Mutation lTesting

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

Mutation Testing

 White-box, fault-based testing technique

. the testing adequacy: the goal is to the effectiveness of the
existing test suite in terms of its

* [est suites test programs
 Mutants test test suites

 [he most widely used adequacy score Is called . It measures
the quality of the given test suite as

How do you choose the ideal test data?

How do you choose the ideal test data?

ow do you demonstrate that the bendy road is the better test environment?

How do you choose the ideal test data?

Sabotage the car!

How do you choose the ideal test data?

T4
L

“~
—

" ’)‘40!'95 200 9

Some tests are kinder(?) to faults: we want tests that are mean to faults.

Mutation Testing

* Jesting is a sampling process: without a priori knowledge of faults, it is hard to
assess how well a technigue samples.

 Mutation testing: the quality of a test suite can be indirectly measured by
and

» Seed the original implementation with faults (the seeded versions are called
mutants)

* Execute the given test suite

* |f we get different test results, the introduced faults (the mutant) has been
identified (i.e., the mutant is killed). If not, the mutant is still alive.

Fundamental Hypothesis

 Competent Programmer Hypothesis

* Coupling Effect Hypothesis

Competent Programmer Hypothesis

Q: what do the programmers and the monkeys have in common
when it comes to programming?

A: they write buggy code.

Competent Programmer Hypothesis

 On average, programmers are
, 1.e., they write
programs. A faulty
program source code Is different
from the correct one only in a
few, minor detail.

Coupling Effect Hypothesis

» |f a test set detects all small syntactic faults, it will also detect larger, semantic
faults: especially if those semantic faults are coupled with the small faults.

* Richard A. DeMillo and Richard J. Lipton and Frederick Gerald Sayward,
Hints on Test Data Selection: Help for the Practicing Programmer,

Computer, 11(4), 1978.

o A. Jefferson Offutt, Investigations of the Software Testing Coupling Effect ,
ACM Transactions on Software Engineering and Methodology, 1(1), January

1992.

Coupling Effect Hypothesis

Simple Faults Space of Faults Complex Faults

Fundamental Hypothesis

 Competent Programmer Hypothesis: programmers are likely to make simple
faults.

* Coupling Effect Hypothesis: if we catch all the simple faults, we will be able to
catch more complicated faults.

 Mutation testing: therefore, let us artificially inject simple faults!

Mutation Testing Process

Test mte

.
Bug
Program

Same Results (Alive) Different Results (Killed)

Mutant Generation

» P’ differs from P by a single mutation

 Mutation: a typical simple error programmers are likely to make - off by one,
typo, mistaken identity, etc.

Program P Mutant P’

Mutation Operator

An atomic rule that is used to generate a mutant

ABS: Absolute Value Insertion

X = 4 * abs (y);

x = 4 * y; - x = 4 * —-abs(y);

x = 4 * failOnZero(y) ;

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

Mutation Operator

An atomic rule that is used to generate a mutant

AOR: Arithmetic Operator Replacement

X =v * z;
X =y + zZ; - X =V - Z;
X =v / z;

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

Mutation Operator

An atomic rule that is used to generate a mutant

ROR: Relational Operator Replacement

1f(x > v)

1f(x == vy)
1T (x >= V) - 1T (x < V)

1f(x!=v)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

Mutation Operator

An atomic rule that is used to generate a mutant

COR: Conditional Operator Replacement

1f(x || y)
1f(x && V) - 1f(x & v)
1f(x [y)

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

Mutation Operator

An atomic rule that is used to generate a mutant

SDL: Statement Deletion

X = 3; X = 3;
vy = X + 5; >
Z = X —- V3 Z = X -

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

Mutation Operator

* Any systematic and syntactic change operator can be considered.

 For C: 71 Mutation Operators (Statement 15, Operator 46,Variable 7, Constant 3)

* Design of Mutant Operators for the C Programming Language
by Hiralal Agrawal, Richard A DeMillo, R Hathaway,William Hsu,Wynne Hsu, Edward W

Krauser, Rhonda J Martin, Aditya P Mathur, Eugene H Spafford, technical report, Purdue
University, 1989

* For Class Mutation: 24 Mutation Operators (Access Control 1, Inheritance 7, Polymorphism
4, Overloading 4, Java-Specific Features 4, Common Programming Mistakes 4)

* Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In Proceedings
of the 13th International Symposium on Software Reliability Engineering, ISSRE '02, pages
352-, Washington, DC, USA, 2002. IEEE Computer Society.

Killing a Mutant

Program P

Test:y=2,z=2 4 4 Alive

Test:y=3,z="1 4 3 Killed

Killing a Mutant

Test:y =2

Test:y =3

Program P

Equivalent Mutant

 An equivalent mutant is from, but
to, the original program.

* X=Y+VY;VS.X=Y " 2;
 Checking whether an arbitrary mutant is equivalent or not is undecidable.

* This Iis one of the major obstacles to the mainstream adoption of mutation
testing.

 “My mutation score is 70%. Is my test suite bad, or are there too many
equivalent mutants?”

Mutation Score

VS — + of killed mutants

4 of non-equivalent mutants

VS — # of killed mutants
+ of all mutants

How to kill a mutant

 Reachabllity: your test execution needs to reach (i.e. cover) the mutant

* |Infection: the mutated code should infect the program state (i.e. the value of
the mutated expression differs from the value of the original expression)

 Propagate: the infected state results in an observable state

How to kill a mutant

 Reachability + Infection: weak Kill (i.e. we stop after confirming infection, do
not check the propagation to the outside world)

* Reachability + Infection + Propagation: strong kill (i.e. the Kill can be observed
from the outside workd)

Killing me softly weakly...

Mutation:

P f(x < v){ Reachability Condition:
if(z < y){if(z < v + 1)/
1f(x < z) XY
result = z; Infection Condition:
else
} result = x; z<y)l=(z<y+1)
Sree L . Weak Kill Condition:
}
el se X<y)&&(z<y)!l=(z<y+1)
result = 0;

LX<y && (2 ==)

Killing me seoftly strongly...

Mutation: Reachability Condition:
1f(x < v) { X<y
1f(z < y){1f(z < vy + 1){ Infection Condition:
1f(x < z) z<y!l=(@Z<y+1)
result = z; | N
el se Weak Kill Condition:
result = x: X<y &&(@z<y)l=(@z<y+1)
} LX<y && (Z ==Y)
else
result = v; Propagation Condition:
el;e After infection, x <y == 2
result = 0;

Under this condition,

Original: result = y

Mutant: result = z

L (X<y)&& (z==Yy) && (Y = 2)

Scalability

 Normal testing: 1 program ™ 100 test cases

 Mutation testing: 1 program * 10000 mutants () * 100
test cases...

 We tend to get a large number of mutants:

* No prior knowledge of which mutation operator is the most effective (w.r.t.
improving the test suite quality): the default is to apply everything

 Programs are large!

Scalability: do fewer

 Mutation Sampling: generate a large number of mutants, but use only a
of them (natural question: how do we select?)

 Subsuming Mutant: a mutant M- another mutant Mq if and only if
killing M1 guarantees killing of Mo.

* True subsumption relationship: not computable
 Dynamic subsumption: defined w.r.t. a given test suite

o Static subsumption: results of static analysis, still an approximation

o Selective Mutation: apply only a of mutation

Scalability: do smarter

¢ Super-mutant: all mutants into a , then activate a
specific subset at the runtime (saves the compilation time)

 Weak mutation testing: (requires
instrumentation for the embedded oracle)

» Parallel/distributed mutation testing: obvious.

Trivial Compiler Equivalence

* |dea: some syntactic changes may compile into the same binary code thanks
to compiler optimisation - if the binary is the same, the corresponding
syntactic change is an equivalent mutant.

* A large scale empirical study showed that TCE can detect 7% of the mutants
to be equivalent; more importantly, 21% of all mutants were duplicates (i.e. not
equivalent, but identical to another non-equivalent mutant).

M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence:
A large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 936-946. IEEE Press, 2015.

Higher Order Mutants

. (First Order Mutant): mutants that are generated by a single application
of one mutation operator

. (High Order Mutant): mutants that are generated by two or more
applications of a set of mutation operators

e Some studies claim that, while most of the FOMSs are trivial to Kill, few of them
are coupled with real faults.

e We can for a combination of FOMs that result in a hard-to-kill HOM.

For Researchers

e Code mutation has an alternative use for academic researchers: it can create
a set of artificial faults, with which new testing techniques can be evaluated

 The Big Question: are mutants really similar to real faults?
* Jouches on the same fundamental basis of mutation testing itself

o Still an open question!

Tools

SN S v
M <SRN
v S ATt O 'y

e Fortran: Mothra - had a long-lasting impact with its definition fie. . B
operators

e C/C++: Proteum, MiLU (also searches for HOMs), MUSIC (developed at
KAIST)

» Java: mudava (a special tie to KAIST), Major, Javalanche (bytecode mutation),
PIT

o JavaScript: Stryker
 Ruby: Heckle,

References

* Y. dJia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649-678, 2011.

 Mutation Testing Repository (http://crestweb.cs.ucl.ac.uk/resources/
mutation testing repository/): an online repository that accompanies the
above survey

http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/

