Structural Testing

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST



ol EM7{ Please vote forthe
EEI LIC}! KAIST UA Election!

All undergraduates including
internationals can vote!

ScantoV TE

(m] 3y [m]

Dag el

el




Structural Testing

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST



What is structural testing?

o Structural testing measures the quality of testing based on the internal
structure of the code. For example,

e we can ask “have | tested all variable declarations?”

 pbut can’t ask “have | tested all functionalities in the requirement
documentation?”

* |t is most relevant to unit testing, where your view of the entire system is at
the code level



Testing Adequacy Criteria

* Allows you to measure the adequacy of testing against the achievement of
certain structural criteria

 For example, statement coverage (100% means you have executed all
statements in the program)

» All structural adequacy criteria is necessary but not sufficient to detect faults;

no test adequacy criteria except exhaustive testing can guarantee detecting
all faults



What does it really mean?

STUDIES HAVE SHOWN
THAT ACCURATE
NUMBERS AREN'T ANY
MORE USEFUL THAN THE
ONES YOU MAKE UP,

I DIDNT HAVE ANY

ACCURATE NUMBERS

S0 1 JUST MADE UP
- THIS ONE.

HOWJ
MANY
STUDIES EIGHTY -
SHOWED SEVEN.

scottadams T agl.com

|
\
)

|
by

www.dilbert.com




In iIndustry at the time of writing

* Organisations to reach coverage (if they care at all)
. and coverage are used widely
e Certain industry, e.g. avionics, legally require 100% coverage

 Over 75% is practically regarded as good enough, but research claims that you need
at least over 90% for satisfactory fault detection:

e Hutchins, Foster, Goradia and Ostrand, ‘Experiments on the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy Criteria’, Proc. 16th Int’l
Conference on Software Engineering (ICSE-16), 1994

 Many tools exist to measure coverage of all kinds described here



Test Data Generation

* \ery active research area in automatically generating test input to achieve these
criteria during the last 10 years; mature enough to get a big break

 The big question: can we a test suite that achieves (branch/statement/All
Path) coverage ?

 Traditional tools:
 You. Think and write down.

« Random: generate random inputs until you cover everything (not very likely in
some cases)

* User session: but they weren’t testing really



Cutting Edge Techniques

 Search-Based Testing can cover an arbitrary statement/branch you want -
repeat until you reach 100%

 Dynamic Symbolic Execution (aka Concolic Testing) achieves path coverage

* Both techniques are based on what we call Path Conditions



Path Condition

What is the path condition?

If

* A collection of predicates that
leads the program execution
down to a specific path

1if(y > 13) x=1; else x=2;

y = 50;
1if(w == 4) z = 1;
elsed

while(...)

z = z + 1;

¥
y = 9 y>13 && W ==



Path Condition

* |f you obtain a set of input values that satisfies a given path condition, you
cover the corresponding path

 Search-Based Testing converts the path condition into a fitness function and
uses meta-heuristic search to find the values

e DSE uses constraint solvers to find the values



Search-Based Testing

e (General Idea

 Convert path conditions into a mathematical

» Use meta-heuristic search algorithms to maximise/ this function
. with one or more iInput values
e essentially, you try slightly different solutions every time and the one that
IS
. with the fitter solution

 When the goal is met, you have your test input values



Search-Based Testing

* Fitness function for branch coverage = | | + normalise(|

)

 For atarget branch and a given path that does not cover the target:

* Approach level: number of un-penetrated nesting levels surrounding the
target

 Branch distance: how close the input came to satisfying the condition of
the last predicate that went wrong



Branch Distance

* |f you want to satisfy the predicate x == vy, you convert this to branch
distance of b = |x - y| and seek the values of x and y that minimise b to ©

* then you will have x and y that are equal to each other

* |f you want to satisfy the predicate y >= x, you convert this to branch
distanceof b = x - y + Kand seek the values of x and y that minimise b

to ©

* then you will have y that is larger than x by K

e Normalisebtol - 1.001*(-b)



Predicate f minimise until..
a>b b-a+K f<O
a>=Db b-a+K f<=0
a<b a-b+K f<O
a<=Db a-b+K f<=0
a== |a - b f ==
al=b -la - b| f<0O

B. Korel, “Automated software test data
generation,” IEEE Trans. Softw. Eng., vol. 16,
pp. 87/0-879, August 1990.




Normalisation

o “| with obj. | Mathematics multiply (a series, function or item of data) by a
factor that makes the norm or some associated quantity such as an integral
equal to a desired value (usually 1).”

e \WWe normalise the branch distance because...?

 Approach level is counting, whereas branch distance can be arbitrarily
large: we want to consider approach level before branch distance, so
branch distance should be in [0, 1).



Test input (a, b, ¢c), K=1

(11, 2, 1)
app. vl =2

b. dist=4 - ¢ +1
f=2+(1-1.0017-4) =2.004

1f(c >= 4)

(11,2, 11) 2, 2, 9)

app. vl =1 app. vl =0

b. dist=c-10 + 1 b. dist = |2 - 2|
f=1+(1-1.0017-2) =1.001 True f=0+(1-1.00170)=0

(11, 2, 9)

app. vl =0

b. dist = |11 - 2|
f=0+(1-1.001~-9) = 0.009



Search-Based Testing

* [here are many search algorithms other than hill climbing

» All operate on the same principle
e Convert the path condition into a fithess function
 Measure fithess by executing program with candidate input

e Pick the solution with best fithess



Test Data Generation: Local Search

A region of search
space that contains

N
/

/

e
-~

-/

Random




Local Search: Hill Climbing

 Pseudocode shows steepest

ascent: pick the neighbour with HiLLCLIMBING ()
the best improvement. (1)  climb < True
(2) s + GETRANDOM()
° Vanants (3) while climb
' (4) N < GETNEIGHBOURS(S)
» First ascent: pick the first 0 i < ale
_ ' (6) foreach n € N
neighbour that shows (7) if FITNESS(n) > FITNESS(s)
improvement 283 climb — True
9 S+ n
(10) return s

 Random ascent: pick randomly
from all neighbours with

Improvements



Alternating Variable Method (AVM)

* A type of Pattern Search: searches for an input vector that can maximise/
minimise a given objective function

* |t has two operation modes: exploratory move, and pattern move.
 For each variable:
* Use exploratory move to decide which direction results in fitter solutions

 Use pattern move to accelerate to that direction



Alternating Variable Method

 Based on the known empirical results, AVM is one of the most effective
algorithm for achieving C/C++ structural coverage

« M. Harman and P. McMinn. A theoretical and empirical analysis of
evolutionary testing and hill climbing for structural test data generation. In

Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 2007), pages pp. 73—-83. ACM Press, July 2007.

« M. Harman and P. McMinn. A theoretical and empirical study of search
based testing: Local, global and hybrid search. IEEE Transactions on

Software Engineering, 36(2):226-247, 2010.



(0, 0)

AVM: Exploratory Move

Starting from(6, 2), we want to
search for the red dot at (22,
34). We can measure the
distance to the goal.

First we try exploratory move
for x: make the smallest change,
and see which direction results
in reduced distance. The initial
distance is 35.77.

-1: (5, 2) Increased (36.23). X
+1: (7, 2) Decreased (35.34) O

Consequently, x needs to be

increased at the moment.



(0, 0)

AVM: Pattern Move

Now that we decided to increase x,
try doubling the difference as long
as the distance continues to
decrease. At the beginning of the
pattern move, x is equal to 7.

X = 9 (Ax=2): decrease (34.53)
X = 13 (Ax=4): decrease (33.24)
X = 21 (Ax=8): decrease (32.01)

X = 37?(Ax=16): increase (35.34)

With increment of 16, the distance
starts to grow: this is called
overshooting. In this case, we cancel
the last pattern move, and start the
exploratory move for the next
variable, y.



J

b _§

AN

AVM: Exploratory Move

We now change y by 1 and decide
the direction. The distance from the
last location, (21, 2), is 32.01.

-1: (21, 1) increase (33.01). X
+1: (21, 3) decrease (31.01) O

So y needs to be increased.



AVM: Pattern Move

We increase the variable y with
pattern moves now. Initially y is

3.

y = 5 (Ay=2): decrease (29.01)
y = 9 (Ay=4): decrease (25.01)
y = 17 (Ay=8): decrease (17.02)
y = 33(Ay=16): decrease (1.41)
y = 65(Ay=32): Overshooting!



AVM: Exploratory Move

After overshooting of y, we start the
exploratory move for x. We decide
to increase, but as soon as we try
+2, 1t overshoots. After cancellation
of this, we have the correct x.

After one more exploratory move
for y, we reach the goal.



Alternating Variable Method

 For areference implementation and basic applications, see: http://
avmframework.org

« P. McMinn and G. M. Kapfhammer. AVMf:. An open-source framework and
implementation of the alternating variable method. In International
Symposium on Search-Based Software Engineering (SSBSE 2016), volume
9962 of Lecture Notes in Computer Science, pages 259-266. Springer, 2016.


http://avmframework.org
http://avmframework.org
http://avmframework.org
http://avmframework.org

Test Data Generation : Evolutionary Testing

A region of search space that
contains qualifying solutions

Initial Population



Global Search: Genetic Algorithm

//0utline of Genetic Algorithm

P = random population

 (GAs borrow the theory of
Darwinian evolution to search for Evaluate (P)

solutions
Repeat until termination:

* The underlying intuition is that, if

two solutions (parents) have two parents = select_trom(P)

dlStm_Ct and good _partlal . offsprings = crossover (parents)
solutions (genes), it is possible to
get an even better solutions offsprings = mutate(offsprings)

(offsprings) by combining parts
of them (offsprings take genes
from ,oarents) P = select(P U newGen)

Evaluate (newGen)



Dynamic Symbolic Execution

 Think of it as how you execute a code in your head, only using a program

o Start with a basic(random) input, execute program and collect path conditions
from the executed path

 Negate the last clause of the path condition
* Solve the resulting constraint using a solver, execute, repeat

* Constraints Solver: given constraints, e.g. x> 5 && y =3 && z == 18, the
solver will give you (X, y, z) = (9, 0, 18)



volid testme(int[] a)

<
<

S

}

if(a == null) return;
if(a.length > 0)

{
if(a[0] == 42)

throw new Exception(“bug”);

m

}

Execute

Constraints to Solve Data Observed Path Condition
null a==null
al=null {} al=null & !(a.length > @)
a!=null && a.length > 0 &&
|=
a!l=null && a.length > 0 {0} a[0] 1= 42
|=
al=null &% a.length > 0 && {423 No more path!

al@] == 42

\_//

Negate last condition and choose another path




Dynamic Symbolic Execution

* Microsoft initially developed a tool for .NET framework called Pex.

* You *could* play with it at http://pex4fun.com but the site no longer works :(

* |t has been incorporated into Visual Studio

e Other famous implementations include KLEE, CUTE/|JCUTE, CREST, and Java
Path Finder, but none are one-button-away ready.

* Implementing DSE typically means implementing a runtime for the language,
or a very heavy rewrite system (for compiled languages)

 We will try a lightweight approach ourselves (Assignment 3) later.


http://pex4fun.com

Pros and Cons

« SBST Is also applicable to non-structural criteria (e.g. worst case execution
time analysis), but the concept of “distance” can be difficult (same as in

adaptive random testing); it can also take quite a long time (especially
evolutionary algorithms)

 DSE is usually very fast and effective; however, everything depends on the
power of constraint solver

* [hey are much stronger than they used to be

* [here are still exceptions where constraint solvers struggle, e.g. anything
with floating point number



Testing Non-functional
Requirements

* Daimler Chrysler: testing Worst Evolutionary Testing.
Case Execution Time of an _
airbag controller -t I
= g Random Testing
g 10000F - /)
e SBST produced much better S |7
results compared to random 8 |
. " . > .
testing or static analysis J
g |
0 10 20 30 sicl;enerzliion 60 70 a0 90 100

J. Wegener and M. Grochtmann. Verifying timing constraints of real-
time systems by means of evolutionary testing.

Real-Time Systems, 15(3):275 — 298, 1998.



Testing OO Programs

 We have double layers of problems:
 Which values (and object instances) to use for method arguments

* \Which sequence to call methods



Whole Test Suite Generation

* Use evolutionary algorithms to
evolve the entire test suite, rather
than single test input CICICIES

X0 Tv0[z0] BN EEWN

[F0 To0 Th0T 0] L0 190 [h0 ] b() c()

* Fitness is essentially the sum of
all branches: we do not care

[20 16010 [d0]
about approach levels. CINCD ||
* A set of method invocation @ Jentulte Srossover (0) Test Cse Mutation
. Fig. 3. Crossover and mutation are the basic operators for the search
Sequences that COI IeCt|Ve|y using a GA. Crossover ig applied at test suite level; mutation is applied
cover the mOSt branCheS 1S to test cases and test suites.

eventually evolved and
selected.



Summary

 Coverage is not a sufficient goal, but people still struggle to achieve it.

 Automated test input generation can help - coverage Is a tangible, concrete
objective that can easily be automated.

 Many computational intelligence approaches have been applied to this: SMT
solvers,metaheuristic optimization, etc

e |s LLM applicable here? :)

e Remember, the real trouble lies in oracle!



