
Shin Yoo | COINSE@KAIST

Mutation Testing
CS453 Automated Software Testing

Mutation Testing

• White-box, fault-based testing technique

• Inverts the testing adequacy: the goal is to assess the effectiveness of the
existing test suite in terms of its fault detection capabilities.

• Test suites test programs

• Mutants test test suites

• The most widely used adequacy score is called Mutation Score: it measures
the quality of the given test suite as the percentage of injected faults that you
can detect.

How do you choose the ideal test data?

COMPGS03/COMPM023 Mutation Testing

How it works?

Sunday, 9 February 14

How do you choose the ideal test data?

COMPGS03/COMPM023 Mutation Testing

How it works?

Sunday, 9 February 14

How do you demonstrate that the bendy road is the better test environment?

How do you choose the ideal test data?

COMPGS03/COMPM023 Mutation Testing

How it works?

Sunday, 9 February 14COMPGS03/COMPM023 Mutation Testing

How it works?

Sunday, 9 February 14

Sabotage the car!

How do you choose the ideal test data?

COMPGS03/COMPM023 Mutation Testing

How it works?

Sunday, 9 February 14

Some tests are kinder(?) to faults: we want tests that are mean to faults.

Mutation Testing

• Testing is a sampling process: without a priori knowledge of faults, it is hard to
assess how well a technique samples.

• Mutation testing: the quality of a test suite can be indirectly measured by
artificially injecting faults and checking how well the test suite can detect them.

• Seed the original implementation with faults (the seeded versions are called
mutants)

• Execute the given test suite

• If we get different test results, the introduced faults (the mutant) has been
identified (i.e., the mutant is killed). If not, the mutant is still alive.

Fundamental Hypothesis

• Competent Programmer Hypothesis

• Coupling Effect Hypothesis

Competent Programmer Hypothesis

Q: what do the programmers and the monkeys have in common

when it comes to programming?

A: they write buggy code.

• On average, programmers are
competent, i.e., they write almost
correct programs. A faulty
program source code is different
from the correct one only in a
few, minor detail.

Competent Programmer Hypothesis

Coupling Effect Hypothesis

• If a test set detects all small syntactic faults, it will also detect larger, semantic
faults: especially if those semantic faults are coupled with the small faults.

• Richard A. DeMillo and Richard J. Lipton and Frederick Gerald Sayward,
Hints on Test Data Selection: Help for the Practicing Programmer,
Computer, 11(4), 1978.

• A. Jefferson Offutt, Investigations of the Software Testing Coupling Effect ,
ACM Transactions on Software Engineering and Methodology, 1(1), January
1992.

Coupling Effect Hypothesis

Space of FaultsSimple Faults Complex Faults

Fundamental Hypothesis

• Competent Programmer Hypothesis: programmers are likely to make simple
faults.

• Coupling Effect Hypothesis: if we catch all the simple faults, we will be able to
catch more complicated faults.

• Mutation testing: therefore, let us artificially inject simple faults!

Mutation Testing Process

Program
Bug

Mutants

Test Suite

Same Results (Alive) Different Results (Killed)

Mutant Generation

• P’ differs from P by a single mutation

• Mutation: a typical simple error programmers are likely to make - off by one,
typo, mistaken identity, etc.

Program P Mutant P’

Mutation Operator
An atomic rule that is used to generate a mutant

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

ABS: Absolute Value Insertion

x = 4 * y;

x = 4 * abs(y);

x = 4 * -abs(y);

x = 4 * failOnZero(y);

Mutation Operator
An atomic rule that is used to generate a mutant

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

AOR: Arithmetic Operator Replacement

x = y + z;

x = y * z;

x = y - z;

x = y / z;

Mutation Operator
An atomic rule that is used to generate a mutant

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

ROR: Relational Operator Replacement

if(x >= y)

if(x > y)
if(x == y)
if(x < y)
if(x!=y)
…

Mutation Operator
An atomic rule that is used to generate a mutant

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

COR: Conditional Operator Replacement

if(x && y)

if(x || y)

if(x & y)

if(x | y)

Mutation Operator
An atomic rule that is used to generate a mutant

A Fortran Language System for Mutation-Based Software Testing, Kim N. King and Jeff Offutt.
Software Practice and Experience, 21(7):686-718, July 1991

SDL: Statement Deletion

x = 3;

y = x + 5;

z = x - y;

x = 3;

z = x - y;

Mutation Operator

• Any systematic and syntactic change operator can be considered.

• For C: 71 Mutation Operators (Statement 15, Operator 46,Variable 7, Constant 3)

• Design of Mutant Operators for the C Programming Language 
by Hiralal Agrawal, Richard A DeMillo, R Hathaway,William Hsu,Wynne Hsu, Edward W
Krauser, Rhonda J Martin, Aditya P Mathur, Eugene H Spafford, technical report, Purdue
University, 1989

• For Class Mutation: 24 Mutation Operators (Access Control 1, Inheritance 7, Polymorphism
4, Overloading 4, Java-Specific Features 4, Common Programming Mistakes 4)

• Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation operators for java. In Proceedings
of the 13th International Symposium on Software Reliability Engineering, ISSRE ’02, pages
352–, Washington, DC, USA, 2002. IEEE Computer Society.

Killing a Mutant

x = y + z;
…

print(x);

Program P

x = y * z;
…

print(x);

Mutant P’

Test: y = 2, z = 2 4 4 Alive

Test: y = 3, z = 1 4 3 Killed

Killing a Mutant

x = y + y;
…

print(x);

Program P

x = y * 2;
…

print(x);

Mutant P’

Test: y = 2 4 4

Test: y = 3 6 6

Alive

Alive

Equivalent Mutant

• An equivalent mutant is syntactically different from, but semantically identical
to, the original program.

• x = y + y; vs. x = y * 2;

• Checking whether an arbitrary mutant is equivalent or not is undecidable.

• This is one of the major obstacles to the mainstream adoption of mutation
testing.

• “My mutation score is 70%. Is my test suite bad, or are there too many
equivalent mutants?”

Mutation Score

MS =
of killed mutants

of all mutants
<latexit sha1_base64="OTCWyj3sQUfphndOi++5HvcThGY=">AAACKXicbVA9TxtBEJ0z3ybAkZQ0KyykVNYdDVBEAdKkiQRKDJZ8lrW33rNX3o/T7hzCOlnKv0nDX6GhCB8NRf5I1jYSscmTRnp6b0Yz89JcCodR9BhUFhaXlldW16rr7zY2t8Lt9xfOFJbxBjPS2GZKHZdC8wYKlLyZW05VKvllOvgy9i+vuHXC6B84zHlb0Z4WmWAUvdQJT759J59IklnKykSl5rpMasRkZCCk5F2iCqQa3Wg0Y1IpX51OWIvq0QTkLYlfSO348/PtTwA464R3SdewQnGNTFLnWnGUY7ukFgWTfFRNCsdzyga0x1ueaqq4a5eTV0dkzytdkhnrSyOZqP9OlFQ5N1Sp71QU+27eG4v/81oFZoftUui8QK7ZdFFWSIKGjHMjXWE5Qzn0hDIr/K2E9amPDX26VR9CPP/yW9LYrx/V43MfxilMsQo7sAsfIYYDOIavcAYNYPALbuE33Ac3wV3wEDxNWyvBy8wHmEHw5y+csKn3</latexit><latexit sha1_base64="SY3WgNHHHfd74Z8YIMEQ1DO9FyA=">AAACKXicbVDJSgNBEO1xN25Rj14ag+ApzHhwOYhRL16EiEaFTAg9nZ6kSS9Dd40YhnyPFz/DqxcPbhcP/oYHOwu4Pih4vFdFVb0oEdyC7794I6Nj4xOTU9O5mdm5+YX84tK51amhrEK10OYyIpYJrlgFOAh2mRhGZCTYRdQ+7PkXV8xYrtUZdBJWk6SpeMwpASfV8/vHp3gXh7EhNAtlpK+zsIB1jNtcCNbAMgWiwHa7P0wixJdTzxf8ot8H/kuCISmU9t7ur+82P8r1/EPY0DSVTAEVxNpq4CdQy4gBTgXr5sLUsoTQNmmyqqOKSGZrWf/VLl5zSgPH2rhSgPvq94mMSGs7MnKdkkDL/vZ64n9eNYV4u5ZxlaTAFB0silOBQeNebrjBDaMgOo4Qari7FdMWcbGBSzfnQgh+v/yXVDaKO8XgxIVxgAaYQitoFa2jAG2hEjpCZVRBFN2ge/SInrxb78F79l4HrSPecGYZ/YD3/gkum6vl</latexit><latexit sha1_base64="SY3WgNHHHfd74Z8YIMEQ1DO9FyA=">AAACKXicbVDJSgNBEO1xN25Rj14ag+ApzHhwOYhRL16EiEaFTAg9nZ6kSS9Dd40YhnyPFz/DqxcPbhcP/oYHOwu4Pih4vFdFVb0oEdyC7794I6Nj4xOTU9O5mdm5+YX84tK51amhrEK10OYyIpYJrlgFOAh2mRhGZCTYRdQ+7PkXV8xYrtUZdBJWk6SpeMwpASfV8/vHp3gXh7EhNAtlpK+zsIB1jNtcCNbAMgWiwHa7P0wixJdTzxf8ot8H/kuCISmU9t7ur+82P8r1/EPY0DSVTAEVxNpq4CdQy4gBTgXr5sLUsoTQNmmyqqOKSGZrWf/VLl5zSgPH2rhSgPvq94mMSGs7MnKdkkDL/vZ64n9eNYV4u5ZxlaTAFB0silOBQeNebrjBDaMgOo4Qari7FdMWcbGBSzfnQgh+v/yXVDaKO8XgxIVxgAaYQitoFa2jAG2hEjpCZVRBFN2ge/SInrxb78F79l4HrSPecGYZ/YD3/gkum6vl</latexit><latexit sha1_base64="PpDA8Iv+CBNLpt/Ra/JtpOGIgeE=">AAACKXicbVDJSgNBEO1xjXEb9eilMQiewowX9SBEvXgRIjoqZELo6fRok16G7hoxDPM9XvwVLzm4Xf0ROzHg+qDg8V4VVfWSTHALQfDqTUxOTc/MVuaq8wuLS8v+yuqF1bmhLKJaaHOVEMsEVywCDoJdZYYRmQh2mfSOhv7lLTOWa3UO/Yy1JblWPOWUgJM6/sHJGd7HcWoILWKZ6LsirmGd4h4XgnWxzIEosGX5wyRCfDkdvxbUgxHwXxKOSQ2N0ez4g7iraS6ZAiqIta0wyKBdEAOcClZW49yyjNAeuWYtRxWRzLaL0asl3nRKF6fauFKAR+r3iYJIa/sycZ2SwI397Q3F/7xWDuluu+Aqy4Ep+rkozQUGjYe54S43jILoO0Ko4e5WTG+Iiw1culUXQvj75b8k2q7v1cPToNY4HKdRQetoA22hEO2gBjpGTRQhiu7RI3pCz96DN/BevLfP1glvPLOGfsB7/wAFHqdM</latexit>

MS =
of killed mutants

of non-equivalent mutants
<latexit sha1_base64="1+r2LEBG6RtN9mv9zzHzP2vQbPc=">AAACNHicbVDLahtBEOyV83CUh9fOMZchIpBLxG4utg8hJrn4kICCrdigXcTsqNcaNI/NzKywWAT+Jl/8HckpPhjjGF/9DR49IJGcgoGiqrunu7JCcOui6DyorTx4+Ojx6pP602fPX6yF6xvfrS4NwzbTQpvDjFoUXGHbcSfwsDBIZSbwIBt8nvgHQzSWa7XvRgWmkh4pnnNGnZe64Zeve+QDSXJDWZXITB9XSYPonAy4ENgjsnRUOTseL5hKq3f4o+RDKlC5v0XdsBE1oynIfRLPSWPn4+XPEwBodcNfSU+zUvopTFBrO3FUuLSixnEmcFxPSosFZQN6hB1PFZVo02p69Zi88UqP5Nr457eYqv92VFRaO5KZr5TU9e2yNxH/53VKl2+lFVdF6VCx2Ud5KYjTZBIh6XGDzImRJ5QZ7nclrE99gs4HXfchxMsn3yft983tZvzNh/EJZliFV/Aa3kIMm7ADu9CCNjA4hd9wBX+Cs+AiuA5uZqW1YN7zEhYQ3N4BKJ+u5g==</latexit><latexit sha1_base64="6ikK9fhbJvIW7Nic2F6MrlDszD0=">AAACNHicbVDLSgMxFM34tr6qLt0Ei+DGMuPGuhBFF7pQULRW6JSSSe9oaB5jkhHL0J9y43foShciKm79BtNW0KoHAodz7r2590QJZ8b6/qM3MDg0PDI6Np6bmJyansnPzp0alWoKZaq40mcRMcCZhLJllsNZooGIiEMlau50/MoVaMOUPLGtBGqCnEsWM0qsk+r5/YNjvIHDWBOahSJS11lYwCrGTcY5NLBILZHWtNt9plRyBS5TdkU4SPtdVM8X/KLfBf5Lgi9S2Np8vrteKe0e1vP3YUPRVLgplBNjqoGf2FpGtGWUQzsXpgYSQpvkHKqOSiLA1LLu1W285JQGjpV2z23RVX92ZEQY0xKRqxTEXpjfXkf8z6umNi7VMiaT1IKkvY/ilGOrcCdC3GAaqOUtRwjVzO2K6QVxCVoXdM6FEPw++S8prxbXi8GRC2Mb9TCGFtAiWkYBWkNbaA8dojKi6AY9oBf06t16T96b994rHfC+euZRH7yPTwL4r4o=</latexit><latexit sha1_base64="6ikK9fhbJvIW7Nic2F6MrlDszD0=">AAACNHicbVDLSgMxFM34tr6qLt0Ei+DGMuPGuhBFF7pQULRW6JSSSe9oaB5jkhHL0J9y43foShciKm79BtNW0KoHAodz7r2590QJZ8b6/qM3MDg0PDI6Np6bmJyansnPzp0alWoKZaq40mcRMcCZhLJllsNZooGIiEMlau50/MoVaMOUPLGtBGqCnEsWM0qsk+r5/YNjvIHDWBOahSJS11lYwCrGTcY5NLBILZHWtNt9plRyBS5TdkU4SPtdVM8X/KLfBf5Lgi9S2Np8vrteKe0e1vP3YUPRVLgplBNjqoGf2FpGtGWUQzsXpgYSQpvkHKqOSiLA1LLu1W285JQGjpV2z23RVX92ZEQY0xKRqxTEXpjfXkf8z6umNi7VMiaT1IKkvY/ilGOrcCdC3GAaqOUtRwjVzO2K6QVxCVoXdM6FEPw++S8prxbXi8GRC2Mb9TCGFtAiWkYBWkNbaA8dojKi6AY9oBf06t16T96b994rHfC+euZRH7yPTwL4r4o=</latexit><latexit sha1_base64="ue2p9QLALfp+RAOpWqKwcqJWmAw=">AAACNHicbVC7SgNBFJ31GeMramkzGAQbw66NWghBGwuFiMYEsiHMTu7qkHmsM7PBsOSnbPwPKy0sVGz9BicP8Hlg4HDOvXfuPVHCmbG+/+RNTE5Nz8zm5vLzC4tLy4WV1UujUk2hShVXuh4RA5xJqFpmOdQTDUREHGpR52jg17qgDVPywvYSaApyJVnMKLFOahVOTs/xAQ5jTWgWikjdZmERqxh3GOfQxiK1RFrT7/8wpZLbcJOyLuEg7VdRq1D0S/4Q+C8JxqSIxqi0Cg9hW9FUuCmUE2MagZ/YZka0ZZRDPx+mBhJCO+QKGo5KIsA0s+HVfbzplDaOlXbPbTFUv3dkRBjTE5GrFMRem9/eQPzPa6Q23mtmTCapBUlHH8Upx1bhQYS4zTRQy3uOEKqZ2xXTa+IStC7ovAsh+H3yX1LdKe2XgjO/WD4cp5FD62gDbaEA7aIyOkYVVEUU3aFH9IJevXvv2Xvz3kelE964Zw39gPfxCYuerDc=</latexit>

How to kill a mutant

• Reachability: your test execution needs to reach (i.e. cover) the mutant

• Infection: the mutated code should infect the program state (i.e. the value of
the mutated expression differs from the value of the original expression)

• Propagate: the infected state results in an observable state

How to kill a mutant

• Reachability + Infection: weak kill (i.e. we stop after confirming infection, do
not check the propagation to the outside world)

• Reachability + Infection + Propagation: strong kill (i.e. the kill can be observed
from the outside workd)

Killing me softly weakly…

if(x < y){
 if(z < y){
 if(x < z)
 result = z;
 else
 result = x;
 }
 else
 result = y;
 }
else
 result = 0;

Mutation:

if(z < y + 1){
Reachability Condition:

x < y
Infection Condition:

(z < y) != (z < y + 1)

Weak Kill Condition:

(x < y) && (z < y) != (z < y + 1)

∴ (x < y) && (z == y)

Killing me softly strongly…
Reachability Condition:

x < y
Infection Condition:

(z < y) != (z < y + 1)

Weak Kill Condition:

(x < y) && (z < y) != (z < y + 1)

∴ (x < y) && (z == y)

Propagation Condition:

After infection, x < y == z

Under this condition,

Original: result = y

Mutant: result = z

∴ (x < y) && (z == y) && (y != z)

if(x < y){
 if(z < y){
 if(x < z)
 result = z;
 else
 result = x;
 }
 else
 result = y;
 }
else
 result = 0;

Mutation:

if(z < y + 1){

Scalability

• Normal testing: 1 program * 100 test cases

• Mutation testing: 1 program * 10000 mutants (including compilation!) * 100
test cases…

• We tend to get a large number of mutants:

• No prior knowledge of which mutation operator is the most effective (w.r.t.
improving the test suite quality): the default is to apply everything

• Programs are large!

Scalability: do fewer

• Mutation Sampling: generate a large number of mutants, but use only a
subset of them (natural question: how do we select?)

• Subsuming Mutant: a mutant M1 subsumes another mutant M2 if and only if
killing M1 guarantees killing of M2.

• True subsumption relationship: not computable

• Dynamic subsumption: defined w.r.t. a given test suite

• Static subsumption: results of static analysis, still an approximation

• Selective Mutation: apply only a subset of mutation operators

Scalability: do smarter

• Super-mutant: compile all mutants into a single program, then activate a
specific subset at the runtime (saves the compilation time)

• Weak mutation testing: relax the kill criterion to weak kills (requires
instrumentation for the embedded oracle)

• Parallel/distributed mutation testing: obvious.

Trivial Compiler Equivalence

• Idea: some syntactic changes may compile into the same binary code thanks
to compiler optimisation - if the binary is the same, the corresponding
syntactic change is an equivalent mutant.

• A large scale empirical study showed that TCE can detect 7% of the mutants
to be equivalent; more importantly, 21% of all mutants were duplicates (i.e. not
equivalent, but identical to another non-equivalent mutant).

• M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon. Trivial compiler equivalence:
A large scale empirical study of a simple, fast and effective equivalent mutant
detection technique. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1, pages 936–946. IEEE Press, 2015.

Higher Order Mutants

• FOM (First Order Mutant): mutants that are generated by a single application
of one mutation operator

• HOM (High Order Mutant): mutants that are generated by two or more
applications of a set of mutation operators

• Some studies claim that, while most of the FOMs are trivial to kill, few of them
are coupled with real faults.

• We can search for a combination of FOMs that result in a hard-to-kill HOM.

For Researchers

• Code mutation has an alternative use for academic researchers: it can create
a set of artificial faults, with which new testing techniques can be evaluated

• The Big Question: are mutants really similar to real faults?

• Touches on the same fundamental basis of mutation testing itself

• Still an open question!

Tools

• Fortran: Mothra - had a long-lasting impact with its definition of mutation
operators

• C/C++: Proteum, MiLU (also searches for HOMs), MUSIC (developed at
KAIST)

• Java: muJava (a special tie to KAIST), Major, Javalanche (bytecode mutation),
PIT

• JavaScript: Stryker

• Ruby: Heckle,

References

• Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

• Mutation Testing Repository (http://crestweb.cs.ucl.ac.uk/resources/
mutation_testing_repository/): an online repository that accompanies the
above survey

http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/

