Fundamentals of lTesting

CS453 Automated Software Testing

Shin Yoo | COINSE@KAIST

Why are we here again?

* [o graduate, yes.
* Jo find bugs....?
 What happens if we do not find bugs...?

 Here come the textbook examples...

Ariane 5

 Rocket developed by European
Space Agency

 Exploded 40 seconds after
launch, resulting in a loss of
about 600M Euros

* |Integer overflow!

e http://www.cas.mcmaster.ca/
~baber/TechnicalReports/
Ariane5/Ariane5.htm

http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm
http://www.cas.mcmaster.ca/~baber/TechnicalReports/Ariane5/Ariane5.htm

THERAC-25

 Radiation therapy machine,
developed by Atomic Energy of
Canada, Limited

* Replaced hardware safety lock
with a flawed software logic

 Exposed multiple patients to 100
times stronger X-ray, resulting in
fatality and injuries

Swedish Stock Market

* A software bug resulted in
iIncorrect buy 131 times of the
country’s entire GDP

o http://www.businessweek.com/
articles/2012-11-29/software-
bug-made-swedish-exchange-
go-bork-bork-bork

http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork
http://www.businessweek.com/articles/2012-11-29/software-bug-made-swedish-exchange-go-bork-bork-bork

Toyota Recall

* 625,000 Prius cars recalled in
2015 due to software glitches in
the braking system

e https://www.bbc.com/news/
business-33532673

https://www.bbc.com/news/business-33532673
https://www.bbc.com/news/business-33532673

Boeing 737 Max

o Software fault believed to be the
root of the problem that
grounded Boeing’s 737 Max In
2019

 Multiple glitches have been
reported since

e https://www.theverge.com/
2020/2/6/21126364/boeing-/37 -
max-software-glitch-flaw-
problem

https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem

...and every other software bug you experienced

e KLMS? :)
* Apps on your mobile phones?

e PIintOS...7?7

Software testing: an conducted to provide
stakeholders with information about the quality of the product
or service under test.

Quality?
Magic Moments?

Sﬂee[

Over7§ yecars of

*h\aglc momentf

Types of Quality: Dependability

* You should be able to depend on a piece of software. For this, the software
has to be correct, reliable, safe, and robust.

* Correctness: with respect to a well formed formal specification, the software
should be correct

* This usually requires proofs, which are hard for any non-trivial systems

Types of Quality: Dependability

* Reliability: it is not sufficient to be correct every now and then - the software
should have a high probability of being correct for period of time

* We usually assume some usage profile (e.g. reliable when there are more
than 100,000 users online)

* Reliability is usually argued statistically, because it is not possible to
anticipate all possible scenarios

Types of Quality: Dependability

o Safety: there should be no risk of any hazard (loss of life or property)

 Robustness: software should remain (reasonably) dependable even if the
surrounding environment changes or degrades

Types of Quality: Performance

* Apart from functional correctness, software should also satisfy some
performances related expectations

* Execution time, network throughput, memory usage, number of concurrent
users...

 Hard to thoroughly test for, because performance is heavily affected by
execution environment

Types of Quality: Usability

* Do users find the software easy enough to use?

* This is hard to test in a lab setting. Usability testing usually involves focus
groups, beta-testing, A/B testing, etc.

Types of Quality: Ethics?

* Fairness Testing: a growing subfield of software testing, the aim of which is to systematically
evaluate how fair the System Under Test (SUT) is

* Typically applied to Al/ML based systems

e [1] S. Galhotra, Y. Brun, and A. Meliou. Fairness testing: testing software for discrimination. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, aug
2017.

* [2] S. Udeshi, P. Arora, and S. Chattopadhyay. Automated directed fairness testing. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, sep 2018.

* [3] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong, and T. Dai. White-box
fairness testing through adversarial sampling. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ACM, jun 2020.

Dimension for Automation

* Certain types of quality is easier to automatically test than others
* Relatively easier and widely studied: dependability, reliability...

* Relatively harder and more cutting edge: usability, non-functional
performance, security...

Faults, Error, Failure

* The purpose of testing is to eradicate all of these.

 But how are they different from each other?

Terminology

 Fault : an anomaly in the source code of a program that may lead to an error
* Error: the runtime effect of executing a fault, which may result in a failure

* Failure: the manifestation of an error external to the program

Dynamic vs. Static

* Note that both error and failure are runtime events.

* Jesting is a form of dynamic analysis - we execute the program to see if it
behaves correctly

* [o check the correctness without executing the program is static analysis -
you Will see this in the latter half of this course

Fault vs. Error vs. Failure

Failure

Success

from IEEE Standard 729-1983, IEEE Standard Glossary of Software Engineering Terminology

https://ieeexplore.ieee.org/document/7435207

https://ieeexplore.ieee.org/document/7435207

Fault vs. Error vs. Fallure

* No error, no failure

* The loop Is never executed, the loop variable is never incremented

volid rotateLeft (int* rgInt, int size)

{ . ‘
int 1;
ior (1 =07 1< size; 1t4) C program taking an array of
rgInt[i] = rgInt[i+l]; integers and ‘rotating’ the
} ; values one position to the

left, with wraparound.

Test Input #1
input: rgInt [], size O
output: rgInt []

Fault vs. Error vs. Failure

* Error, but no failure.
* Error. The loop accesses memory outside the array

e But the output array Is coincidentally correct

volid rotatelLeft (int* rgInt, int size)

{
int 1i;
for (1 = 0; 1 < size; 1++) Test Input #2
{ input: rgInt [0, 1] 0, size 2
rgInt[1i] = rgInt[i+1l]; output: rgInt [1, 0] O
}

}

Fault vs. Error vs. Fallure

e Fallure!

void rotateLeft (int* rgInt, int size)

{
int 1i;
for (1 = 0; 1 < size; 1i++)
{
rgInt[i] = rgInt[i+l];
}

}

Fault vs. Error vs. Failure

* But what exactly is the fault? void rotateLeft (int* rgInt, int size)
 The loop indexes rgInt outside its bounds { N
 The loop never moves rgInt[0] to another position for (i = 0; i < size; i++)
 The loop never saves rgInt[0] for later wraparound { rgInt[i] = rgInt[i+1];

}

* There are also multiple possible fixes }

* The fix actually determines what the fault was!

* You can pass all test cases and still be incorrect.
* You can execute the faulty statement and still pass (“coincidental correctness”).

More Terminology

* Test Input: a set of input values that are used to execute the given program

e Test Oracle: a mechanism for determining whether the actual behaviour of a test input execution matches the
expected behaviour

* |n general, a very difficult and labour-intensive problem
 Test Case: Test Input + Test Oracle
* Test Suite: a collection of test cases
* Test Effectiveness: the extent to which testing reveals faults or achieves other objectives

* Testing vs. Debugging: testing reveals faults, while debugging is used to remove a fault

Why is testing hard?

Ever

You Can’t Always Get What You Want

—1
— =

e Correctness properties are undecidable: Having
one decision procedure is out of question.

® The Halting Problem can be embedded
in almost every property of interest!

Exhaustive Testing

 Can we test each and every program with all possible inputs, and guarantee
that it is correct every time? Surely then it IS correct.

* |n theory, yes - this is the fool-proof, simplest method... oris it?
* Consider the triangle program

* Jakes three 32bit integers, tells you whether they can form three sides of a
triangle, and which type if they do.

« How many possible inputs are there?

Exhaustive Testing

e 32DbIt Integers: between -231 and
231-1. there are 4,294,967,295

numbers

* The program takes three: all
possible combination is close to
828

o Approximated number of stars Iin
the known universe is 1024

 Not. Enough. Time. In. The.
Whole. World.

Number of
stars Iin the universe

Number of
iInputs for a program
that can be the coursework
for Programming 101

A Famous (or Infamous) Quote

* “Testing can only prove the presence of bugs, not their absence.” — Edsger W. Dijkstra
e |sittrue?

Dijkstra vs. Testing

int testMe (int x, 1int y)

{ What is the “bug”?

return x / y;

}

Test Input #1 Test Input #2 Test Input #3
(X, ¥y) = (2, 1) (x, ¥y) = (1, 2) (x, y) = (1, 0)

A Famous (or Infamous) Quote

* “Testing can only prove the presence of bugs, not their absence.” — Edsger W. Dijkstra

* An oft-repeated disparagement of testing that ignored the many problems of his favoured alternative
(formal proofs of correctness)

 But the essence of the quote is true:
* Testing allows only a sampling of an enormously large program input space
* The difficulty lies in how to come up with effective sampling

We still keep on testing...

* Imagine you have two choices when boarding a flight

* Flight control for airplane A has never been proven to work, but it has been
tested with a finite number of test flights

* Flight control for airplane B has never been executed in test flight, but it has
been statically verified to be correct

My personal belief is that testing (as in trial and error) is still fundamentally of
the most basic human nature

» Certain things - for example, energy consumption - can only be tested and not
verified

Test Oracle

* |n the example, we immediately know something is wrong when we set y to O:
all computers will treat division by zero as an error

 What about those faults that forces the program to produce answers that are
only slightly wrong?

* For every test input, we need to have an “oracle” - something that will tell us
whether the corresponding output is correct or not

* |mplicit oracles: system crash, unintended infinite loop, division by zero, etc -
can only detect a small subset of faults!

Bug Free Software?

 However |'m constantly hearing business people spout off with "lt's
understood that software will be bug free, and if it's not all bugs should be
fixed for free". | typically respond with "No, we'll fix any bugs found in the UAT
period of (X) weeks" where x is defined by contract. This leads to a lot of
arguments, and loss of work to people who are perfectly willing to promise
the Impossible.

» http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-
cost-of-bug-free

http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-cost-of-bug-free
http://stackoverflow.com/questions/2426623/exhaustive-testing-and-the-cost-of-bug-free

Automated Testing

[sensor.h]

 Sometimes requires purely
analytic approaches,
Investigating the structure that is
the source code.

int64_t read();

[controller.h]

void set_inputl(intl6_t arg);

[controller.c]
"sensor.h"
"controller.h"

value = read();
set_input(value);

Good Testing

[sensor.h]

 Sometimes requires purely
analytic approaches,
Investigating the structure that is
the source code.

int64_t read();

[controller.h]

void set_inputl(intl6_t arg);

[controller.c]
"sensor.h"
"controller.h"

value = read();
set_input(value);

Good Testing

DONT MISS: Android upgrade downslide: Damning data in 3 charts - Windows 10 spring 2018 update: Key enterprise features - Mingis on Tech - Resources/White Pzpers O @ Q
oo

= COMPUTERWORLD — s

FROM IDG

e SorIr
thorz .

dom Zune chokes on leap-year bug

|an The bug disabled the players on Dec. 31, the last day of a leap year
O0PO0OO0O0OOO0

By Robert McMi

IDG News Service

Home > Mobile

Microsoft Corp.'s Zune 30GB music player just wasn't ready for a leap year. —— MORELIKETHIS —

That's what owners of the devices discovered Wednesday morning when Zune misery mystery solvec

they awoke to find their players frozen and unworkable. Microsoft offers official fix for failing Zunes

The problem turned out to be "a bug in the internal clock driver related to Zunes crash en masse

the way the device handles a leap year,” Microsoft Zune spokesman Matt

VIDEO
Akers said in a posting to Zune forums Wednesday. The issue does not E Mingis on Tech: A preview of
affect all Zune players, but all models of the Zune 30GB are potentially Mobile World Congress 2018

affected, he said.

Zune is Microsoft's alternative to Apple's popular iPod devices.

Good Testing

 Sometimes requires either a thorough knowledge of the domain, or a very
iImaginative, inquisitive, and creative mind.

(special_days)
result = "Day did not exist.";

(leapflag && 1is_september && day>13)

result = dayName((addMonths(month,year)+
(--day)+firstJanuary(year)+10)%7);

Why study/research testing?

* All the utilitarian reasons (correctness, safety, usability, fairness...)

 But it can also be very fun detective work, finding the balance between:
 What the developer intended (no one knows...)
 What the source code says
 What the comment / documentation says
 What other code typically does in a similar situation
 What can be predicted statically

 What can be observed dynamically

Testing Techniques

* There is no fixed recipe that works always.

* There is currently no technique that can understand the expected semantic of
the system - we need both automation and human brain.

* You need to understand the pros and cons of each technique so that you can
apply.

* There are two major classes of testing techniques:

e Black-box: tester does not look at the code

e White-box : tester does look at the code

Random Testing

* Can be both black-box or white box
» [est inputs are selected randomly
* Pros:
* \ery easy to implement, can find real faults
* Cons:

 Can take very long to achieve anything, can be very dumb

Combinatorial Testing

* Black-box technique
» Tester only knows the input specification of the program.
 How do you approach testing systematically?

* The same principle applies to testing a single program in many different
environments.

Structural Testing

 White-box technique.

* The adequacy of testing is measured in terms of structural units of the
program source code (e.g. lines, branches, etc).

* Necessary but not sufficient (yet still not easy to achieve).

Mutation Testing

 White-box technique.

* A subclass of structural testing: we artificially inject faults and see if our
testing can detect them.

* Huge potential but not without challenges.

Regression Testing

 Can be both black- and white-box.

* A type of testing that is performed to gain confidence that the recent
modifications did not break the existing functionalities.

* Increasingly important as the development cycle gets shorter;
organisations spend huge amount of resources.

Recap

e Differences between fault, error and failure
 Why is testing difficult?

e What is a test oracle?

