Property Based lesting

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST



Recall Random Testing + Test Oracles

 Random exploration of input space is a good thing to do (assuming no a prior knowledge of the
input space)

 However, typically we can only write example-based oracles, i.e., one-to-one mapping between
an input and the expected output!

« What are the alternatives?

 Formal specification: Yes. However, fully automated & executable spec that can produce
expected output is 1) very expensive and 2) not very scalable or generalisable.

e Alternative Implementation: Perhaps we can implement the target system that is slower or less
efficient - so that we can still check the output? This is sometimes possible.

* Reference Implementation: We now to “differential testing” randomly. But what if no such
reference exists?



Relaxed Oracle

e | et’'s accept that we cannot have the precise expected output. Should we
give up testing entirely?

 Perhaps we can write a more relaxed condition that has to be met by all
program executions”?



An Example

import datetime

def check_age(birthday, today):
return nineteen_day(birthday) <= today

def nineteen_day(birthday):
return birthday + datetime.timedelta(days=365 * 19)

print(check_age(datetime.datetime (1977, 5, 14), datetime.datetime.today()))




Property Based lesting

 The PBT idea is originally from the QuickCheck for Haskell, developed in 1999
(http://www.cse.chalmers.se/~rjmh/QuickCheck/)

* |t aims to attack the following problems:

 Random testing can be highly effective, but is weak against structured
INputs.

 Automated oracle is essential for effective random testing.

o Structural coverage itself does not guarantee anything.


http://www.cse.chalmers.se/~rjmh/QuickCheck/

Property Based lesting

 PBT is the combination of the following:
* Property based oracles, instead of input-output pair oracles

» [est Input generators that combine low level random generators to build a
input generator for complex structured inputs

* Using these two, PBT randomly samples complex, structured inputs, and
reports anything that violates the given property.



Hypothesis

 We are going to use Hypothesis in our examples.

 Hypothesis is an easy-to-use framework for https://qgithub.com/
HypothesisWorks/hypothesis-python



https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python

Property Based Oracles

e Suppose we want to test a

Python implementation of the def abs_function (x):
absolute function. if x < 0:
return -Xx
C . else:
* [raditional, example-based return x

oracle requires test engineers to
provide input-output pairs def test important func
assert abs function(1l

0

 For complicated functions, this is assert ags_iunc?om
tedious and error-prone assert abs_tunction

():
)

)
1)



Property Based Oracles

* Hypothesis allows test engineers

to write parameterised unit tests. def abs_function(x):
if x 0:
return -X

* |nstead of specifying a concrete olse:
Input-output pair, use a return x
parameterised input and describe
the expected properties of the
output using the input symbol. def test important func(x):

assert abs function(x)

 For example, for any integer X,
abs(x) should be greater than or
equal to 0.



Input Generator

from hypothesis import given

* HypOtheSIS USES PythOn from hypothesis import strategies as st
annotation to parameterise the import unittest
InpUt' def abs function(x):
if x 0:
* During the actual test execution, return -
the parameterised input is T uen «

randomly sampled.

class TestAbs(unittest.TestCase):
@given(x = st.integers())

* Anythlng that violates the def test abs function(self, x):
assertions will be reported assert abs_function(x) >= 0
if name ' _main_  ':

unittest.main()



Using Hypothesis

o GitHub Repository: https://github.com/HypothesisWorks/hypothesis

e |nstallation: use PIP (pip install hypothesis)

 Documentation is available from: https://hypothesis.readthedocs.io



https://github.com/HypothesisWorks/hypothesis
https://hypothesis.readthedocs.io

Hands-on

e Clone the following: git@github.com:coinse-classroom/cs453-pbt-
exercise.git

* |t contains four subproblems, all requiring you to write Hypothesis test cases.



PBT: Pros and Cons

* Can be super when done right

 Makes you think about what the code should do much harder than the
conventional, testing

* For very complicated input type, writing the input generator becomes too
difficult: eventually test cases require test cases for them.



