that reveals the more severe fault earlier (A–B–C–D–E), under the assumption that the
severity value assigned to each of faults 2–10 is 1 and the severity value assigned to fault 1 is 2. The pair of
graphs in Figure 3.C, corresponding to Example 3, show how the new metric distinguishes test case orders
involving a high-cost test case C: instead of undervaluing order E–C–B–A–D, the metric now assigns it
greater value than order C–E–B–A–D. Finally, the pair of graphs in Figure 3.D, corresponding to Example
4, show how the new metric distinguishes between test case orders when both test costs and fault severities
are non-uniform, under the assumptions that test case B has cost 2 while each other test case has cost 1, and
that faults 6 and 7 each have severity 3 while each other fault has severity 1. In this case, the new metric
assigns a greater value to order B–A–C–D–E than to order A–B–C–D–E.

The APFDC metric can be quantitatively described as follows. (Here, the formula for APFDC is
given; its derivation is presented in Appendix A.) Let T be a test suite containing n test cases with costs
t1, t2, . . . , tn. Let F be a set of m faults revealed by T , and let f1, f2, . . . , fm be the severities of those faults.
Let TFi be the first test case in an ordering T ′ of T that reveals fault i. The (cost-cognizant) weighted
average percentage of faults detected during the execution of test suite T ′ is given by the equation:

APFDC =
∑m

i=1 (fi × (
∑n

j=TFi
tj − 1

2 tTFi))∑n
j=1 tj ×

∑m
i=1 fi

(2)

10

Cost-Cognisant Test Case Prioritisation, ICSE, Malishevsky et al., 2006

One versatile tool: clustering

• A technique that groups objects such that objects in the same group are the
most similar to each other (there are many approaches to this).

• Benefits for testing:

• Reduces the conceptual size of test suites (i.e. tester can think about
clusters, not test cases)

• Provides insights into what is the most common behaviour

Diversity Based Prioritization
Leon & Podgurski, ISSRE 2003

• Given a distance metric that can
quantify distances between test
executions, you can both cluster and
visualize the diversity within a test
suite

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Multi−dimensional Scaling of Test Case Profiles: space

Clustering Tests
Yoo et al., ISSTA 2009

Fault-detecting test can be executed earlier.

Human engineer can compare buckets, not tests.

Fault detected by a test with small coverage contribution

Similarity Measure

• Clustering only makes sense if
we can measure true similarity
between test cases

• Semantic measure

• State of the art is largely
based on syntactic measures
(meaning coverage, yet again)

• Can we do better?

motivated by considerations of scalability and practical ap-
plicability. In this perspective, our approach is more closely
related to few recent works based on coarse-grained heuristics,
clustering, and similarity.

In recent years some collaborative efforts between academic
and industrial researchers start to appear that develop coarse-
grained approaches trading precision with efficiency/scalabil-
ity. Strictly speaking such works focus on test case selec-
tion and not test suite reduction, in that the choice of tests
to execute is modification-aware. For example, Knauss and
coauthors [24] use a statistical model that relates the changed
code fragments (or churns) with test outcomes on Ericsson
systems; considering a continuous integration development
environment, Elbaum and coauthors [15] propose a strategy
apt for Google testing process, which combines test case
selection during pre-submit testing and test case prioritization
in post-submit testing. Both selection and prioritization apply
heuristics based on failure history and execution windows. By
relying on very efficient algorithms, our FAST -R approaches
can scale up to large industrial systems as the above works,
while not sacrificing much of precision in deriving a represen-
tative subset of the test cases.

Our similarity-based approach is related to several tech-
niques that exploit the diversity among test cases for guiding
selection. Some techniques build on the notion of adaptive
random testing (ART) [10] that, in a few words, first selects
a random set of test cases and then filters them based on
their distance from the already selected test cases. Several
variants instantiations of ART have been proposed, including
ART-D [20] and ART-F [36] that we use as competitors to
FAST -R and that are further described in Section IV.

Some black-box approaches use similarity to reduce model-
based test suites. Both test case reduction [2] and test case
selection [9], [17] techniques have been proposed. These
techniques have been conceived for industrial use: For example
Hemmati and coauthors [17] pursue as a main goal a selection
of test cases adjusted to the available testing budget. However,
all such model-based approaches rely on the assumption that
a formal model of program behavior, e.g., a LTS, is available.
In contrast, FAST -R does not need to assume anything else
beyond the test cases themselves.

A few works have proposed to leverage clustering of test
cases as we do here, e.g., [11], [30]. However they calculate
the similarity between two test cases based on code coverage
information, which as said already could be too expensive at
the testing scale we aim.

III. THE APPROACHES

Given a test suite T and some fixed budget B ≤ |T |, the
goal of similarity-based test suite reduction is to select B
evenly spread test cases out of the test suite. If we model
each test case as a point in some D-dimensional space, then
the problem could be thought of as that of finding the central
points of B clusters. The problem of clustering is NP -hard,
but we are able to perform scalable similarity-based test suite

t1: grep -e 'foo' file

2. Vector Space Model (Term Frequency)

grep -e -v -F 'foo' 'bar' file

t1

t2

t3

3. Random Projection

Comp1 Comp2 Comp3

t1

t2

t3

1. Test Suite

t2: grep -v -e 'foo' file

t3: grep -F 'bar' file

Fig. 1: Visual representation of FAST-R preparation phase.

reduction by borrowing a technique from the big data domain
and using it in combination with some efficient heuristics.

We consider an Euclidean space, a metric space where the
distance between any two points is expressed by the Euclidean
distance – what one could think of as the straight line connect-
ing them. Let x,y ∈ RD be two points; the Euclidean distance
between them is defined as d(x,y) =

√∑D
i=1(xi − yi)2.

In the preparation phase of our approaches (Fig. 1) we
transform test cases into points in the Euclidean space via the
vector-space model: The textual representation of each test
case, e.g., test source code or command line input (Fig. 1.1),
is mapped into an n-dimensional point where each dimension
corresponds to a different term of the source code and n is
equal to the total number of terms used in the whole test suite.
The components are weighted according to term-frequency
scheme, i.e., the weights are equal to the frequency of the
corresponding terms (Fig. 1.2).

The computation of the Euclidean distance between any
two n-dimensional points can be expensive when n is large.
To overcome this problem we exploit a dimensionality reduc-
tion technique called random projection. Roughly speaking,
random projection works because of Johnson-Lindenstrauss
Lemma [21], which states that a set of points in a high-
dimensional space can be projected into a much lower-
dimensional space in a way that pairwise distances are nearly
preserved. In particular we use sparse random projection [1],
[26], an efficient implementation of the technique that is
suitable for database applications (Fig. 1.3).

We model the clustering problem as a k-means problem,
with k = B. Given n points in a metric space, the goal of k-
means is to find a k-partition P = {P1, . . . , Pk} of the points
that minimizes the sum of the squared Euclidean distances
between each point to its closest center of one partition.
Formally, the goal is to find argminP

∑k
i=1

∑
x∈Pi

d(x,µi)
2,

where µi is the center of the points belonging to partition Pi.
There exist efficient techniques that are able to find an

approximate solution to k-means. One is k-means++ [4],

421

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on April 26,2023 at 01:07:50 UTC from IEEE Xplore. Restrictions apply.

Scalable Approaches for Test Suite Reduction, Cruciani et al., ICSE 2019

Summary

• Minimisation: keyword is redundancy - it saves effort but you are putting
yourself at the mercy of the criterion you are minimising with.

• Selection: keyword is safety - can be expensive; you want to be conservative
and execute any test that has potential to reveal fault regarding recent
changes.

• Prioritisation: keyword is asap/surrogate - you want to maximise the number
of faults you detect early on; since you do not know faults in advance, you
need to come up with smart surrogate.

Continuous Integration

• CI means to merge all developer working copies into a single mainline daily,
or even more frequently.

• Developers usually ensure that their commits are correct by executing test
cases that are directly relevant at their local machines. This is sometimes
called pre-commit testing.

• Once changes are merged, the CI system automatically executes all relevant
test cases, to ensure that individual changes correctly work with each other.
This is sometimes called post-commit testing.

Regression Testing and Cloud Computing

• All regression testing techniques we looked at assume limited resource for
testing, hence the need for optimisation.

• The elasticity of cloud computing has a significant implication on the way
these techniques are used.

• What happens if you can use unrestricted amount of computing resources?

Single Testing Machine

Elastic Cloud Resource / Parallel Instances

…

Achievable Testing

Shorter Testing Time

…

If all test cases have to be executed
sequentially, we have to optimise the

regression testing process as much as
possible, to get the most out of the

limited testing resources.

If all test cases can be executed in
parallel, the time needed for testing is

only as long as the longest test
execution.

So is it all useless?

• Many techniques are still meaningful even when test cases are executed in
parallel.

• Test suite minimisation can still save redundant cloud computing cost.

• Impact analysis used by safe test case selection is useful for many other
applications, such as automated debugging.

• There are cases when test cases have to be executed sequentially: for
example, pre-commit testing done at individual developer machines.

Redefining Prioritisation

• In very large development environments, the CI (Continuous Integration)
pipeline is easily flooded with commits.

• Amazon engineers conduct 136,000 system deployments per day: one in
every 12 seconds.

• Google engineers have to wait up to 9 hours to receive test results from
the CI pipeline.

• Prioritising test cases within test suites makes little impact at this scale.

• Instead, prioritising commits to test has been proposed.

J. Liang, S. Elbaum, and G. Rothermel. Redefining prioritization: Continuous prioritization for continuous integration.
In Proceedings of the 40th International Conference on Software Engineering, ICSE ’18, pages 688–698, New York, NY, USA, 2018. ACM.

Redefining Prioritisation

• The proposed technique is essentially history based prioritisation: commits
relevant to test cases that have recently failed are given higher priority. If
tests really fail, this ensures quicker feedback to the responsible
developers.

• Assumptions

• Commits are independent from each other. In high volume environment,
this is not unrealistic.

• Relationships between code and test cases are known in advance (i.e.,
which test covers which parts of the code).

Regression Testing and CI

• Modern software development requires increasingly shorter release cycles:
time-to-market is extremely critical.

• Consequently, test executions are more frequently needed.

• While the CI environment requires adaptations, regression testing techniques
are definitely relevant when test cases are repeatedly executed. In some
sense, all testing is like regression testing.

Reference

• S. Yoo and M. Harman. Regression testing minimisation, selection and
prioritisation: A survey. Software Testing, Verification, and Reliability, 22(2):67–
120, March 2012.

