
Shin Yoo | COINSE@KAIST

Random Testing
CS453 Automated Software Testing

Random Testing

• One of the most important task in testing: sampling test input from the
enormous input space

• Doing things randomly can be good in testing!

• Developers often hold onto functional biases about the code they wrote:
they see what should work, and not what should not work

• Random ignores this bias

Some Definitions

• SUT: Software Under Test

• : set of all possible test inputs for SUT

• : cardinality of S

• : a subset of - a set of all failing test inputs (not known in advance, of
course)

• Failure Rate : the probability that a random test input will fail, if

sampled uniformly

S

|S |

F S

t =
|F |
|S |

• Failure Rate t ≈ 0.5

• Oracle

• assertEqual(abs(-5), 5)

• assertEqual(abs(2), 2)

Example

int abs(int x)
{
if(x>0) return x;
else return x; // should be -x

}

Oracle In Action

• Our assertion can be rewritten in a generic form of: assertEqual(SUT(i),
e), where:

• i: test input (e.g. -5 in abs(-5))

• e: expected output (e.g. 5 for abs(-5))

• How should we choose the input i?

• Random is an option at least.

Random Testing Overview

• Choose test input randomly

• Benefits:

• Cheap and easy to implement

• Easy to understand

• It is actually used in the industry (really?)

• There are actually many positive sides

How random can we get?

• True randomness is possible but expensive

• In general, computers use pseudo-random number generators, which
generates a long sequence of bits approximating the properties of random
bits (the sequence is controlled by a small initial value called seed)

• The pseudo-random bits will repeat themselves, but only at very long intervals
- okay for testing purposes

java.util.Random

public int nextInt()
{
return next(32);

}

synchronized protected int next(int bits)
{
seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
return (int)(seed >>> (48 - bits));

}

Linear Congruential Formula

Probability Distribution

• Input generation becomes random sampling in random testing. but from
which probability distribution?

• If we have deep understanding of the target domain as well as our objective,
we can bias the distribution. For example, if we definitely suspect that larger
input values are more fault prone, we can sample from a distribution that will
produce larger numbers more frequently.

• Otherwise, the default can be the uniform distribution. Each test input has the

same probability of being chosen:
1

|S |

Challenges in Random Testing

• Numbers are easy to randomly sample: we just need to decide on a
probability distribution.

• Randomly sampling more complicated inputs can be harder than we think.

• Complex structures

• Memory and time constraints

• Input length bias

Complex Data Structures

• What if the input data is a tree/graph/arrays…?

• What is a random tree?

• One approach: whatever the high-level data structure is, they are all reprinted in bits,
so just stick to random bits: 000010011101011010 instead of a tree

• But random trees are not random bits - there definitely is some structure in a
random tree because it is still a tree

• Chance of actually generating a valid input this way might be very low

• Ad-hoc generator approach: make random decisions about growing data structure -
slightly better, but it may be easy to bias the decisions

Memory/Time Constraints

• What is the set of all possible trees? Isn’t it infinite?

• We need to put constraints on memory/time because we cannot deal with
infinity

• If the fault detection is also uniform (i.e. all tests have the same probability to
detect a fault), then constraints are okay

• But is it uniform?

• For example, when testing a function called void foo (MyGraph graph),
will larger graphs lead to higher fault detection? It depends on the type of
fault, really…

Test Input Length

• Suppose the test input length can vary, and we can afford binary strings of
length up to with our testing budget

• is more than the sum of all lower lengths (e.g.): so we will
sample much more strings with length L then shorter ones!

• It would be unwise to sample uniformly: there will be bias for longer strings

• One possible solution: first choose length randomly, then choose the binary
string of that length randomly

L

2L 23 > 22 + 21

Finding Faults with Random Testing

• Properties of a random testing technique depends on the failure rate,

• Given a failure rate , how many test inputs should we execute until finding
the first failure?

• Given random test inputs, what is the probability of finding at least one
failure?

t =
|F |
|S |

t

k

• Probability of revealing a failure
at the -th random input:
inputs should not fail, but the
next one does. 
 

• This is geometric distribution
(i.e., random testing is a
Bernoulli trial, as test either
passes or rails) 

k k − 1

Geometric Distribution of Random
Testing

P(k) = (1 − t)(k−1) ⋅ t

• Geometric Distribution:

• Mean:

• Median:

• Variance:

1
t

| log2
−1

1 − t
|

1 − t
t2

Number of Inputs Until First Failure

• E.g, when t = 1 / 100

• Mean: 100

• Median: ≃69

• Variance: 9900

• Practically, we may be more
interested in the following
question: if I execute random
inputs, what is the probability of
finding at least one failure?

• This is equal to 1 - [the
probability of none of the k
inputs failing]:

k

Probability of Finding At Least One
Failure

P(k) = 1 − (1 − t)k

“But t is unknown - useless!”

• True, but it can be estimated in various ways

• Previous projects

• Literature

• Types of software

• And this type of analysis is still important to understand the dynamics of
random testing

• Random testing is particularly
weak against the needle in the
haystack problem

• Consider the example: we need,
on average, over 4 billion test
inputs before triggering this fault.

• What if the predicate is (x ==
y)?

Weakness: No Guidance

void foo(int x){
if(x==0){
/* faulty code here */}

}

void foo(int x, int y){
if(x==y){
/* faulty code here */}

}

Weakness: Oracle

• Remember assertEqual(abs(-5), 5)?

• If we use a random integer instead of -5, how do we know what to expect? Oracle
Problem!

• A single assertion is okay when the input value is manually pre-defined and the
tester completely understands the program semantics (i.e. tester writes the
expected value)

• When the input value is randomly sampled, programer cannot write the
corresponding expected value

• Should the programmer write a program to produce the expected val… wait a
minute…

Real World Applications

• Nevertheless, Random Testing is actually used by industry. For example:

• Randomized Differential Testing as a Prelude to Formal Verification, Groce
et al., 2007: random testing for flight control system used in space missions

• A very complex SUT, for which the formal verification did not work:
random testing found multiple faults with automation.

A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a prelude to formal verification. In 29th International Conference on Software Engineering (ICSE’07),
pages 621–631, May 2007.

• Introduce bias!

• Instead of random values, use special values
(0, 1, Pi,…), extracted values (constants from
the code), or previously successful values; use
these with predetermined probability
parameter

• Helps dealing with needle in the haystack
problem

• Ciupa, I., Leitner, A., Oriol, M., Meyer, B.,
"Experimental Assessment of Random Testing
for Object-Oriented Software", Proceedings of
ISSTA'07: International Symposium on
Software Testing and Analysis 2007, (London,
UK), July 2007

Overcoming Weakness

Select Reference
Type

Create new
instance

Reuse instance

PGenNew 1-PGenNew

Select Basic
Type

Random choice
Choice from

Predefined Set

PGenBasicRand 1-PGenBasicRand

Figure 2: Value Selections

Other tools which use a constructive approach to random input
generation also rely on calling sequences of constructors and other
methods to create input data. Eclat [23], very much like AutoTest,
stores objects in a pool and uses existing values to call construc-
tors and methods which create new values. However, after this
initial generation phase, it applies heuristics to classify and select
which of the available inputs it will use in tests. AutoTest performs
no such selection, because it wants to implement a purely random
strategy. JCrasher [12] builds sequences of constructor and method
calls starting from a method under test and systematically building
required input objects, by calling either constructors or methods
returning objects of the desired type.

Test execution
AutoTest uses a two-process model for executing the tests: the mas-
ter process implements the actual testing strategy; the slave process
is responsible for the test execution. The slave, an interpreter, gets
simple commands (object creation, method call, etc.) from the mas-
ter and can only execute such instructions and return the results.
This separation of the testing activity in two processes has the ad-
vantage of robustness: if test execution triggers a failure in the slave
from which the process cannot recover, the interpreter will shut it
down and then restart it where testing was interrupted. The entire
testing process does not have to be restarted from the beginning
and, if the same failure keeps occurring, testing of that method can
be aborted so the rest of the test scope can still be explored.

Automated oracle
AutoTest uses contracts (method pre- and postconditions and class
invariants) present in the code as an automated oracle. In Eif-
fel these contracts are boolean expressions (with the addition of
the old keyword which can only appear in postconditions and is
used to refer to the value of a variable before the execution of the
method), so they are easy to learn and use even for beginner pro-
grammers. As these contracts contain the specification of the soft-
ware and can be evaluated at run time, AutoTest checks them dur-
ing testing and reports any contract violation (with the exception of
cases in which a test input directly violates the precondition of the
method under test).

An important distinction must be noted. The information that
we look for in our experiment is not the number of failures (exe-
cutions leading to outcomes different from the expected ones), but
that of software faults (problems in the code that can trigger fail-
ures). Since a single fault can trigger multiple failures, we consider

that two failures expose the same fault if they are triggered at the
same line in the code and manifest themselves through the same
type of exception. (In Eiffel, contract violations are also excep-
tions, but, for clarity, for the rest of this paper we will refer to them
separately.) Hence, under this convention, the measures that we
provide in our results always represent the number of found faults,
not failures. Such faults are simply called “bugs” below, although
this is not a rigorous terminology.

2.2 Experimental setup
The experiment was run using the ISE Eiffel compiler version

5.6 on 32 identical machines, each having a Dual Core Pentium III
at 1 GHz and 1 Gb RAM, running Fedora Core 1.

We chose the classes to test in the experiment so that they come
from different sources and have varying purposes, sizes, and com-
plexity:

• Classes from the data structures library of Eiffel, used by
most projects written in this language (EiffelBase 5.6 [1]):
STRING, PRIMES, BOUNDED STACK, HASH TABLE.

• Classes written by students of the Introduction to Program-
ming course at ETH Zurich for an assignment: FRACTION1,
FRACTION2.

• Classes mutated to exhibit some common bugs found in object-
oriented applications: UTILS, BANK ACCOUNT.

The last four classes are available at
http://se.inf.ethz.ch/people/ciupa/test results. The others are avail-
able as part of the EiffelBase library version 5.6 [1]. The classes
from the EiffelBase library and those written by students were not
modified in any way for this experiment.

Table 1 shows various data about the classes under test: total
number of lines of code, number of lines of contract code, number
of methods (including those inherited), number of parent classes
(also those that the class indirectly inherits from). In Eiffel all
classes inherit implicitly from class ANY (similarly to the case of
Java and class Object), so every class has at least one parent class.

We tested each of the classes for 30 minutes, for three different
seeds for the pseudo-random number generator, for all combina-
tions of the following values for each parameter to the input gener-
ation algorithm:

• PGenNew (the probability of creating new objects as inputs
rather than using existing ones) 2 {0; 0.25; 0.5; 0.75; 1}

• PDiv (the probability of calling a procedure on an object
chosen randomly from the pool after running each test case)
2 {0; 0.25; 0.5; 0.75; 1}

• PGenBasicRand (the probability of generating values for ba-
sic types randomly rather than selecting them from a fixed
predefined set of values) 2 {0; 0.25; 0.5; 0.75; 1}

Thus, we ran AutoTest for each of these classes for 30 minutes, for
every combination of the 3 seed values, 5 values for PGenNew, 5
values for PDiv , and 5 values for PGenBasicRand. So there were 3
* 5 * 5 * 5 = 375 tests run per class for 30 minutes each, amounting
to a total test time of 90000 minutes or 1500 hours.

We then parsed the saved test logs to get the results for testing for
1, 2, 5, 10, and 30 minutes. (This approach is valid since AutoTest
tests methods in the scope in a fair manner, by selecting at each step
the method that has been tested the least up to the current moment.
This means that the timeout that the tool is given does not influence
how it selects which method to test at any time.)

Overcoming The Oracle Problem

• The Oracle problem, on the other hand, does not go away so easily: random
testing only truly succeeds with a full oracle (i.e. one can answer questions
against random test input)

• Groce et al. had a reference file system alongside the one that they tested:
whatever the reference says is the expected behaviour.

• Ciupa et al. worked with Eiffel under Design by Contract paradigm: each
method has pre- and post-condition, violation of which is a fault.

• Sometimes implicit oracle is sufficient, too.

Netflix ChaosMonkey

• Netflix relies on Amazon Web Service cloud infrastructure to stream videos: the servers
scale automatically according to the load

• Aim: detect instance failure in Auto Scaling Group (ASG)

• Action: ChaosMonkey just randomly shuts down AWS instances!

• Oracle: the service should not collapse (implicit)

• Load balancers should detect the instance failure, re-route requests, and additional
instances need to be brought in

• https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d

• https://github.com/netflix/chaosmonkey

https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://github.com/netflix/chaosmonkey

Can we improve it even more?

• Given a function void foo(int n), consider two following sets of test
inputs:

• {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• {-2345,12,342,-4443,2,3495437,-222223,24, 99343256,-524474}

• Which is better? Why?

• Without any further assumption, two sets should have identical fault detection
capability

Where the faulty things are

• Often, failing test inputs cluster together

• What if the fault is under the predicate if(x>=0 && x<=10)

• Let us call these faulty regions in the input space

• Without knowing where they actually are, what is our best strategy?

Diversity

A more diverse set of inputs will have a higher

probability of hitting the faulty region

Faulty region Faulty region

Distance

• Diversity depends on the distance between test inputs

• If input data is numerical, we can use Euclidean distance

• But how do we measure distance between complex data types?

Levenshtein Distance (Edit Distance)

• Between two strings, Levenshtein distance is the number of edits (add,
remove, change) that are required to change one string into the other

• s1 = (A,B,C,A,A), s2 = (A,C,C,A,B) : Levenshtein distance is 2

• Many other distance metrics are defined between two symbol sequences
(DNA sequencing literature is a goldmine)

Adaptive Random Testing

• Still choose test inputs randomly, but only one at a time, into the set G
(initially empty)

• Whenever adding a new input:

• Sample Z inputs randomly

• Choose z from the Z so that it is the most diverse against (i.e. the farthest
away from) the current chosen set G

• Add z into G

Adaptive Diversity

Existing Input

New Sample Batch

Chosen

Complexity of ART

• If we use sample points and get ART test suite of test cases, how
many distance calculations do we need?

•

• : considering that ART is still random, k may have to be significantly
large to detect faults - this can result in very high cost

|Z | k

0 + |Z | + 2 |Z | + 3 |Z | + … + (k − 1) |Z | = |Z |
k(k − 1)

2
O(k2)

Pros, Cons, and Questions

• Still very easy to implement

• It may be difficult to choose the right/meaningful distance metric for your input
type

• Faulty regions may not apply to all types of faults

• ART is still mostly an academic idea, with debates going on. Here we will look
at one argument against ART’s universal strength (I’ve modified the proof
slightly).

• Adaptive random testing: an illusion of effectiveness? by Andrea Arcuri and
Lionel Briand, ISSTA 2011

Ideal sampling under 1D

• Assume a 1-dimensional domain , with a single faulty segment with length
of , where is the failure rate. Given the set of input, , let

us consider it in the ascending order (i.e.,).

• Let be the set of all possible SUTs that take a single integer as an input,
grouped by the corresponding (program groups). That is, is a set of
programs that share a same faulty region. It follows that

 (i.e., ways of placing the faulty region in).

D
z = θ |D | θ =

z
|D |

K

xi ≤ xi+1

S1
z s ∈ S1

|S1 | = (|D | − z) + 1 D

Ideal sampling under 1D

• Theorem: given any , for a program in , assuming one faulty region of
size , a sufficient condition to maximise the probability that a set of
test cases detects a failure is when:

si ∈ S1 si
z pS1,K K

min (dist (xmin, x1), dist (x1, x2), …, dist (xi, xi+1), …, dist (x|K|−1, x|K|), dist (x|K|, xmax)) ≥ z

Ideal sampling under 1D

• Proof: Let be the starting position of the faulty region , which is . The starting point
 can be position at places. Consequently, a test data can reveal failures in at most

program group (fewer if is near the edges of). So the upper bound of is .

1.When , then all inputs in are at least away from the edge,
therefore each test case in finds failures in programs (i.e., ways of placing from either or to
the end of).

2.When for all , each subsequent test input in the sorted is outside
the faulty region that encapsulates So all test input in detect faults in different program groups.

• Combining the two cases above, test input in reveal total different failures. Consequently,

xstart Fs [xstart, xstart + z − 1]
xstart (|D | − z) + 1 x z

x D pS1,K pS1,K ≤ z |K |

S1

min(dist(xmin, x1), dist(x|K|, xmax)) ≥ z K z
K z z Fs xmin xmax

D

min(dist(xi, xi+1)) ≥ z xi, xi+1 ∈ K xi+1 K
xi K

K |K |z
pS1,K = z |K |

S1

p u b l i c i n t [] ge t1DTes tCase s (i n t k , i n t min , i n t max){
i n t [] K = new i n t [k] ;
i n t r ange = (max − min) ;
i n t d e l t a = (i n t) Math . f l o o r ((doub l e) r ange / (doub l e) (k + 1)) ;
i n t r = r ange − d e l t a ∗(k +1) ;
K[0] = min + d e l t a ;
i f (r >0){ K[0] ++ ; r−−;}
f o r (i n t i =1 ; i < K. l e n g t h ; i ++){
K[i] = K[i−1]+ d e l t a ;
i f (r >0){ K[i]++ ; r−−;}

}
r e t u r n K;

}

Figure 5: Java code of the deterministic algorithm DT for the
set S1.

not necessarily an integer value, the algorithm is designed to handle
these situations. The optimality of DT is proven in the following
theorem. The proof is based on the Java code listed in Figure 5, but
it would apply on any equivalent implementation in other program-
ming languages. An integer array K is given as output. Notice that
K[j] represents the input data xj+1 (this because Java arrays start
from index 0).

Theorem 2. For the set of programs S1 and any number of test
cases |K| to sample, the algorithm DT produces a set K of test
cases that maximizes the probability of detecting failures in S1.

PROOF. Given K test cases as output of DT , if Condition 1 of
Theorem 1 holds, then this theorem is true as the probability of
fault detection is maximized. Condition 1 is however sufficient but
not necessary. When Condition 1 does not hold for theK test cases
sampled by DT , to prove Theorem 2, it is sufficient to prove that
pS1,K = 1, implying that the probability of detecting failures is
still maximized.
In the code ofDT , we have the variable δ = ⌊(|D|−1)/(|K|+

1)⌋. For each test case, we have that xi ≥ xi−1, because xi is
calculated by adding δ to xi−1. In some cases, we have xi =
xi−1 + δ + 1. Therefore, for the sampled test cases we have δ ≤
dist(xi,xi+1) ≤ δ + 1.
For x1 we used the value xmin + δ to which+1 can be added in

some cases. Therefore, x1 is at most δ+1 values far from the edge
xmin, i.e. δ ≤ dist(xmin,x1) ≤ δ + 1.
The distance of x|K| from the edge xmax needs somemore steps.

We have x|K| = x1 +
∑|K|

i=2(xi − xi−1) to which can be added
+1. This addition is based on the counter r which starts from the
value r = (|D|−1)− δ(|K|+1). We hence have x|K| = xmin+
δ|K|+ r = xmin + |D|− 1− δ. Therefore, dist(x|K|,xmax) =
xmax − xmin − |D|+ 1 + δ = δ.
If the conditions of Theorem 1 do not hold, this means that there

is at least one data input xi that is at least within a distance z from
another input data or from the edges of the input domain. Because
we have proven that minimum distance should be at least δ, then
z > δ, otherwise the conditions of Theorem 1 would hold. From
z > δ it simply follows that z ≥ δ + 1. Because we have proven
that δ + 1 is the maximum distance between two consecutive xi

and xi+1, and that x1 and x|K| are within that distance from the
edges, thenK finds failures in each program in S1. This is because
z ≥ δ + 1. Therefore, in these conditions we have pS1,K = 1.

Considering that the algorithm DT is optimal (Theorem 2) and
deterministic, the application of ART on SUTs with one dimension

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Test Cases |K|

Pr
ob

ab
ilit

y
of

 F
au

lt
D

et
ec

tio
n

DT
ART
RT

Figure 6: Comparison of ART withDT and random testing on
S1.

domains would be questionable. However, DT requires that the
number |K| of test cases to sample should be decided before start-
ing the algorithm. This is acceptable in many practical situations
when no automated oracle is available or test cases are expensive as
they are run, for example, on embedded software with actual hard-
ware. In such cases only a limited number |K| of test cases can
be executed. Similarly, in regression testing [31], only a relatively
small subset of regression test cases can be selected in many situa-
tions. On the other hand, in other situations than the ones described
above, it could make sense to run a testing technique until it detects
the first failure. DT is, however, optimal when all the sampled test
cases inK are executed. If the cost of running the test cases is high
and/or K is large, then it may be desirable to order their execution
using prioritization techniques [28].
We evaluated ART on the set S1 and compared it with random

testing using DT as an upper bound. To do so, we carried out a
simulation in which |D| = 10,000, θ = 0.05 and where we con-
sidered sets of test cases ranging from 1 to 30. Notice that, given
θ = 0.05, then on average random testing would require to sample
20 test cases to find a failure (this is a very high failure rate, used
only for the sake of illustration). Figure 6 compares the fault de-
tection capabilities of these three techniques. When a testing tech-
nique outputs a set of K test cases, we evaluate its fault detection
capability by running it on all the SUTs in S1 for the given values
of |D| and θ, so |S1| = (|D|− z)+ 1 = 9,501. The probability of
fault detection is estimated by dividing the number of programs in
S1 for which a failure is revealed by the total number of programs
|S1|. Since DT is a deterministic algorithm, we only needed to
evaluate it once on each program in S1. On the other hand, because
ART is randomized, we ran it on each program in S1 1000 times,
and report the average in Figure 6. The fault detection probability
of random testing is simply calculated with the following formula:
p = 1− (1− θ)|K| [18].
As we can see in Figure 6, ART seems better than random test-

ing, but it is far from the optimal DT . The difference between
these techniques increases as the number of test cases increases
and is negligible for small test set sizes. This is explained by Theo-
rem 1 as there is an increasing number of pairs of test cases whose
distance is below the z, the length of the segment (faulty region).
Is it possible to define a new variant of ART to get closer to the

performance of DT ? This would be useful in the cases in which
an automated oracle is available, because we could run ART until
it finds the first failure, instead of having to specify |K| as in DT .

DT: deterministic placement

of |K| inputs, each at least (|D|-1)/(|K|+1)

apart from each other.

Open Questions

• How about non-numeric, 2D or higher space?

• We may only be able to approximate distance only: cannot distribute with
equal distance (i.e., grids).

• Non-contiguous faulty regions? (although this presents challenges for both DT
and ART)

Output Diversity

• An interesting take on testing and diversity: if a test input generates a never-
before-seen output, perhaps the test is doing something interesting.

• N. Alshahwan and M. Harman. Augmenting test suites effectiveness by
increasing output diversity. In Proceedings of the 34th International
Conference on Software Engineering, pages 1345–1348, 2012.

• When adding test cases to coverage-adequate test suites, those that
generates unique output outperformed random inputs in terms of fault
detection

Summary

• Random testing is easy to understand/implement, and effective in real world
application. However, it requires automated oracle and may take very long for
certain problems.

• There are various ways to improve random testing; all of them uses more
specific knowledge about the given Software Under Test

• The original slide from Dr. Acuri is available online at: http://www.uio.no/
studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-
RandomTesting.pdf

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf

