
Shin Yoo | COINSE@KAIST

Fundamentals of Testing
CS453 Automated Software Testing

Why are we here again?

• To graduate, yes.

• To find bugs….?

• What happens if we do not find bugs…?

• Here come the textbook examples…

• Rocket developed by European
Space Agency

• Exploded 40 seconds after
launch, resulting in a loss of
about 600M Euros

• Integer overflow!

• http://www.cas.mcmaster.ca/
~baber/TechnicalReports/
Ariane5/Ariane5.htm

Ariane 5

http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm

• Radiation therapy machine,
developed by Atomic Energy of
Canada, Limited

• Replaced hardware safety lock
with a flawed software logic

• Exposed multiple patients to 100
times stronger X-ray, resulting in
fatality and injuries

THERAC-25

• A software bug resulted in
incorrect buy 131 times of the
country’s entire GDP

• http://www.businessweek.com/
articles/2012-11-29/software-
bug-made-swedish-exchange-
go-bork-bork-bork

Swedish Stock Market

http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork

• 625,000 Prius cars recalled in
2015 due to software glitches in
the braking system

• https://www.bbc.com/news/
business-33532673

Toyota Recall

https://www.bbc.com/news/business-33532673
https://www.bbc.com/news/business-33532673

• Software fault believed to be the
root of the problem that
grounded Boeing’s 737 Max in
2019

• Multiple glitches have been
reported since

• https://www.theverge.com/
2020/2/6/21126364/boeing-737-
max-software-glitch-flaw-
problem

Boeing 737 Max

https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem

…and every other software bug you experienced

• KLMS? :)

• Apps on your mobile phones?

• PintOS…?

Software testing: an investigation conducted to provide
stakeholders with information about the quality of the product
or service under test.

Quality?

Magic Moments?

Types of Quality: Dependability

• You should be able to depend on a piece of software. For this, the software
has to be correct, reliable, safe, and robust.

• Correctness: with respect to a well formed formal specification, the software
should be correct

• This usually requires proofs, which are hard for any non-trivial systems

Types of Quality: Dependability

• Reliability: it is not sufficient to be correct every now and then - the software
should have a high probability of being correct for period of time

• We usually assume some usage profile (e.g. reliable when there are more
than 100,000 users online)

• Reliability is usually argued statistically, because it is not possible to
anticipate all possible scenarios

Types of Quality: Dependability

• Safety: there should be no risk of any hazard (loss of life or property)

• Robustness: software should remain (reasonably) dependable even if the
surrounding environment changes or degrades

Types of Quality: Performance

• Apart from functional correctness, software should also satisfy some
performances related expectations

• Execution time, network throughput, memory usage, number of concurrent
users…

• Hard to thoroughly test for, because performance is heavily affected by
execution environment

Types of Quality: Usability

• Do users find the software easy enough to use?

• This is hard to test in a lab setting. Usability testing usually involves focus
groups, beta-testing, A/B testing, etc.

Types of Quality: Ethics?

• Fairness Testing: a growing subfield of software testing, the aim of which is to systematically
evaluate how fair the System Under Test (SUT) is

• Typically applied to AI/ML based systems

• [1] S. Galhotra, Y. Brun, and A. Meliou. Fairness testing: testing software for discrimination. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, aug
2017.

• [2] S. Udeshi, P. Arora, and S. Chattopadhyay. Automated directed fairness testing. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, sep 2018.

• [3] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong, and T. Dai. White-box
fairness testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ACM, jun 2020.

Dimension for Automation

• Certain types of quality is easier to automatically test than others

• Relatively easier and widely studied: dependability, reliability…

• Relatively harder and more cutting edge: usability, non-functional
performance, security…

Faults, Error, Failure

• The purpose of testing is to eradicate all of these.

• But how are they different from each other?

• Fault : an anomaly in the source code of a program that may lead to an error

• Error: the runtime effect of executing a fault, which may result in a failure

• Failure: the manifestation of an error external to the program

Terminology

Dynamic vs. Static

• Note that both error and failure are runtime events.

• Testing is a form of dynamic analysis - we execute the program to see if it
behaves correctly

• To check the correctness without executing the program is static analysis -
you will see this in the latter half of this course

from IEEE Standard 729-1983, IEEE Standard Glossary of Software Engineering Terminology

Fault vs. Error vs. Failure

Fault Error Failure

Success

https://ieeexplore.ieee.org/document/7435207

https://ieeexplore.ieee.org/document/7435207

• No error, no failure

• The loop is never executed, the loop variable is never incremented

Test Input #1
input: rgInt [], size 0
output: rgInt []

void rotateLeft (int* rgInt, int size)
{
 int i;
 for (i = 0; i < size; i++)
 {
 rgInt[i] = rgInt[i+1];
 }
}

C program taking an array of
integers and ‘rotating’ the
values one position to the
left, with wraparound.

Fault vs. Error vs. Failure 

• Error, but no failure.

• Error: The loop accesses memory outside the array

•But the output array is coincidentally correct

Test Input #2
input: rgInt [0, 1] 0, size 2
output: rgInt [1, 0] 0

void rotateLeft (int* rgInt, int size)
{
 int i;
 for (i = 0; i < size; i++)
 {
 rgInt[i] = rgInt[i+1];
 }
}

Fault vs. Error vs. Failure

• Failure!

Test case 3
input: rgInt [0,1] 66, size 2
output: rgInt [1,66] 66

Fault vs. Error vs. Failure 

void rotateLeft (int* rgInt, int size)
{
 int i;
 for (i = 0; i < size; i++)
 {
 rgInt[i] = rgInt[i+1];
 }
}

• But what exactly is the fault?

• The loop indexes rgInt outside its bounds

• The loop never moves rgInt[0] to another position

• The loop never saves rgInt[0] for later wraparound

• There are also multiple possible fixes

• The fix actually determines what the fault was!

• You can pass all test cases and still be incorrect.

• You can execute the faulty statement and still pass (“coincidental correctness”).

Fault vs. Error vs. Failure

void rotateLeft (int* rgInt, int size)
{
 int i;
 for (i = 0; i < size; i++)
 {
 rgInt[i] = rgInt[i+1];
 }
}

• Test Input: a set of input values that are used to execute the given program

• Test Oracle: a mechanism for determining whether the actual behaviour of a test input execution matches the
expected behaviour

• In general, a very difficult and labour-intensive problem

• Test Case: Test Input + Test Oracle

• Test Suite: a collection of test cases

• Test Effectiveness: the extent to which testing reveals faults or achieves other objectives

• Testing vs. Debugging: testing reveals faults, while debugging is used to remove a fault

More Terminology

Why is testing hard?

You Can’t Always Get What You Want

Decision

Procedure

Property

Program

Pass/Fail

Ever

• Correctness properties are undecidable: Having
one decision procedure is out of question.

• The Halting Problem can be embedded
in almost every property of interest!

Exhaustive Testing

• Can we test each and every program with all possible inputs, and guarantee
that it is correct every time? Surely then it IS correct.

• In theory, yes - this is the fool-proof, simplest method… or is it?

• Consider the triangle program

• Takes three 32bit integers, tells you whether they can form three sides of a
triangle, and which type if they do.

• How many possible inputs are there?

• 32bit integers: between -231 and
231-1, there are 4,294,967,295
numbers

• The program takes three: all
possible combination is close to
828

• Approximated number of stars in
the known universe is 1024

• Not. Enough. Time. In. The.
Whole. World.

Exhaustive Testing

우주 전체의 별 갯수(추정):
약 10의 24승개

프로그래밍 초보도 만들 수 있는 프로그램의
가능한 모든 입력값: 약 8의 28승개Number of

stars in the universe
Number of

inputs for a program

that can be the coursework

for Programming 101

• “Testing can only prove the presence of bugs, not their absence.” — Edsger W. Dijkstra

• Is it true?

A Famous (or Infamous) Quote

Test Input #1
(x, y) = (2, 1)

int testMe (int x, int y)
{
 return x / y;
}

What is the “bug”?

Dijkstra vs. Testing

Test Input #2
(x, y) = (1, 2)

Test Input #3
(x, y) = (1, 0)

• “Testing can only prove the presence of bugs, not their absence.” — Edsger W. Dijkstra

• An oft-repeated disparagement of testing that ignored the many problems of his favoured alternative

(formal proofs of correctness)

• But the essence of the quote is true:

• Testing allows only a sampling of an enormously large program input space

• The difficulty lies in how to come up with effective sampling

A Famous (or Infamous) Quote

We still keep on testing…

• Imagine you have two choices when boarding a flight

• Flight control for airplane A has never been proven to work, but it has been
tested with a finite number of test flights

• Flight control for airplane B has never been executed in test flight, but it has
been statically verified to be correct

• My personal belief is that testing (as in trial and error) is still fundamentally of
the most basic human nature

• Certain things - for example, energy consumption - can only be tested and not
verified

Test Oracle

• In the example, we immediately know something is wrong when we set y to 0:
all computers will treat division by zero as an error

• What about those faults that forces the program to produce answers that are
only slightly wrong?

• For every test input, we need to have an “oracle” - something that will tell us
whether the corresponding output is correct or not

• Implicit oracles: system crash, unintended infinite loop, division by zero, etc -
can only detect a small subset of faults!

Bug Free Software?

• However I'm constantly hearing business people spout off with "It's
understood that software will be bug free, and if it's not all bugs should be
fixed for free". I typically respond with "No, we'll fix any bugs found in the UAT
period of (x) weeks" where x is defined by contract. This leads to a lot of
arguments, and loss of work to people who are perfectly willing to promise
the impossible.

• http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-
cost-of-bug-free

http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-cost-of-bug-free
http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-cost-of-bug-free

• Sometimes requires purely
analytic approaches,
investigating the structure that is
the source code.

Automated Testing

• Sometimes requires purely
analytic approaches,
investigating the structure that is
the source code.

Good Testing

• Sometimes requires either a
thorough knowledge of the
domain, or a very imaginative,
inquisitive, and creative mind.

Good Testing

Good Testing

• Sometimes requires either a thorough knowledge of the domain, or a very
imaginative, inquisitive, and creative mind.

Why study/research testing?

• All the utilitarian reasons (correctness, safety, usability, fairness…)

• But it can also be very fun detective work, finding the balance between:

• What the developer intended (no one knows…)

• What the source code says

• What the comment / documentation says

• What other code typically does in a similar situation

• What can be predicted statically

• What can be observed dynamically

• There is no fixed recipe that works always.

• There is currently no technique that can understand the expected semantic of
the system - we need both automation and human brain.

• You need to understand the pros and cons of each technique so that you can
apply.

• There are two major classes of testing techniques:

• Black-box: tester does not look at the code

• White-box : tester does look at the code

Testing Techniques

Random Testing

• Can be both black-box or white box

• Test inputs are selected randomly

• Pros:

• Very easy to implement, can find real faults

• Cons:

• Can take very long to achieve anything, can be very dumb

• Black-box technique

• Tester only knows the input specification of the program.

• How do you approach testing systematically?

• The same principle applies to testing a single program in many different
environments.

Combinatorial Testing

• White-box technique.

• The adequacy of testing is measured in terms of structural units of the
program source code (e.g. lines, branches, etc).

• Necessary but not sufficient (yet still not easy to achieve).

Structural Testing

• White-box technique.

• A subclass of structural testing: we artificially inject faults and see if our
testing can detect them.

• Huge potential but not without challenges.

Mutation Testing

• Can be both black- and white-box.

• A type of testing that is performed to gain confidence that the recent
modifications did not break the existing functionalities.

• Increasingly important as the development cycle gets shorter;
organisations spend huge amount of resources.

Regression Testing

Recap

• Differences between fault, error and failure

• Why is testing difficult?

• What is a test oracle?

