
Shin Yoo | COINSE@KAIST

Control and Data Flow
CS453 Automated Software Testing

Some examples are borrowed/inherited from Prof. Mark Harman, Dr. Kiran Lakhotia, and Dr. Gregory Gay :)

Overview

• Control Flow and Control Flow Graph (CFG)

• Data-Flow Analysis

Control Flow

• The order in which the individual structural elements of program are executed
or evaluated

• Structural element: statements, instructions, function calls, etc…

• We all construct a control flow when we try to execute a source code in our
mind

Control Flow Statements

• Statements whose execution results in a choice between more than one execution paths

• Continuation in a different location (unconditional branching)

• Executing a set of statements only when certain conditions are met (conditional
branching)

• Executing a set of statements zero or more times until certain conditions are met
(looping)

• Executing a set of remote statements, then return the flow of control to the current
position (function calls)

• Stopping the program (unconditional halting)

• Graph representation of
programs

• Nodes are statements

• Edges are all possible flow of
execution

• We assume an explicit end
node

• You are expected to be able to
draw one from code

Control Flow Graph

if(...) x=1;
else x=2;
y = 50;
if(...) z = 1;
else
{
while(...)
z = z + 1;

}
y = 0;

x=1

if

z=1

x=2

y=50

while

z=z+1

y=0

E

if

if(...) x=1;
else x=2;
y = 50;
if(...) z = 1;
else
{
while(...)
z = z + 1;

}
y = 0;

A million dollar S/W testing question

• When should (can) I stop testing?

• A perfect, yet infeasible answer: when you have executed all test cases.

• An equally perfect and infeasible answer: when you have caught all faults.

Reformulated Question

• If we cannot know when to end, can we at least know the relative, surrogate
benefit of each additional test execution?

• Surrogate, because we can never precisely measure the actual fault
detection capability a priori.

• A reliable surrogate measure would be very useful:

• We can compare two test cases to decide which one to use.

• Depending on the nature of the measure, we can mark a (incomplete yet
practically necessary) stopping point.

What is it that you can measure
from testing and is correlated with
fault detection capability?

Structural Code Coverage

• A necessary, but not sufficient condition for fault detection

• With testing, you cannot detect faults in a line that you haven’t executed
during testing (testing is dynamic).

• REMEMBER: coverage DOES NOT guarantee anything.

“What’s a good code coverage to have?” Harm Pauw

https://www.scrum.org/resources/blog/whats-good-code-coverage-have

https://www.scrum.org/resources/blog/whats-good-code-coverage-have

Dangers of Coverage

• Coverage can become a goal in its own: writing test only to increase
coverage.

• Achieving 100% coverage can still detect no fault whatsoever.

• Coverage metric can tell you what is not being tested, but cannot precisely
tell you what is actually being tested.

Benefits of Coverage

• An accurate measure of what is not being tested.

• Testing everything a little bit is better than not testing most of the program.

• Not all coverage criteria are the same: a stricter coverage criterion leads to
more tests, and more tests are more likely to lead to fault detection.

The most widely used: Statement/Branch Coverage

• Statement coverage: % of nodes in CFG that are executed by your testing

• Branch coverage: % of branching edges in CFG that are executed by your
testing

• 100% may not always be possible

if a>b then
 if b>c then
 if a>c then S1
 else S2

Simple Path

• A simple path in a CFG is one in which no edge is traversed more than once

All Paths Testing

• Execute all possible paths in code

• In general, you get unbounded number of tests because of:

• Loops! In general, loops makes everything about program analysis more
complicated and annoying.

• If you set the maximum number of iterations for each loop to k, you can bound the
number of tests

• For example, All Paths with k=2 requires you to achieve all paths coverage,
repeating loops 0, 1, and 2 times

• Setting k=1 results in simple paths

All Paths Testing (k = 1)

• All Paths for our example code requires 6 tests:

Why happens for k=2? How many test cases?

All Paths Testing

• Loop bound still needs to be relatively low - why?

How many paths (k=20)?

int flipSome(int A[], int N, int X)
{
 int i=0;
 while (i<N and A[i] <X)
 {
 if (A[i]<0)
 A[i] = - A[i];
 i++;
 }
 return(1);
}

Loop combined with branches will result in exponential

number of paths. In this case, how many? :)
20 + 21 + … + 220 = 221 − 1

All Paths Testing

• Loop bound still needs to be relatively low - why?

• What is the number of paths you get out of n consecutive loops with bound
k?

• : it blows up exponentially, and gets worse with nested loops.(k + 1)n

Decision Coverage

if(x && (y || z))…

x y z

TRUE TRUE TRUE

FALSE TRUE TRUE

The entire predicate (x && (y || z)) should be evaluated to

both true and false. The above test suite is decision adequate.

Other Types of Coverage

• Function Coverage: Has every function been called?

• Entry/Exit Coverage: Has every possible call and return of functions been executed?

• Decision Coverage: Entry/Exit + Branch Coverage

• Condition Coverage: Has each Boolean subexpression been evaluated to be both
true and false?

• Condition/Decision Coverage: Entry/Exit + Branch + Condition Coverage

• Modified Condition/Decision Coverage: Condition/Decision Coverage plus “does
each boolean subexpression actually affect the outcome of the decision?”

Condition Coverage

if(x && (y || z))…

x y z

TRUE TRUE TRUE

FALSE TRUE TRUE

Condition coverage requires each Boolean subexpression

to be evaluated both true and false. Previous test suite

is NOT condition adequate.

(X)

x y z

TRUE TRUE TRUE

FALSE FALSE FALSE (O)

This is condition adequate.

Modified Condition/Decision Coverage

if(x && (y || z))…

No. x y z

1 TRUE FALSE FALSE

2 TRUE FALSE TRUE

3 FALSE FALSE TRUE

4 TRUE TRUE FALSE

MC/DC requires each Boolean subexpression to be both true and false,

and this to affect the final decision.

• All x, y, and z have been assigned both true and false.

• Between 1 and 4, we see that y can affect the final decision.

• Between 1 and 2, we see that z can affect the final decision.

• Between 2 and 3, we see that x can affect the final decision.

Condition/Decision vs. MC/DC

• MC/DC is used in:

• Avionics Software Development Guideline: DO-178B and DO-178C, de
facto standard set by FAA for Level A systems (those that either provide or
prevent failures in safe flight and landing).

• General electrical devices: SIL (Safety Integrity Level) 4 in IEC 61508-3
Standards

• Automotive Testing Standard: highly recommended for ASIL (Automotive
Safety Integrity Level) D in ISO 26262 Standards.

What about data usage?

• Detecting specific values that may lead us to failures would be hard: it
requires careful analysis of both the expected semantic and the
implementation.

• Structural coverage is mostly about control flow (CFG).

• Dataflow analysis is about the usage of variable values.

Data Flow Analysis

• CFGs do not take how variables are used into consideration

• Data-flow based testing analyses the definition and use of data during execution

• We use CFG as a starting point, but annotate it with respect to usage of a specific
variable

• d: the value of the variable is defined

• up: the variable is used in a predicate

• uc: the variable is used for calculation

• k: killed (undefined or memory released)

x=1

if

x=2

x=2

y=50

while

z=z+1

x=x-1

E

if

For variable x:

d d

up

d

d uc

if(...) x=1;
else x=2;
y = 50;
if(x%2 == 0) x = 2;
else
{
while(...)
z = z + 1;

}
x = x - 1;

Data Flow Patterns

• There is no fixed rule that always works, but for example:

• dd : harmless but suspicious

• dk : harmless but suspicious

• du : normal

• kd : potentially suspicious

• kk : suspicious

• ku : a bug

• ud : potentially suspicious if
u happens before d

• uk : normal

• uu : normal

Some Data Flow Strategies

• All DU paths

• All Use paths

• APU+C: All predicate uses + some computations

• ACU+P: All computational uses + some predicates

• All definitions

• All predicate uses

• All computational uses

DU paths

• A path from node x to node y is definition clear for a variable v iff for all
nodes apart from x and y on the path, there is no assignment to v.

• A du-path from node x to node y for a variable v is a simple path from x to
y which is definition clear for v and which assigns to v at x and uses v at y

• Definition clear means we don’t redefine the variable along the way

• Simple path means no edge is traversed more than once

For variable x:

x=1

if

x=2

x=2

y=50

while

z=z+1

x=x-1

E

if

d d

up

d

d uc

du path O

du path X

O

X

if(...) x=1;
else x=2;
y = 50;
if(x%2 == 0) x = 2;
else
{
while(...)
z = z + 1;

}
x = x - 1;

All DU Path Testing

• For every variable v,

• For every definition d of v,

• for every use u of d,

• for every du path between d and u, there is a test that executes the du
path

d d

up
d

uc d

1) 2) 3)

4) 5) 6) 7)

All Use strategy - AU

• Same as all du paths except we only require at least one path from each
definition to each use

• For every variable and

• for every definition, d, of that variable and

• for every use, u, of d and

• for at least one du-path from d to u

• there is test which exercises that path.

1) 2) 3)

4) 5) 6) 7)

d d

up
d

uc d

1) 2) 3)

4) 5) 6) 7)

Note that we have a choice

d d

up
d

uc d

Coverage Hierarchy

Statement ConditionLoop Boundary

Branch

LCSAJ

MC/DC

Compound
Condition

All Paths

Condition/
Decision

Boundary
InteriorGenerally impractical

Practical

Measuring Coverage

• Coverage Instrumentation: inserting additional code into the target program
so that, when executed, you can collect information about which parts were
reached.

• Usually done at binary or byte code level.

• Or use one of the existing tools.

Coverage Tools

• C: GNU gcov profiler (of the kcov fame) (https://gcc.gnu.org/onlinedocs/gcc/
Gcov.html)

• Java: Jacoco (http://www.eclemma.org/jacoco/) and Cobertura (http://
cobertura.github.io/cobertura/) are both popular

• Python: coverage.py (https://coverage.readthedocs.io/en/coverage-4.5.1/)

• JavaScript: JSCover (https://tntim96.github.io/JSCover/)

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.eclemma.org/jacoco/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
https://coverage.readthedocs.io/en/coverage-4.5.1/
https://tntim96.github.io/JSCover/

Summary

• Control Flow is the order of things being evaluated/executed

• It can be reprinted as a CFG, a directed graph

• Data Flow tracks where values are assigned and where they are used
subsequently

• Data flow information can be annotated over CFG

