
Shin Yoo | COINSE@KAIST

Black Box Testing &
Combinatorial Interaction Testing
CS453 Automated Software Testing

Black Box Testing

• View program as a black box and ignore the internal structure of the program

Executable Program Test OutputsTest Inputs

Test the behaviour of the program according to its
specifications.

Black Box Testing

• Also known as Functional Testing or Behavioural Testing

• Test data are derived solely from the specifications

• Exhaustive input testing is impossible!

• Recall: you cannot test a program to guarantee that it is error free

Black Box Testing

• Use a small subset of all possible inputs.

• A good set of test inputs with higher probability of finding most errors.

• Approaches

• Random Testing (which can also be white box)

• Equivalence Class Partitioning

• Boundary Value Analysis

Equivalence Partitioning

• Partition the input domain of a program into a finite number of
equivalence classes.

• A Program shows the same behaviour on all elements within an
equivalence class.

A

B

C

D

Equivalence Partitioning

• If one test case in an equivalence class detects an error, all other test
cases in the equivalence class would be expected to find the same error.

• We can select one test from each equivalence class.

A

B

C

Db1

b2

Equivalence Partitioning

• The entire input domain can always be divided into two subsets:

• Expected or legal inputs (E)

• Unexpected or illegal inputs (U)

• E and U can be further subdivided into subsets according to the
specification of the program.

E

U

Equivalence Partitioning

• Consider an application that takes an integer i, which denotes the age of the user:

• E = {0 <= i <=120}

• U = {i < 0 , i > 120}

• Suppose the SUT deals with an insurance policy that divides people into different age group at 20 and 70:

• E1 = {0 <= i <= 20} U1 = {i < 0}

• E2 = {20 < i <=70} U2 = {i > 120}

• E3 = {70 < i <= 120}

• The final test input we get from this partitioning:

• Test inputs I = {-10, 10, 30, 80, 200}

Equivalence Partitioning

• There are many ways to partition an input domain.

• Even from the same equivalence partitioning, two testers might select
different tests from the same class

• Effectiveness may depend on the tester’s experience.

• Partition testing can be better, worse, or the same as random testing,
depending on how the partitioning is done. — E. J. Weyuker and B. Jeng.
Analyzing partition testing strategies. IEEE Transactions on software
Engineering, (7):703–711, 1991.

Off by one error

• Logic errors that involve boundary conditions

• Usually happens due to confusion between “less than” and “less than or
equal to”

• Simple, but actually very common

Off by one: Loops

for (i = 0; i < 10; i++)
{
 /* Body of the loop */
}

Correct

for (i = 1; i < 10; i++)
{
 /* Body of the loop */
}

Incorrect

for (i = 0; i <= 10; i++)
{
 /* Body of the loop */
}

Incorrect

for (i = 0; i < 11; i++)
{
 /* Body of the loop */
}

Incorrect

Off by one: Fenceposts

• Common when counting boundaries between things

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

Things

Boundaries

Off by one: strncat

void foo (char *s)
{
 char buf[15];
 memset(buf, 0, sizeof(buf));
 strncat(buf, s, sizeof(buf)); // should be: sizeof(buf)-1
}

The strncat function in C implicitly
includes the end-of-string null in the
number of characters it copies. If you are
not careful, you can write outside the
array boundary. This has serious security
implications.

Boundary Value analysis

• Assumption: Programmers make mistakes in processing value at and near the
boundaries of equivalent classes.

• Recommendation: sample on and from near the boundaries

E

E

U

U

Equivalence
PartitioningBoundary Value
Analysis

• Used in conjunction with Equivalence Partitioning

• Targets on faults in the program at the boundaries of equivalence classes.

• For example, from our previous example about insurance policy:

• E1 = {0 <= i <= 20} U1 = {i < 0}

• E2 = {20 < i <=70} U2 = {i > 120}

• E3 = {70 < i <= 120}

• Test inputs = {-1,0,1,19,20,21,69,70,71,119,120,121,}

Boundary Value analysis

if(age < 20)
{ ... } // fault
if(age <= 20)
{ ... } // correct

Category Partition

• Most programs have multiple testable attributes, each associated with its
own domain of values

• So we need to identify the distinct attributes that can be varied

• Input

• Environment and/or configuration

• And then systematically generate combinations of values to be tested

Category Partition

• A systematic approach to generate test data from requirements.

Thomas J. Ostrand and Marc J. Balcer, ‘The Category- Partition Method for
Specifying and Generating Functional Tests’, Communications of the ACM,
31(6): 676-686, June 1988.

Requirements
Inputs and

Environment
Objects

CategoriesCategoriesCategories

CategoriesCategoriesCategories

CategoriesCategoriesCategories
Inputs and

Environment
Objects

Parameters and
Environment

Objects

Category Partition Method

1. Analyse specification

2. Identify parameters and environment objects

3. Identify category (each parameter and environment objects)

1. Categories are meaningful characteristics of each parameter and environmental
object.

4. Partition categories

5. Identify constraints

6. Generate test cases

Example

• Command: find

• Syntax: find <pattern> <file>

• Function:

• The find command is used to locate one or more instances of a given pattern in a text
file. All lines in the file that contain the pattern are written to standard output. A line
containing the pattern is written only once, regardless of the number of times the
pattern occurs in it.

• The pattern is any sequence of characters whose length does not exceed the maximum
length of a line in the file. To include a blank in the pattern, the entire pattern must be
enclosed in quotes ("). To include a quotation mark in the pattern, you should escape with
a backslash (\”).

Example

• Command: find

• Syntax: find <pattern> <file>

• Examples:

• find john myfile : displays lines in the file myfile which contain john

• find " john smith " myfile : displays lines in the file my file which
contain the string “ john smith “

• find " john\” smith" myfile : displays lines in the file my file which
contain the string “ john" smith”

Example

• What are the features of this program ?

• What are the parameters and environmental objects?

• For each parameter and environmental object, what are the categories?

Example

• What are the features of this program ?

• To find the occurrence of pattern strings

• To print the corresponding lines

• What are the parameters and environmental objects?

• pattern

• file name

• the actual file

Example

• For each parameter and environmental object, what are the categories?

• Categories are meaningful characteristics of each parameter and
environmental object.

Identify Categories

• For the parameter “pattern”:

• Size

• Quoting

• Embedded blanks

• Embedded quoting

• For the parameter “filename”:

• Validity

• For the environment “file”

• Number of occurrences of the pattern

• Number of occurrences in a single target line

Partition Each Categories

• For the parameter “pattern”:

• For category “size”:

• empty

• single character

• many characters

• longer than any line in the file

Partition Categories

• For the parameter “pattern”:

• For the category “quoting”:

• pattern is quoted

• pattern is not quoted

• pattern is improperly quoted

• For the category “embedded blanks”:

• none

• one embedded blank

• several embedded blanks

• For the category “embedded
quotes”:

• none

• one embedded quote

• several embedded quotes

Partition Categories

• For the parameter “file name”:

• For the category “validity”:

• file exists

• file doesn’t exist

• omitted

• For the environment “file”:

• Number of occurrences of patten

• none

• exactly one

• more than one

• Pattern occurrences on target line

• once

• more than one

Deriving Test Inputs

• How many tests do we have?

• 4 * 3 * 3 * 3 * 3 * 3 * 2 = 1944

• Can we reduce them?

...

• Suppose we’re booking a flight:

• 1 choice (airline)

• 2 choices (city)

• 2 choices (outgoing date)

• 2 choices (return date)

• Total: 8 combinations (1 * 2 * 2 *
2)

Combinatorial Interaction Testing

Airline City Out Return

Jeju Osaka 20 May 27 May

Tokyo 21 May 26 May

• How about testing the entire
Incheon Airport system?

• Possible combinations of city,
out, and return dates:
1,799,736,525

• Combinatorial explosion!

Combinatorial Interaction Testing

Airline City Out Return

79 171 cities 365 days 365 days

Combinatorial Interaction Testing

• Problem: testing all combinations is too expensive.

• Solution: testing all interactions between any set of t parameters. Such a
solution is known as a covering array.

• Definition: A covering array CA(t,k,v) of size N is a table with N rows and k
columns. Each field of CA contains a value in the range 0, … , v − 1. CA has
the following property: every combination of t values between any t
parameters occurs in at least one row. We call t the strength of the covering
array.

Combinatorial Interaction Testing

• CIT Problem: find a minimal test suite that covers all t-way interaction. There
is a tough combinatorial problem at the foundation: minimum size is not easy
to know.

• http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

• Pairwise testing, i.e. CIT with t = 2, is the most widely studied testing
technique.

• You are likely to detect any problem that results from interaction between
two input parameters.

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

Pairwise Testing

Airline City Out Return

Jeju Osaka 20 May 26 May

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 21 May 27 May

Combinations between all possible pairs.

How many rows do you need?

How many rows do you need?

Airline City Out Return

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 20 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 20 May 27 May

Single row can contain multiple pairs!

How about t=3?

3-way testing

Airline City Out Return

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 20 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 21 May 27 May

• Input Partitions

• Configurations

• Software Product Line

• …and any configurable systems

Application Area Web Browser Example

Load content Notify pop-up Cookies Warn before Remember

blocked add-ons install downloads

Allow Yes Allow Yes Yes

Restrict No Restrict No No

Block Block

Justyna Petke Combinatorial Interaction Testing

Car Model Example

Automated Collision Parallel Lateral Forward

Driving Avoidance Parking Range Range

Controller Braking Finder Finder

Included StandardAvoidance Included Included Included

None EnhancedAvoidance None None None

None

Justyna Petke Combinatorial Interaction Testing

Fault Detection

• Is higher strength always better at detecting faults?

• The answer is “it depends on the target program”, but we can analyse the
general trend against a set of known faults. Empirical results state:

• Pairwise testing discovers at least 53% of the known faults.

• 6-way testing discovers 100% of the known faults.

• These numbers are estimates and can only provide relative guidance; the
exact effectiveness will of course vary case by case.

Fault detection

*

results avilable at http://csrc.nist.gov/groups/SNS/acts/ftfi.html

Justyna Petke Combinatorial Interaction Testing

• Suppose there is a fault that can
be detected by the interaction
between “Jeju” and “Tokyo”.

• What is the strategy to detect
this as early as possible using
this 3-way test suite?

Prioritisation

Airline City Out Return

Jeju Osaka 20 May 27 May

Jeju Osaka 21 May 26 May

Jeju Osaka 20 May 26 May

Jeju Osaka 21 May 27 May

Jeju Tokyo 21 May 26 May

Jeju Tokyo 20 May 27 May

Jeju Tokyo 20 May 26 May

Jeju Tokyo 21 May 27 May

• Let’s count the number of new
pairs that we additionally cover
by executing each row.

• We should have prioritised based
on the number of new pairs!

Prioritisation

Airline City Out Return New Pairs

Jeju Osaka 20 May 27 May 6

Jeju Osaka 21 May 26 May 5

Jeju Osaka 20 May 26 May 1

Jeju Osaka 21 May 27 May 1

Jeju Tokyo 21 May 26 May 3

Jeju Tokyo 20 May 27 May 2

Jeju Tokyo 20 May 26 May 0

Jeju Tokyo 21 May 27 May 0

Prioritisation
sed 5-way Example

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (324 Test Cases)

In
te

ra
ct

io
n

C
ov

er
ag

e
sed generated:5 (unordered)

* E�ciency and Early Fault Detection with Lower and Higher Strength Combinatorial Interaction Testing

Justyna Petke Combinatorial Interaction Testing

sed 5-way Example

●●

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (324 Test Cases)

In
te

ra
ct

io
n

C
ov

er
ag

e

sed generated:5 ordered:2

cov. for str. 2 (APCC=97.48)
cov. for str. 3 (APCC=93.28)
cov. for str. 4 (APCC=88.36)
cov. for str. 5 (APCC=83.44)

* E�ciency and Early Fault Detection with Lower and Higher Strength Combinatorial Interaction Testing

Justyna Petke Combinatorial Interaction Testing

Algorithm: Greedy

• Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007, March). IPOG: A
general strategy for t-way software testing. In Engineering of Computer-Based
Systems, 2007. ECBS'07. 14th Annual IEEE International Conference and
Workshops on the (pp. 549-556). IEEE.

• Example: Three parameters: P1, P2, P3

• Values for parameter P1: 0,1

• Values for parameter P2: 0,1

• Values for parameter P3: 0,1,2

• Objective: find a pairwise interaction test suite

Greedy algorithm IPOG-Test (int t, ParameterSet ps)
1. initialize test set ts to be an empty set

2. denote the parameters in ps, in an arbitrary order, as P1, P2,· · · , and Pn

3. add into ts a test for each combination of values of the first t parameters

4. for (int i = t + 1; i  n; i ++){
5. let ⇡ be the set of t-way combinations of values involving

parameter Pi and t-1 parameters among the first i-1 parameters

6. for (each test � = (v1, v2, · · · , vi�1) in test set ts) {
7. choose a value vi of Pi and replace � with

�’ = (v1, v2, · · · , vi�1, vi) so that �’ covers the most number
of combinations of values in ⇡

8. remove from ⇡ the combinations of values covered by �’ }
9. for (each combination ↵ in set ⇡){

10. if (there exists a test that already covers ↵) {
11. remove ↵ from ⇡

12. } else {
13. change an existing test, if possible, or otherwise add a new test

to cover ↵ and remove it from ⇡
} } }

14. return ts;
Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Adding all combinations of values between the first 2 parameters:

P1 P2

0 0
0 1
1 0
1 1

Justyna Petke Combinatorial Interaction Testing

Greedy algorithm IPOG-Test (int t, ParameterSet ps)
1. initialize test set ts to be an empty set

2. denote the parameters in ps, in an arbitrary order, as P1, P2,· · · , and Pn

3. add into ts a test for each combination of values of the first t parameters

4. for (int i = t + 1; i  n; i ++){
5. let ⇡ be the set of t-way combinations of values involving

parameter Pi and t-1 parameters among the first i-1 parameters

6. for (each test � = (v1, v2, · · · , vi�1) in test set ts) {
7. choose a value vi of Pi and replace � with

�’ = (v1, v2, · · · , vi�1, vi) so that �’ covers the most number
of combinations of values in ⇡

8. remove from ⇡ the combinations of values covered by �’ }
9. for (each combination ↵ in set ⇡){

10. if (there exists a test that already covers ↵) {
11. remove ↵ from ⇡

12. } else {
13. change an existing test, if possible, or otherwise add a new test

to cover ↵ and remove it from ⇡
} } }

14. return ts;
Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Set ⇡ = pairs to cover involving P3:

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy algorithm IPOG-Test (int t, ParameterSet ps)
1. initialize test set ts to be an empty set

2. denote the parameters in ps, in an arbitrary order, as P1, P2,· · · , and Pn

3. add into ts a test for each combination of values of the first t parameters

4. for (int i = t + 1; i  n; i ++){
5. let ⇡ be the set of t-way combinations of values involving

parameter Pi and t-1 parameters among the first i-1 parameters

6. for (each test � = (v1, v2, · · · , vi�1) in test set ts) {
7. choose a value vi of Pi and replace � with

�’ = (v1, v2, · · · , vi�1, vi) so that �’ covers the most number
of combinations of values in ⇡

8. remove from ⇡ the combinations of values covered by �’ }
9. for (each combination ↵ in set ⇡){

10. if (there exists a test that already covers ↵) {
11. remove ↵ from ⇡

12. } else {
13. change an existing test, if possible, or otherwise add a new test

to cover ↵ and remove it from ⇡
} } }

14. return ts;
Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Adding values for P3 in ts:

P1 P2 P3

0 0 0
0 1
1 0
1 1

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Adding values for P3 in ts:

P1 P2 P3

0 0 0
0 1 1
1 0
1 1

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Adding values for P3 in ts:

P1 P2 P3

0 0 0
0 1 1
1 0 1
1 1

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Adding values for P3 in ts:

P1 P2 P3

0 0 0
0 1 1
1 0 1
1 1 0

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy algorithm IPOG-Test (int t, ParameterSet ps)
1. initialize test set ts to be an empty set

2. denote the parameters in ps, in an arbitrary order, as P1, P2,· · · , and Pn

3. add into ts a test for each combination of values of the first t parameters

4. for (int i = t + 1; i  n; i ++){
5. let ⇡ be the set of t-way combinations of values involving

parameter Pi and t-1 parameters among the first i-1 parameters

6. for (each test � = (v1, v2, · · · , vi�1) in test set ts) {
7. choose a value vi of Pi and replace � with

�’ = (v1, v2, · · · , vi�1, vi) so that �’ covers the most number
of combinations of values in ⇡

8. remove from ⇡ the combinations of values covered by �’ }
9. for (each combination ↵ in set ⇡){

10. if (there exists a test that already covers ↵) {
11. remove ↵ from ⇡

12. } else {
13. change an existing test, if possible, or otherwise add a new test

to cover ↵ and remove it from ⇡
} } }

14. return ts;
Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Extending ts:

P1 P2 P3

0 0 0
0 1 1
1 0 1
1 1 0

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Extending ts:

P1 P2 P3

0 0 0
0 1 1
1 0 1
1 1 0
0 0 2

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Greedy approach - example

Extending ts:

P1 P2 P3

0 0 0
0 1 1
1 0 1
1 1 0
0 0 2
1 1 2

P1 P2 P3

0 0
0 0

0 1
0 1

0 2
0 2

1 0
1 0

1 1
1 1

1 2
1 2

Justyna Petke Combinatorial Interaction Testing

Algorithm: metaheuristic

• Simulated Annealing, a type of local search algorithm, has been proven to be
effective against CIT

• B. J. Garvin, M. B. Cohen, and M. B. Dwyer. An improved meta-heuristic
search for constrained interaction testing. In 2009 1st International
Symposium on Search Based Software Engineering, pages 13–22, May 2009.

• http://cse.unl.edu/~citportal/

http://cse.unl.edu/~citportal/

Greedy vs. Meta-heuristics

Size comparison (average over 50 runs).

Subject Greedy Meta-heuristics
SPIN-S 27 19
SPIN-V 42 36
GCC 24 21

Apache 42 32
Bugzilla 21 16

*results from: Evaluating improvements to a meta-heuristic search for constrained

interaction testing. Brady J. Garvin et. al, 2011

Justyna Petke Combinatorial Interaction Testing

Greedy vs. Meta-heuristics

Time (sec.) comparison (average over 50 runs).

Subject Greedy Meta-heuristics
SPIN-S 0.2 8.6
SPIN-V 11.3 102.1
GCC 204 1902.0

Apache 76.4 109.1
Bugzilla 1.9 9.1

*results from: Evaluating improvements to a meta-heuristic search for constrained

interaction testing. Brady J. Garvin et. al, 2011

Justyna Petke Combinatorial Interaction Testing

• Booking a flight

Constraints

Airline City Out Return

Jeju Osaka 20 May 27 May

AirFrance Paris

• Pairwise Test suite: what is
wrong?

• Certain combinations should not
be allowed.

Constraints

Airline City Out Return

Jeju Osaka 20 May 27 May

AirFrance Paris 20 May 27 May

Jeju Paris 20 May 27 May

AirFrance Osaka 20 May 27 May

Constraints

• Hard Constraints: the specific combination of parameter values are
prohibited.

• Soft Constraint: not prohibited, but also not necessarily required.

• For example, recall our find example. Any combination that includes an
empty file as an input will throw an exception - no need to execute all other
combinations that is derived from this input.

Constraints

• With real world applications, constraints tend to reduce the size of CIT test suites even
further.

• Sometimes this allows us to use test suites stronger than pairwise.

• J. Petke, M. Cohen, M. Harman, and S. Yoo. Efficiency and early fault detection with
lower and higher strength combinatorial interaction testing. In Proceedings of the
9th joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE
2013, pages 26–36, 2013.

• J. Petke, M. B. Cohen, M. Harman, and S. Yoo. Practical combinatorial interaction
testing: Empirical findings on efficiency and early fault detection. IEEE Transactions
on Software Engineering, 41(9):901– 924, September 2015.

Constraints and Test Suite Generation

• Naive approach: generate an unconstrained test suite, remove violating rows,
fill in, repeat.

• More integrated methods: various techniques first generate disallowed tuples
from constraints and avoid these.

Summary

• Black box testing

• Test the functional behaviour of the program according to the specification

• Equivalence Partitioning + Boundary Value Analysis

• Category Partition Method

• Combinatorial Interaction Testing

• Test interactions between t parameters, instead of all possible
combinations

