
Shin Yoo | COINSE@KAIST

Property Based Testing
CS453 Automated Software Testing

Recall Random Testing + Test Oracles

• Random exploration of input space is a good thing to do (assuming no a prior knowledge of the
input space)

• However, typically we can only write example-based oracles, i.e., one-to-one mapping between
an input and the expected output!

• What are the alternatives?

• Formal specification: Yes. However, fully automated & executable spec that can produce
expected output is 1) very expensive and 2) not very scalable or generalisable.

• Alternative Implementation: Perhaps we can implement the target system that is slower or less
efficient - so that we can still check the output? This is sometimes possible.

• Reference Implementation: We now to “differential testing” randomly. But what if no such
reference exists?

Relaxed Oracle

• Let’s accept that we cannot have the precise expected output. Should we
give up testing entirely?

• Perhaps we can write a more relaxed condition that has to be met by all
program executions?

import datetime

def check_age(birthday, today):
 return nineteen_day(birthday) <= today

def nineteen_day(birthday):
 return birthday + datetime.timedelta(days=365 * 19)

print(check_age(datetime.datetime(1977, 5, 14), datetime.datetime.today()))

An Example

Property Based Testing

• The PBT idea is originally from the QuickCheck for Haskell, developed in 1999
(http://www.cse.chalmers.se/~rjmh/QuickCheck/)

• It aims to attack the following problems:

• Random testing can be highly effective, but is weak against structured
inputs.

• Automated oracle is essential for effective random testing.

• Structural coverage itself does not guarantee anything.

http://www.cse.chalmers.se/~rjmh/QuickCheck/

Property Based Testing

• PBT is the combination of the following:

• Property based oracles, instead of input-output pair oracles

• Test input generators that combine low level random generators to build a
input generator for complex structured inputs

• Using these two, PBT randomly samples complex, structured inputs, and
reports anything that violates the given property.

Hypothesis

• We are going to use Hypothesis in our examples.

• Hypothesis is an easy-to-use PBT framework for Python: https://github.com/
HypothesisWorks/hypothesis-python

https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python
https://github.com/HypothesisWorks/hypothesis-python

• Suppose we want to test a
Python implementation of the
absolute function.

• Traditional, example-based
oracle requires test engineers to
provide input-output pairs

• For complicated functions, this is
tedious and error-prone

Property Based Oracles

def abs_function(x):
 if x < 0:
 return -x
 else:
 return x

def test_important_func():
 assert abs_function(1) == 1
 assert abs_function(0) == 0
 assert abs_function(-1) == 1

• Hypothesis allows test engineers
to write parameterised unit tests.

• Instead of specifying a concrete
input-output pair, use a
parameterised input and describe
the expected properties of the
output using the input symbol.

• For example, for any integer x,
abs(x) should be greater than or
equal to 0.

Property Based Oracles

def abs_function(x):
 if x < 0:
 return -x
 else:
 return x

def test_important_func(x):
 assert abs_function(x) >= 0

• Hypothesis uses Python
annotation to parameterise the
input.

• During the actual test execution,
the parameterised input is
randomly sampled.

• Anything that violates the
assertions will be reported

Input Generator

from hypothesis import given
from hypothesis import strategies as st
import unittest

def abs_function(x):
 if x < 0:
 return -x
 else:
 return x

class TestAbs(unittest.TestCase):
@given(x = st.integers())
def test_abs_function(self, x):

assert abs_function(x) >= 0

if __name__ == '__main__':
 unittest.main()

Using Hypothesis

• GitHub Repository: https://github.com/HypothesisWorks/hypothesis

• Installation: use PIP (pip install hypothesis)

• Documentation is available from: https://hypothesis.readthedocs.io

https://github.com/HypothesisWorks/hypothesis
https://hypothesis.readthedocs.io

Hands-on

• Clone the following: git@github.com:coinse-classroom/cs453-pbt-
exercise.git

• It contains four subproblems, all requiring you to write Hypothesis test cases.

PBT: Pros and Cons

• Can be super strong when done right

• Makes you think about what the code should do much harder than the
conventional, example-based testing

• For very complicated input type, writing the input generator becomes too
difficult: eventually test cases require test cases for them.

