Control and Data Flow

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

Some examples are borrowed/inherited from Prof. Mark Harman, Dr. Kiran Lakhotia, and Dr. Gregory Gay :)

Overview

* Control Flow and Control Flow Graph (CFG)

 Data-Flow Analysis

Control Flow

* The order in which the individual structural elements of program are executed
or evaluated

e Structural element: statements, instructions, function calls, etc...

 We all construct a control flow when we try to execute a source code in our
mind

Control Flow Statements

o Statements whose execution results in a choice between more than one execution paths
* Continuation in a different location (unconditional branching)

* Executing a set of statements only when certain conditions are met (conditional
branching)

* Executing a set of statements zero or more times until certain conditions are met
(looping)

* Executing a set of remote statements, then return the flow of control to the current
position (function calls)

» Stopping the program (unconditional halting)

Control Flow Graph

* Graph representation of
programs

e Nodes are statements

 Edges are all possible flow of
execution

 \WWe assume an explicit end
node

* You are expected to be able to
draw one from code

.) xX=1;
X=23
50
.) Z =
(e0-)
=z + 1;
0;

A

S/W testing question

 When should (can) | stop testing”?
* A perfect, yet answer. when you have executed all test cases.

* An equally perfect and answer: when you have caught all faults.

Reformulated Question

e |f we cannot know when to end, can we at least know the relative,
?

e Surrogate, because we can never precisely measure the actual fault
detection capability

* Areliable surrogate measure would be very useful:
 We can to decide which one to use.

 Depending on the nature of the measure, we can mark a (incomplete yet
practically necessary) stopping point.

What is it that you
from testing and is

with

Structural Code Coverage

. for fault detection

* With testing, you cannot detect faults in a line that you haven’t executed
during testing (testing is dynamic).

 REMEMBER: coverage guarantee anything.

| expect a high level of coverage. Sometimes managers require one. There's a
subtle difference.

*What’s a good code coverage to have?” Harm Pauw
https://www.scrum.org/resources/blog/whats-good-code-coverage-have

https://www.scrum.org/resources/blog/whats-good-code-coverage-have

of Coverage

 Coverage can become a goal in its own: writing test only to increase
coverage.

* Achieving 100% coverage can still detect no fault whatsoever.

 Coverage metric tell you , but cannot precisely
tell you what is actually being tested.

of Coverage

* An accurate measure of
* [esting everything a little bit is than not testing most of the program.

* Not all coverage criteria are the same: a criterion leads to
, and more tests are more likely to lead to

The most widely used: Statement/Branch Coverage

o Statement coverage: % of nodes in CFG that are executed by your testing

 Branch coverage: % of branching edges in CFG that are executed by your
testing

 100% may not always be possible

a>b
b>c
a>c S1
S2Z

Simple Path

¢ A in a CFG is one in which no edge is traversed more than once
A LSS NN
N N N\ O A
[| N
N\ / NN S NN
VRN s S

All Paths Testing

 Execute In code
* |n general, you get unbounded number of tests because of:

. | In general, loops makes everything about program analysis more
complicated and annoying.

* |f you set the maximum number of iterations for each loop to k, you can bound the
number of tests

 For example, All Paths with k=2 requires you to achieve all paths coverage,
repeating loops O, 1, and 2 times

o Setting k=1 results in simple paths

All Paths Testing (k = 1)

* All Paths for our example code requires 6 tests:

O/@\O O/@ O/@ O/@ @\O
N\ AN AN AN /
I [
N\ SN N S
AR

I |

Why happens for k=27 How many test ca

n

TN TS

es”?

D
I\
Q
L

All Paths Testing

* Loop bound still needs to be relatively low - why?

How many paths (k=20)?

int flipSome(int A[], int N, int X)
{
int 1=0;
(1<N and A[1] <X)
{
(A[1]<0)
A[1] = - A[1];
i++;
}
(1);

Loop combined with branches will result in exponential
number of paths. In this case, how many? :)

20424 420 =021_1

All Paths Testing

* Loop bound still needs to be relatively low - why?

 What is the number of paths you get out of n consecutive loops with bound
?

e (k+ 1)" it blows up and gets with

Decision Coverage

(X (Y Z))..
X y Z
TRUE TRUE TRUE
FALSE TRUE TRUE
The entire predicate (x && (y || 2z)) should be evaluated to

both true and false. The above test suite is decision adequate.

Other Types of Coverage

* Function Coverage: Has been called?
* Entry/Exit Coverage: Has been executed?
* Decision Coverage: Entry/Exit + Branch Coverage

e Condition Coverage: Has been evaluated to be both
true and false?

» Condition/Decision Coverage: Entry/Exit + Branch + Condition Coverage

 Modified Condition/Decision Coverage: Condition/Decision Coverage plus “does
each boolean subexpression actually affect the outcome of the decision?”

Condition Coverage

(X (y Z)).

X y Z
TRUE TRUE TRUE (X)
FALSE TRUE TRUE

Condition coverage requires
to be evaluated both true and false. Previous test suite
IS NOT condition adequate.

X y Z

TRUE TRUE TRUE
FALSE FALSE FALSE (O)

This Is condition adequate.

Modified Condition/Decision Coverage

MC/DC requires each Boolean subexpression to be both true and false,

(X (Y Z)).
No. X y Z
1 TRUE FALSE FALSE
2 TRUE FALSE TRUE
3 FALSE FALSE TRUE
4 TRUE TRUE FALSE

and this to affect the final decision.

All X, y, and z have been assigned both true and false.

Between 1 and 4, we see t
Between 1 and 2, we see t
Between 2 and 3, we see t

nat y can affect the fina
nat z can affect the fina
nat x can affect the fina

decision.
decision.
decision.

Condition/Decision vs. MC/DC

e MC/DC is used in:

e Avionics Software Development Guideline: DO-178B and DO-178C,
set by FAA for Level A systems (those that either provide or

prevent failures in safe flight and landing).

» (General electrical devices: SIL (Safety Integrity Level) 4 in
Standards

* Automotive Testing Standard: highly recommended for ASIL (Automotive
Safety Integrity Level) D in Standards.

What about data usage?

* Detecting specific values that may lead us to failures would be hard: it
requires careful analysis of both the expected semantic and the

Implementation.
o Structural coverage is mostly about control flow (CFG).

. IS about the usage of variable values.

Data Flow Analysis

 CFGs do not take how variables are used into consideration
 Data-flow based testing analyses the definition and use of data during execution

 We use CFG as a starting point, but annotate it with respect to usage of a specific
variable

e d:the value of the variable is
. : the variable Is
e U.: the variable is

o k: killed (undefined or memory released)

For variable x:

(...) xX=1;
X=2:
y = 350;
(X332 == 0) X =

Data Flow Patterns

* There is no fixed rule that always works, but for example:

* dd : harmless but suspicious
 dk : harmless but suspicious
e du: normal

* kd : potentially suspicious

KK : suspicious
Ku : a bug

ud : potentially suspicious if
u happens before d

uk : normal

ud : hormal

Some Data Flow Strategies

e All DU paths

e All Use paths

 APU+C: All predicate uses + some computations
 ACU+P: All computational uses + some predicates
* All definitions

* All predicate uses

* All computational uses

DU paths

A path from node x to node vy is for a variable v iff for all
nodes apart from x and y on the path, there is to v.

e A from node x to node y for a variable v is a from x to
y which is for vand which assignsto v at x and uses v at y

* Definition clear means we don’t redefine the variable along the way

e Simple path means no edge is traversed more than once

For variable x:

(...) xX=1;
X=2:
y = 350;
(X332 == 0) X =

All DU Path Testing

 For every variable v,
* For every definition d of v,
e for every use u of d,

e for every du path between d and u, there is a test that executes the du
path

©

. %

¢ . ® o . -
N /=
T

o 0—-0 o ¢ clc\u/v
a\ . a\ <<

All Use strategy - AU

 Same as all du paths except we only require at least one path from each
definition to each use

* For every variable and

* for every definition, d, of that variable and
. for every use, u, of d and

. for at least one du-path from d to u

. there Is test which exercises that path.

Note that we have a choice

Coverage Hierarchy

All Paths

_ _ Boundary Compound
Generally impractical Interior Condition

Practical

Condition/

Decision

Condition

Loop Boundary

Measuring Coverage

* Coverage Instrumentation: inserting additional code into the target program
so that, when executed, you can collect information about which parts were
reached.

* Usually done at binary or byte code level.

* Or use one of the existing tools.

Coverage Tools

e C: GNU profiler (of the kcov fame) (https://gcc.gnu.org/onlinedocs/gcc/
Gcov.html)
e Java: (http://www.eclemma.org/jacoco/) and (http://

cobertura.github.io/cobertura/) are both popular

e Python: (https://coverage.readthedocs.io/en/coverage-4.5.1/)

o JavaScript: JSCover (https://tntim96.github.io/JSCover/)

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://www.eclemma.org/jacoco/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
https://coverage.readthedocs.io/en/coverage-4.5.1/
https://tntim96.github.io/JSCover/

Summary

 Control Flow is the order of things being evaluated/executed

* |t can be reprinted as a CFQG, a directed graph

 Data Flow tracks where values are assigned and where they are used
subsequently

 Data flow information can be annotated over CFG

