
Shin Yoo | COINSE@KAIST

Testing Finite State Machine
CS453 Automated Software Testing

State-based Models

• Many real systems have some internal states. For example:

• Embedded Control Systems

• Communication Protocols

• Video Games

• …

• These systems might be specified in state-based models using e.g.
Statecharts, SDL or FSM.

Quake II

Examples from Finite State Machine for Games, UW CG group

States and transitions

• A system may be modelled by:

• a set of logical states

• transitions between these states

• Then:

• each state will normally represent some set of values for the state variables

• each transition will represent the use of some operation to the state

Finite State Machine

• A (deterministic) finite state machine is defined by tuple in which:

• is a finite set of states and is the initial state

• is the finite input alphabet/set

• is the finite output alphabet/set

• function is the state transfer function

• function is the output function

• We can extend and to take sequences, giving and .

(S, s1, X, Y, δ, λ)

S s1

X

Y

δ

λ

δ λ δ* λ*

Behaviour of an FSM

• If we input a sequence when is in its initial state we get output sequence
 and moves to state .

• If we input a sequence when is in state we get output sequence
 and moves to state .

x M
λ*(s1, x) M δ*(s1, x)

x M s
λ*(s, x) M δ*(s, x)

• We will consider the following
system:

• There are three colours for the
lights: red, amber, and green

• The control system receives a
message ch indicating when it
should change the colour.

• It changes state and outputs a
value to the lights telling them
what the colour should be.

Example: Traffic Lights

• The FSM MT is defined by:

• State set {Red,Green,Amber1,Amber2}

• Initial state: Green

• Input alphabet {ch}

• Output alphabet {green, red, amber}

• State transfer function: δ(Green,ch)=Amber1,
δ(Amber1,ch)=Red, δ(Red,ch)=Amber2,
δ(Amber2,ch)=Green

• Output function: λ(Green,ch)=amber ,
λ(Amber1,ch)=red , λ(Red,ch)=amber ,
λ(Amber2,ch)=green

Example: Traffic Lights

FSMs and Directed graphs

• FSM can be represented by a directed graph (digraph) in
which:

• A state is represented by a vertex

• If input can move from state to state with output we add an edge
: an edge from to with label .

• Then the paths (from) in represent the input/output sequences of .

M G = (V, E)

si vi

x M si sj y
(si, sj, x/y) si sj x/y

v1 G M

State Diagram

• A state-based system can be represented by a state diagram.

• Each state is represented by a node.

• The transitions are represented by arcs between nodes

Finite State Machine Flying Spaghetti Monster

State Diagram for FSM MT

Green Red

Amber1

Amber2

ch/amber ch/red

ch/amberch/green

Actions in MT

Suppose we input sequence <ch, ch> when MT is in state
Amber2.

We have that λ∗(Amber2,chch) = green,amber and
δ∗(Amber2,chch) = Amber1.

Green Red

Amber1

Amber2

ch/amber ch/red

ch/amberch/green

Actions in MT

• Suppose we input sequence <ch, ch> when MT is in state Amber2.

• The first ch moves MT to state Green and produces output green.

• The second ch move MT from state Green to state Amber1 and leads to
output amber.

• We have that (Amber2,chch) = green,amber and (Amber2,chch) =
Amber1.

λ* δ*

Initially and Strongly connected FSMs

• M is initially connected if:

• Every state can be reached from the initial state – i.e. if for each state
there is some sequence of edges from the initial state to .

• M is strongly connected if:

• For every ordered pair of states there is some input sequence that
takes M from to – i.e., if for each , there is some sequence of edges
from to .

s
s

(s, s′￼)
s s′￼ s s′￼

s s′￼

FSM Equivalence

• Two FSMs and with the same input alphabets are equivalent if, for each
input sequence they produce the same output sequence.

M M′￼

Minimal FSMs

• An FSM is minimal if there is no equivalent FSM with fewer states.

• If M is not minimal, it can be rewritten to form an equivalent minimal FSM.

Reset Operations

• A reset operation is one that always takes the FSM to the initial state.

• Sometimes we assume that there is a reliable reset operation: there is some
reset operation that we know is correct.

• This helps in testing: we can use it to separate test sequences

• It may involve switching the machine off and then on again.

Further Assumptions

• It is normal to assume that M is minimal, strongly connected and completely
specified.

• Often also we assume that there is some reset operation.

• These simplify test generation.

• There are two main classes of
fault:

• Output fault: a transition has
the wrong output

• State transfer fault: a transition
goes to the wrong state

• Note: state transfer faults may
lead to M’ having more states
that M.

Faults and FSM

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

Output Faults

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

S2

S1

S3

a/0

b/1

a/0b/0

b/1 a/0

State Transfer Faults

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

State Transfer Faults

S2

S1

S3

a/0

b/1

a/0b/0

b/1

S? a/0

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

What do we need to do(know) to
detect each type of fault?

Finding Output Faults

• To find output faults we just need to execute transitions.

• Transition tour method: generate a single sequence (a transition tour) that
covers each transition.

• FSM is assumed to be fully specified: we just compare observed output to the
specification!

• What do we need?

• An input sequence that will take us through ALL transitions in the FSM

Transition Tour Method

• In the transition tour method we:

• Find some path/walk, from the initial state, that covers every edge/
transition.

• Our test is the input sequence defined by following this sequence.

• This detects all output errors. However, there is no guarantee that all transfer
errors can be detected.

• We could follow the path with
edges:

• a/0, b/1, a/1, a/0, b/
0, b/1

• This gives test sequence:

• abaabb

Transition Tour Example

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

Generating a Transition Tour

• We can simply follow a path, at each step extending it by:

• 1. Choosing an edge we have yet to take

• 2. Adding a path from where we are to the source node of this edge

• 3. Adding the edge (i.e. move to the target node of this edge)

• Note: there are also algorithms that produce minimal length transition tours.

Finding State Transfer Faults

• We want to check whether a correct transition is followed

• What do we need to do in order to check this?

• 1. Get to the start state of the transition

• 2. Execute the transition

• 3. Check the end state is the right one.

Example

Example

We want to test this transition

Example

First get here.

Example

In other words, find the input sequence that does this

Example

?

Then we do this. The question is, are we at the right target node?

Checking State

• It is crucial that we can determine the “current” state that we are in, simply
based on the outputs of the FSM

• There are multiple techniques. In the increasing order of strength, we will learn
about:

• A distinguishing sequence

• Unique Input/Output (UIO) sequences

• A characterising set

Distinguishing Sequences

• An input sequence is a distinguishing sequence if:

• for every pair of states , of such that we have that
.

• That is, all states produce unique outputs in response to : therefore we
can identify the state.

• One sequence distinguishes all states; certain FSMs will NOT have a
distinguishing sequence

D

s s′￼ M s ≠ s′￼

λ*(s, D) ≠ λ*(s′￼, D)

D

• We can simply check different
input sequences, producing a
column in a table for each.

• Normally we start with short
sequences and extend these.

Distinguishing Sequence Example

S2

S1

S3

a/0
a/0

b/0a/1

b/1 b/1

Distinguishing Sequence Example

a b ab aa

S1 0 1 00 00

S2 0 0 01 01

S3 1 1 11 10

It is possible to have multiple distinguishing sequences.

S2

S1

S3

a/0
a/0

b/0a/1

b/1 b/1

• Consider the machine on the
right. Can it have a distinguishing
sequence? If so, what is it? If
not, why?

Is it enough?

S1 S2

S3

a/0

a/0

b/1

b/1

a/1

b/1

Unique Input/Output Sequences

• A sequence is a unique input/output sequence (UIO) for state if:

• and for every state of such that we have that

• This means that input identifies the state since: if is produced in
response to we must have been in state , otherwise we must have been in
a different state.

• Thus, is capable of verifying in but not necessarily any other state of .

x/y s

y = λ*(s, x) s′￼ M s ≠ s′￼

λ*(s, x) ≠ λ*(s′￼, x) .

x s y
x s

x s M M

UIOs Example

S2

S1

S3

a/0

a/0

b/0b/1

b/1 a/0

a b ab ba

S1 0 1 00 10

S2 0 0 00 00

S3 0 1 01 10

Find UIO for S3 ?

• Consider the machine on the
right: does S4 have an UIO
sequence? If so, what is it? If
not, why?

Is UIOs enough?

S1 S2

S3S4

a/x

a/x

b/y
b/y

b/x

b/y

a/y
a/y

Characterising Set

• A set of input sequences is a characterising set for if:

• for every pair of states of such that we have some
such that .

• This means that, for each pair of states, there exists at least one input
sequence from that distinguishes them.

• Note: there is always a characterising set for a minimal FSM.

W M

s, s′￼ M s ≠ s′￼ w ∈ W
λ*(s, w) ≠ λ*(s′￼, w)

W

Characterising Set

a b ab ba

S1 0 1 01 11

S2 0 1 01 10

S3 1 1 11 10

S2

S1

S3

a/0

b/1

a/0b/1

b/1 a/1

Testing a Transition

• First, we check whether the source transition is reachable. That is, if we apply
certain sequence, we arrive at the source state.

• Second, we check whether executing the transition from the source state
takes us to the correct target state.

• How do we do this systematically?

Chow’s Method

• This is based on using

• a input set:

• a characterising set:

• a state cover set:

• a reliable reset, and a concatenation operator

• Resulting Test set :

X

W

V

⋅

V ⋅ W ∪ V ⋅ X ⋅ W

•The State Cover Set is a set of
sequences such that each state of

 is reached by a sequence from
.

•For the machine on the right,

V

M
V

V = {ϵ, a, b}

State Cover Set

S2

S1

S3

a/0

b/1

a/1b/0

b/1 a/0

Finding State Transfer Faults

?

?

Finding State Transfer Faults

?

?

V ⋅ W

V ⋅ X ⋅ W

Chow’s Method Example

• Suppose we have and .

• We need :

• Therefore, we get

• we can remove some tests: those that are prefixes of others.

X = {a, b}, V = {ϵ, a, b} W = {a, b}

V ⋅ W ∪ V ⋅ X ⋅ W {ϵ, a, b} ⋅ {a, b} ∪ {ϵ . a . b}{a, b}{a, b}

{a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

Summary

• Testing output faults:

• Transition Tour

• Testing transition faults

• Distinguishing Sequence

• Unique Input/Output Sequences

• Characterising Set

• Further readings:

• D. Lee and M. Yannanakis. Principles and Methods of Testing: Finite State Machines - A Survey.
Proceedings of the IEEE, 84(8):1090--1123, 1996.

• http://people.brunel.ac.uk/~csstrmh/research/fsm_testing.html

http://people.brunel.ac.uk/~csstrmh/research/fsm_testing.html

FSM Exercise

• Generate an input sequence that achieves the transition tour.

• Generate UIO for each state.

S1 S2

S3S4

a/y

b/x

a/xa/yb/x

a/x

b/xb/y

FSM Exercise

• Can you generate UIOs for all states in the following FSM? If so, generate one
for all. If not, explain why.

S1 S2

S3S4

a/x

a/x

b/y
b/y

b/x

b/y

a/y
a/y

