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What is structural testing?

• Structural testing measures the quality of testing based on the internal 
structure of the code. For example,


• we can ask “have I tested all variable declarations?”


• but can’t ask “have I tested all functionalities in the requirement 
documentation?”


• It is most relevant to unit testing, where your view of the entire system is at 
the code level



Testing Adequacy Criteria

• Allows you to measure the adequacy of testing against the achievement of 
certain structural criteria


• For example, statement coverage (100% means you have executed all 
statements in the program)


• All structural adequacy criteria is necessary but not sufficient to detect faults; 
no test adequacy criteria except exhaustive testing can guarantee detecting 
all faults



What does it really mean?



In industry at the time of writing

• Organisations strive to reach less than 100% coverage (if they care at all)


• Statement and branch coverage are used widely


• Certain industry, e.g. avionics, legally require 100% coverage


• Over 75% is practically regarded as good enough, but research claims that you need 
at least over 90% for satisfactory fault detection:


• Hutchins, Foster, Goradia and Ostrand, ‘Experiments on the Effectiveness of 
Dataflow- and Controlflow-Based Test Adequacy Criteria’, Proc. 16th Int’l 
Conference on Software Engineering (ICSE-16), 1994


• Many tools exist to measure coverage of all kinds described here



Test Data Generation

• Very active research area in automatically generating test input to achieve these 
criteria during the last 10 years; mature enough to get a big break


• The big question: can we generate a test suite that achieves (branch/statement/All 
Path) coverage automatically?


• Traditional tools:


• You. Think and write down.


• Random: generate random inputs until you cover everything (not very likely in 
some cases)


• User session: but they weren’t testing really



Cutting Edge Techniques

• Search-Based Testing can cover an arbitrary statement/branch you want - 
repeat until you reach 100%


• Dynamic Symbolic Execution (aka Concolic Testing) achieves path coverage


• Both techniques are based on what we call Path Conditions



• A collection of predicates that 
leads the program execution 
down to a specific path

Path Condition

x=1

if

z=1

x=2

y=50

while

z=z+1

y=0

E

if

What is the path condition?

y > 13 && w == 4

if(y > 13) x=1; else x=2; 
y = 50; 
if(w == 4) z = 1; 
else{ 
	 while(...) 
	 z = z + 1; 
} 
y = 0;



Path Condition

• If you obtain a set of input values that satisfies a given path condition, you 
cover the corresponding path


• Search-Based Testing converts the path condition into a fitness function and 
uses meta-heuristic search to find the values


• DSE uses constraint solvers to find the values



Search-Based Testing

• General Idea


• Convert path conditions into a mathematical fitness function


• Use meta-heuristic search algorithms to maximise/minimise this function


• start with one or more random input values


• essentially, you try slightly different solutions every time and pick the one that 
is fitter


• repeat with the fitter solution


• When the goal is met, you have your test input values



Search-Based Testing

• Fitness function for branch coverage = [approach level] + normalise([branch 
distance])


• For a target branch and a given path that does not cover the target:


• Approach level: number of un-penetrated nesting levels surrounding the 
target


• Branch distance: how close the input came to satisfying the condition of 
the last predicate that went wrong



Branch Distance

• If you want to satisfy the predicate x == y, you convert this to branch 
distance of b = |x - y| and seek the values of x and y that minimise b to 0


• then you will have x and y that are equal to each other


• If you want to satisfy the predicate y >= x, you convert this to branch 
distance of b = x - y + K and seek the values of x and y that minimise b 
to 0


• then you will have y that is larger than x by K


• Normalise b to 1 - 1.001^(-b)



Predicate f minimise until..

a > b b - a + K f < 0

a >= b b - a + K f <= 0

a < b a - b + K f < 0

a <= b a - b + K f <= 0

a == b |a - b| f == 0

a != b -|a - b| f < 0

B. Korel, “Automated software test data 
generation,” IEEE Trans. Softw. Eng., vol. 16, 
pp. 870–879, August 1990.




Normalisation

• “[ with obj. ] Mathematics multiply (a series, function or item of data) by a 
factor that makes the norm or some associated quantity such as an integral 
equal to a desired value (usually 1).”


• We normalise the branch distance because…?


• Approach level is counting, whereas branch distance can be arbitrarily 
large: we want to consider approach level before branch distance, so 
branch distance should be in [0, 1).



if(c >= 4)

if(c <= 10)

if(a == b)

target

Test input (a, b, c), K = 1

(11, 2, 1)

False

app. lvl = 2

b. dist = 4 - c +1

f = 2 + (1 - 1.001^-4) = 2.004

False

True

False

True

True

(11, 2, 11)
app. lvl = 1

b. dist = c - 10 + 1

f = 1 + (1 - 1.001^-2) = 1.001 

(11, 2, 9)
app. lvl =0

b. dist = |11 - 2|

f = 0 + (1 - 1.001^-9) = 0.009 

(2, 2, 9)
app. lvl =0

b. dist = |2 - 2|

f = 0 + (1 - 1.001^0) = 0



Search-Based Testing

• There are many search algorithms other than hill climbing


• All operate on the same principle


• Convert the path condition into a fitness function


• Measure fitness by executing program with candidate input


• Pick the solution with best fitness



Test Data Generation: Local Search

A region of search 
space that contains 

Random 



• Pseudocode shows steepest 
ascent: pick the neighbour with 
the best improvement.


• Variants:


• First ascent: pick the first 
neighbour that shows 
improvement


• Random ascent: pick randomly 
from all neighbours with 
improvements

Local Search: Hill Climbing

HillClimbing()
(1) climb True
(2) s GetRandom()
(3) while climb
(4) N  GetNeighbours(s)
(5) climb False
(6) foreach n 2 N
(7) if Fitness(n) > Fitness(s)
(8) climb True
(9) s n
(10) return s



Alternating Variable Method (AVM)

• A type of Pattern Search: searches for an input vector that can maximise/
minimise a given objective function


• It has two operation modes: exploratory move, and pattern move.


• For each variable:


• Use exploratory move to decide which direction results in fitter solutions


• Use pattern move to accelerate to that direction



Alternating Variable Method

• Based on the known empirical results, AVM is one of the most effective 
algorithm for achieving C/C++ structural coverage


• M. Harman and P. McMinn. A theoretical and empirical analysis of 
evolutionary testing and hill climbing for structural test data generation. In 
Proceedings of the International Symposium on Software Testing and 
Analysis (ISSTA 2007), pages pp. 73–83. ACM Press, July 2007.


• M. Harman and P. McMinn. A theoretical and empirical study of search 
based testing: Local, global and hybrid search. IEEE Transactions on 
Software Engineering, 36(2):226–247, 2010.



(0, 0)

Starting from(6, 2), we want to 
search for the red dot at (22, 
34). We can measure the 
distance to the goal.

First we try exploratory move 
for x: make the smallest change, 
and see which direction results 
in reduced distance. The initial 
distance is 35.77.

-1: (5, 2) Increased (36.23). X

+1: (7, 2) Decreased (35.34) O

Consequently, x needs to be  

increased at the moment.

AVM: Exploratory Move



Now that we decided to increase x, 
try doubling the difference as long 
as the distance continues to 
decrease. At the beginning of the 
pattern move, x is equal to 7.

x = 9 (Δx=2): decrease (34.53)

x = 13 (Δx=4): decrease (33.24)

x = 21 (Δx=8): decrease (32.01)

x = 37?(Δx=16): increase (35.34)

With increment of 16, the distance 
starts to grow: this is called 
overshooting. In this case, we cancel 
the last pattern move, and start the 
exploratory move for the next 
variable, y.

AVM: Pattern Move

(0, 0)



We now change y by 1 and decide 
the direction. The distance from the 
last location, (21, 2), is 32.01.

So y needs to be increased.

-1: (21, 1) increase (33.01). X
+1: (21, 3) decrease (31.01) O

AVM: Exploratory Move

(0, 0)



We increase the variable y with 
pattern moves now. Initially y is 
3.

y = 5 (Δy=2): decrease (29.01)

y = 9 (Δy=4): decrease (25.01)

y = 17 (Δy=8): decrease (17.02)

y = 33(Δy=16): decrease (1.41)

y = 65(Δy=32): Overshooting!

AVM: Pattern Move

(0, 0)



After overshooting of y, we start the 
exploratory move for x. We decide 
to increase, but as soon as we try 
+2, it overshoots. After cancellation 
of this, we have the correct x.

After one more exploratory move 
for y, we reach the goal.

(0, 0)

AVM: Exploratory Move



Alternating Variable Method

• For a reference implementation and basic applications, see: http://
avmframework.org


• P. McMinn and G. M. Kapfhammer. AVMf: An open-source framework and 
implementation of the alternating variable method. In International 
Symposium on Search-Based Software Engineering (SSBSE 2016), volume 
9962 of Lecture Notes in Computer Science, pages 259–266. Springer, 2016.

http://avmframework.org
http://avmframework.org
http://avmframework.org
http://avmframework.org


Test Data Generation : Evolutionary Testing

A region of search space that 
contains qualifying solutions

Initial Population



• GAs borrow the theory of 
Darwinian evolution to search for 
solutions


• The underlying intuition is that, if 
two solutions (parents) have two 
distinct and good partial 
solutions (genes), it is possible to 
get an even better solutions 
(offsprings) by combining parts 
of them (offsprings take genes 
from parents)

Global Search: Genetic Algorithm

//Outline of Genetic Algorithm 

P = random population 

Evaluate(P) 

Repeat until termination: 

	 parents = select_from(P) 

	 offsprings = crossover(parents) 

   offsprings = mutate(offsprings) 

	 Evaluate(newGen) 

	 P = select(P ∪ newGen)



Dynamic Symbolic Execution

• Think of it as how you execute a code in your head, only using a program


• Start with a basic(random) input, execute program and collect path conditions 
from the executed path


• Negate the last clause of the path condition


• Solve the resulting constraint using a solver, execute, repeat


• Constraints Solver: given constraints, e.g. x > 5 && y != 3 && z == 18, the 
solver will give you (x, y, z) = (9, 0, 18) 



void testme(int[] a)
{

if(a == null) return;
if(a.length > 0)
{

if(a[0] == 42)
throw new Exception(“bug”);

}
}

Constraints to Solve Data Observed Path Condition

No more path!

a!=null && a.length > 0 && 
a[0] != 42

a!=null && !(a.length > 0)

a==nullnull

{}

{0}

{42}

a!=null

a!=null && a.length > 0

a!=null && a.length > 0 && 
a[0] == 42

Execute

a==null
truefalse

Negate last condition and choose another path

a.length > 0
truefalse

a[0] == 42
truefalse

Solve



Dynamic Symbolic Execution

• Microsoft initially developed a tool for .NET framework called Pex.


• You *could* play with it at http://pex4fun.com but the site no longer works :(


• It has been incorporated into Visual Studio


• Other famous implementations include KLEE, CUTE/jCUTE, CREST, and Java 
Path Finder, but none are one-button-away ready.


• Implementing DSE typically means implementing a runtime for the language, 
or a very heavy rewrite system (for compiled languages)


• We will try a lightweight approach ourselves (Assignment 3) later.

http://pex4fun.com


Pros and Cons

• SBST is also applicable to non-structural criteria (e.g. worst case execution 
time analysis), but the concept of “distance” can be difficult (same as in 
adaptive random testing); it can also take quite a long time (especially 
evolutionary algorithms)


• DSE is usually very fast and effective; however, everything depends on the 
power of constraint solver


• They are much stronger than they used to be


• There are still exceptions where constraint solvers struggle, e.g. anything 
with floating point number



• Daimler Chrysler: testing Worst 
Case Execution Time of an 
airbag controller


• SBST produced much better 
results compared to random  
testing or static analysis

Testing Non-functional 
Requirements

J. Wegener and M. Grochtmann. Verifying timing constraints of real-
time systems by means of evolutionary testing.  

Real-Time Systems, 15(3):275 – 298, 1998.



Testing OO Programs

• We have double layers of problems:


• Which values (and object instances) to use for method arguments


• Which sequence to call methods



• Use evolutionary algorithms to 
evolve the entire test suite, rather 
than single test input


• Fitness is essentially the sum of 
all branches: we do not care 
about approach levels.


• A set of method invocation 
sequences that collectively 
cover the most branches is 
eventually evolved and 
selected.

Whole Test Suite Generation

3.5.1 Crossover

The crossover operator (see Fig. 3a) generates two offspring,
O1 and O2, from two parent test suites, P1 and P2. A random
value ! is chosen from ½0; 1". On one hand, the first offspring
O1 will contain the first !jP1j test cases from the first parent,
followed by the last ð1$ !ÞjP2j test cases from the second
parent. On the other hand, the second offspring O2 will
contain the first !jP2j test cases from the second parent,
followed by the last ð1$ !ÞjP1j test cases from the first parent.

Because the test cases are independent among them, this
crossover operator always yields valid offspring test suites.
Furthermore, it is easy to see that it decreases the difference
in the number of test cases between the test suites, i.e.,
absðjO1j$ jO2jÞ & absðjP1j$ jP2jÞ. No offspring will have
more test cases than the largest of its parents. However, it is
possible that the total sum of the length of test cases in an
offspring could increase.

3.5.2 Mutation

The mutation operator for test suites is more complicated
than that used for crossover because it works at both the test
suite and test case levels. When a test suite T is mutated, each
of its test cases is mutated with probability 1=jT j. So, on
average, only one test case is mutated. Then, a number of new
random test cases is added toT : With probability ", a test case
is added. If it is added, then a second test case is added with
probability "2, and so on until the ith test case is not added
(which happens with probability 1$ "i). Test cases are
added only if the limit N has not been reached, i.e., if n < N .

If a test case is mutated (see Fig. 3b), then three types of
operations are applied in order: remove, change, and insert.
Each is applied with probability 1=3. Therefore, on average,
only one of them is applied, although with probability
ð1=3Þ3 all of them are applied. These three operations work
as follows.

Remove. For a test case t ¼ hs1; s2; . . . ; sli with length l,
each statement si is deleted with probability 1=l. As the value
vðsiÞ might be used as a parameter in any of the statements
siþ1; . . . ; sl, the test case needs to be repaired to remain valid:
For each statement sj, i < j & l, if sj refers to vðsiÞ, then this
reference is replaced with another value out of the set
fvðskÞ j 0 & k < j ^ k 6¼ igwhich has the same type as vðsiÞ. If
this is not possible, then sj is deleted as well recursively.

Change. For a test case t ¼ hs1; s2; . . . ; sli with length l,
each statement si is changed with probability 1=l. If si is a
primitive statement, then the numeric value represented by

si is changed by a random value in ½$!;!", where ! is a
constant. If the primitive value is a string, then the string is
changed by deleting, replacing, or inserting characters in a
way similar to how sequences of method calls are mutated.
In the case of an array, the length is changed by a random
value in ½$!0;!0" such that no accesses to the array are
invalidated. In an assignment statement, either the variable
on the left or the right-hand side of the assignment is
replaced with a different variable of the same type. If si is
not a primitive statement, then a method, field, or
constructor with the same return type as vðsiÞ and
parameters satisfiable with the values in the set fvðskÞ j 0 &
k < ig is randomly chosen out of the test cluster.

Insert. With probability "0, a new statement is inserted at a
random position in the test case. If it is added, then a second
statement is added with probability "02, and so on until the
ith statement is not inserted. A new statement is added only if
the limit L has not been reached, i.e., if l < L. For each
insertion, with probability 1=3 a random call of the class
under test or its member classes is inserted, with probability
1=3 a method call on a value in the set fvðskÞ j 0 & k < ig for
insertion at position i is added, and with probability 1=3 a
value fvðskÞ j 0 & k < ig is used as a parameter in a call of the
class under test or its member classes. Any parameters of the
selected call are either reused out of the setfvðskÞ j 0 & k < ig,
set to null, or randomly generated.

If after applying these mutation operators a test case t
has no statements left (i.e., all have been removed), then t is
removed from T .

To evaluate the fitness of a test suite, it is necessary to
execute all its test cases and collect the branch information.
During the search, on average only one test case is changed
in a test suite for each generation. This means that
reexecuting all test cases is not necessary as the coverage
information can be carried over from the previous execution.

3.5.3 Random Test Cases

Random test cases are needed to initialize the first genera-
tion of the GA, and when mutating test suites. Sampling a
test case at random means that each possible test case in the
search space has a nonzero probability of being sampled,
and these probabilities are independent. In other words, the
probability of sampling a specific test case is constant and it
does not depend on the test cases sampled so far.

When a test case representation is complex and it is of
variable length (as happens in our case, see Section 3.2), it is
often not possible to sample test cases with uniform
distribution (i.e., each test case having the same probability
of being sampled). Even when it would be possible to use a
uniform distribution, it would be unwise (for more details
on this problem, see [10]). For example, given a maximum
length L, if each test case was sampled with uniform
probability, then sampling a short sequence would be
extremely unlikely. This is because there are many more test
cases with long length compared to the ones of short length.

In this paper, when we sample a test case at random, we
choose a value r in 1 & r & L with uniform probability.
Then, on an empty sequence we repeatedly apply the
insertion operator described in Section 3.5.2 until the test
case has a length ) r.
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Fig. 3. Crossover and mutation are the basic operators for the search
using a GA. Crossover is applied at test suite level; mutation is applied
to test cases and test suites.



Summary

• Coverage is not a sufficient goal, but people still struggle to achieve it.


• Automated test input generation can help - coverage is a tangible, concrete 
objective that can easily be automated.


• Many computational intelligence approaches have been applied to this: SMT 
solvers,metaheuristic optimization, etc


• Is LLM applicable here? :)


• Remember, the real trouble lies in oracle!


