Random Testing

CS453 Automated Software Testing

Shin Yoo

Random Testing

* One of the most important task in testing: sampling test input from the
enormous input space

* Doing things randomly can be good in testing!

* Developers often hold onto functional biases about the code they wrote:
they see what should work, and not what should not work

 Random ignhores this bias

Some Definitions

o SUT: Software Under Test
« S: set of all possible test inputs for SUT
e |S|: cardinality of S

« [asubset of § - a set of all failing test inputs (hot known in advance, of
course)

I
, Failure Rate r = %: the probabillity that a random test input will falil, if

sampled uniformly

Example

e Faillure Ratet = 0.5

int abs(int Xx)
{

if(x>0) return Xx;

° aSSGrtEqual(abS(-5), 5) else return x; // should be -x
}

e QOracle

» assertEqual(abs(2), 2)

Oracle In Action

e Our assertion can be rewritten in a generic form of: assertEqual (SUT (1),
e), where:

e |:testinput (e.g. -5in abs(-5))
o e: expected output (e.g. 5 for abs(-5))

 How should we choose the input i?

« Random is an option at least.

Random Testing Overview

 Choose test input randomly
* Benefits:
 Cheap and easy to implement
 Easy to understand
* |t is actually used in the industry (really?)

* There are actually many positive sides

How random can we get?

* [rue randomness is possible but expensive

* |n general, computers use pseudo-random number generators, which
generates a long sequence of bits approximating the properties of random
bits (the sequence is controlled by a small initial value called seeq)

* The pseudo-random bits will repeat themselves, but only at very long intervals
- okay for testing purposes

java.util.Random

public int nextInt()

{
return next(32);

h

synchronized protected int next(int bits)

{
seed = (seed * 0x5DEECE66DL + O0xBL) & ((1L << 48) - 1);
return (int)(seed >>> (48 - bits));

h

Linear Congruential Formula

Probability Distribution

* |nput generation becomes random sampling in random testing. but from
which probability distribution?

* |f we have deep understanding of the target domain as well as our objective,
we can bias the distribution. For example, it we definitely suspect that larger
input values are more fault prone, we can sample from a distribution that will
produce larger numbers more frequently.

 Otherwise, the default can be the unilform distribution. Each test input has the

5]

same probabillity of being chosen:

Challenges in Random Testing

 Numbers are easy to randomly sample: we just need to decide on a
probability distribution.

 Randomly sampling more complicated inputs can be harder than we think.
« Complex structures
» Memory and time constraints

* |nput length bias

Complex Data Structures

 What if the input data is a tree/graph/arrays...?
« What is a random tree”?

 One approach: whatever the high-level data structure is, they are all reprinted in bits,
so just stick to random bits: 000010011101011010 instead of a tree

 But random trees are not random bits - there definitely is some structure in a
random tree because it is still a tree

 Chance of actually generating a valid input this way might be very low

 Ad-hoc generator approach: make random decisions about growing data structure -
slightly better, but it may be easy to bias the decisions

Memory/Time Constraints

 What is the set of all possible trees? Isn’t it infinite®?

* We need to put constraints on memory/time because we cannot deal with
infinity

* |f the fault detection is also uniform (i.e. all tests have the same probability to
detect a fault), then constraints are okay
e But is it uniform?

* For example, when testing a function called void foo (MyGraph graph),
will larger graphs lead to higher fault detection? It depends on the type of
fault, really...

Test Input Length

* Suppose the test input length can vary, and we can afford binary strings of
length up to L with our testing budget

» 2L is more than the sum of all lower lengths (e.g. 2° > 2% + 21): so we will
sample much more strings with length L then shorter ones!

* |t would be unwise to sample uniformly: there will be bias for longer strings

* One possible solution: first choose length randomly, then choose the binary
string of that length randomly

Finding Faults with Random Testing

. Prop‘e;giles of a random testing technique depends on the failure rate,

]S]

e (Given a failure rate 7, how many test inputs should we execute until finding
the first failure?

[

» Given k random test inputs, what is the probability of finding at least one
failure?

Geometric Distribution of Random
Testing

0.20
|

* Probabillity of revealing a failure

at the k-th random input: £ — 1
iInputs should not fail, but the
next one does.

fallure rate t =0.3

0.15
|

P(k)
0.10
|

* This Is geometric distribution

0.05
|

(.e., random testing is a
Bernoulli trial, as test either

0.00

passes or rails)

Number of Inputs Until First Failure

e Geometric Distribution:

1

, Mean: —
l

e E.g,whent=1/100

e Mean: 100

. Median: ‘lng 1 _ 7 | e Median: =69

] —¢ e Variance: 9900

, \Variance:
t2

Probability of Finding At Least One
Failure

* Practically, we may be more
interested in the following

question: if | execute k random
iInputs, what is the probability of
finding at least one failure?

 Thisis equal to 1 - [the
probability of none of the k
inputs failing]:

Prob. of at least one failure

1.0

0.8

0.6

0.4

0.2

0.0

failure ratet=1/100

I I I
100 150 200

Number of Inputs

I
250

I
300

“But t 1Is unknown - useless!”

* True, but it can be estimated Iin various ways
* Previous projects
o |iterature
* [ypes of software

* And this type of analysis is still important to understand the dynamics of
random testing

Weakness: No Guidance

 Random testing is particularly
weak against the needle in the

4 foo !
haystack problem void foo(int x)-{

1f(x==0){
/* faulty code here */}

 Consider the example: we need, \

on average, over 4 billion test
iInputs before triggering this fault.
vold foo(int x, int y)/{
 What if the predicate is (x == if(x==y){
y)? /* faulty code here */}
}

Weakness: Oracle

* Remember assertEqual(abs(-5), 5)7

* |f we use a random integer instead of -5, how do we know what to expect? Oracle
Problem!

* A single assertion is okay when the input value is manually pre-defined and the

tester completely understands the program semantics (i.e. tester writes the
expected value)

 When the input value is randomly sampled, programer cannot write the
corresponding expected value

* Should the programmer write a program to produce the expected val... wait a
minute...

Real World Applications

* Nevertheless, Random Testing is actually used by industry. For example:

 Randomized Differential Testing as a Prelude to Formal Verification, Groce
et al., 2007: random testing for flight control system used in space missions

* A very complex SUT, for which the formal verification did not work:
random testing found multiple faults with automation.

A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a prelude to formal verification. In 29th International Conference on Software Engineering (ICSE’07),
pages 621-631, May 2007.

Overcoming Weakness

 |[ntroduce bias!

* |nstead of random values, use special values
(0, 1, Pi,...), extracted values (constants from
the code), or previously successful values; use
these with predetermined probability
parameter

* Helps dealing with needle in the haystack
problem

* Ciupa, l., Leitner, A., Oriol, M., Meyer, B.,
"Experimental Assessment of Random Testing
for Object-Oriented Software", Proceedings of
ISSTA'07: International Symposium on
Software Testing and Analysis 2007, (London,
UK), July 2007

Select Reference
Type

IDGenNew : : 1'F)GenNew

Create new
Instance

Reuse instance

Select Basic
Type

I:)GuenBas.icFland : :

1 'PGenBasicRand

Random choice

Choice from
Predefined Set

Overcoming The Oracle Problem

 The Oracle problem, on the other hand, does not go away so easily: random

testing only truly succeeds with a full oracle (i.e. one can answer questions
against random test input)

* Groce et al. had a reference file system alongside the one that they tested:
whatever the reference says is the expected behaviour.

* Ciupa et al. worked with Eiffel under Design by Contract paradigm: each
method has pre- and post-condition, violation of which is a fault.

 Sometimes implicit oracle is sufficient, too.

Netflix ChaosMonkey

 Netflix relies on Amazon Web Service cloud infrastructure to stream videos: the servers
scale automatically according to the load

* Aim: detect instance failure in Auto Scaling Group (ASG)

* Action: ChaosMonkey just randomly shuts down AWS instances!

* Oracle: the service should not collapse (implicit)

* | oad balancers should detect the instance failure, re-route requests, and additional
instances need to be brought in

» https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d

* https://github.com/netflix/chacsmonkey

https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://github.com/netflix/chaosmonkey

Can we improve it even more?

e Given a function void foo(int n), consider two following sets of test
INputs:

e 1,2,3,4,5,6,7,8,9, 10}
o {-2345,12,342,-4443,2,3495437,-222223,24, 99343256,-524474}
* Which is better? Why?

 Without any further assumption, two sets should have identical fault detection
capability

Where the faulty things are

» Often, failing test inputs cluster together
 What if the fault is under the predicate 1 (x>=0 && x<=10)

* |et us call these faulty regions in the input space

* Without knowing where they actually are, what is our best strategy?

Diversity

‘ ‘ Faulty region Faulty region

A more diverse set of inputs will have a higher
probability of hitting the faulty region

Distance

* Diversity depends on the distance between test inputs
* |f input data is numerical, we can use Euclidean distance

 But how do we measure distance between complex data types?

Levenshtein Distance (Edit Distance)

 Between two strings, Levenshtein distance is the number of edits (add,
remove, change) that are required to change one string into the other

e s1=(AB,C,AA), s2 =(A,C,C,A,B) : Levenshtein distance is 2

 Many other distance metrics are defined between two symbol sequences
(DNA sequencing literature is a goldmine)

Adaptive Random Testing

o Still choose test inputs randomly, but only one at a time, into the set G
(initially empty)

 Whenever adding a new input:
o Sample Z inputs randomly

 Choose z from the Z so that it is the most diverse against (i.e. the farthest
away from) the current chosen set G

e Add z into G

Adaptive Diversity

A A «*" "o
. .
N
. @
° .Il"
O
@ \‘
o Cx
> >

Existing Input

New Sample Batch

k Chosen

‘ ‘...
! \g
Iy)
. -
Y N
* L 4
4
Yans®
>

Complexity of ART

o |f we use sample points and get ART test suite of / test cases, how
many distance calculations do we need?

. O(kz): considering that ART is still random, k may have to be significantly
large to detect faults - this can result in very high cost

Pros, Cons, and Questions

o Still very easy to implement

* |t may be difficult to choose the right/meaningful distance metric for your input
type

e Faulty regions may not apply to all types of faults

 ART is still mostly an academic idea, with debates going on. Here we will look
at one argument against ART’s universal strength (I’ve modified the proof
slightly).

» Adaptive random testing: an illusion of effectiveness? by Andrea Arcuri and
Lionel Briand, ISSTA 2011

sampling under

« Assume a 1-dimensional domain D, with a single faulty segment with length
ofz=60|D|, where 0 =

D] is the failure rate. Given the set of input, K, let

us consider it in the ascending order (i.e., X; < X;_).

 Let S, be the set of all possible SUTs that take a single integer as an input,

grouped by the corresponding z (program groups). That is, s € 5, is a set of
programs that share a same faulty region. It follows that

1S, | =(|D| —2)+ 1 (i.e., ways of placing the faulty region in D).

sampling under

» Theorem: given any s; € S, for a program in s;, assuming one faulty region of
size z, a sufficient condition to maximise the probability pg x that a set of K
test cases detects a failure is when:

min (dist (xmin, xl), dist (xl,xz), ..., dist (xl-, xl-+1), ..., dist (x|K|_1,x|K|), dist <x|K|,xmaX>) > 7

sampling under

 Proof: Let x, .,

\)

program group (fewer if x is near the edges of D). So the upper bound of Ps, k18 Ps, .

1.When min(dist(x;,, x;), dist(x; g, Xax)) = 2, then all inputs in K are at

therefore each test case in K finds failures in 7 programs (i.e., z ways of p
the end of D).

be the starting position of the faulty region £, which is [xsm,,t, Xjgrg T 2 — 1] . The starting point
X...» can be position at (| D | — z) + 1 places. Consequently, a test data x can reveal failures in at most 7

| K|
<2
7 s

east 7 away from the edge,

acing F from either x, . orx, __to

2.When min(dist(x;, x;, {)) = z for all x;, x;, | € K, each subsequent test input x;_ ; in the sorted K is outside

the faulty region that encapsulates x; So all test input in K detect faults in

different program groups.

. Combinin%che two cases above, test input in K reveal total | K| z different failures. Consequently,

4

Probability of Fault Detection

1.0

0.8

0.6

0.4

0.2

0.0

DT: deterministic placement

- of IK| inputs, each at least (|D|-1)/(|K[+1)

apart from each other.

I I I
10 15 20

Number of Test Cases IKI

Open Questions

« How about , or space?

 \WWe may only be able to approximate distance only: cannot distribute with
equal distance (i.e., grids).

. faulty regions? (although this presents challenges for both DT
and ART)

Output Diversity

* An interesting take on testing and diversity: if a test input generates a
, perhaps the test is doing something interesting.

* N. Alshahwan and M. Harman. Augmenting test suites effectiveness by
Increasing output diversity. In Proceedings of the 34th International
Conference on Software Engineering, pages 1345-1348, 2012.

 When adding test cases to coverage-adequate test suites,
random inputs in terms of fault
detection

Summary

 Random testing is easy to understand/implement, and effective in real world
application. However, it requires automated oracle and may take very long for

certain problems.

* There are various ways to improve random testing; all of them uses more
specific knowledge about the given Software Under Test

* The original slide from Dr. Acuri is available online at: http://www.uio.no/
studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-

RandomTesting.pdf

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-RandomTesting.pdf

