CS453: Automated
Software Testing

Admins & Introduction

(A

(CAN T SHOW
. YOU SOME -

- THING THAT
u
.» \‘I M ?RQUD OF 3/'

) I
‘//.

7 N\) _

I AUTOMATED \ ’ \ |
2 A TASK THAT USED | WELL , WELL,

TO TAKE ME THREE | WELL. ISNT
g | HOURS.) THAT Jgsr
v - \ LIKE You? | F
: \LIKE Your_
ol
E

— —

{ DID YOU JUST TURN |
MY BRILLIANT
ACCOMPLISHMENT
INTO A CHARACTER

|
|
1

/7
QiSOURCEFULa
\ [4

>
LETS

JUsT
FORGET

THE

WHOLE J—

Shin Yoo
COINSE@KAIST

* Professor, KAIST
* Assistant Professor, UCL, UK (2012~2015)

 PhD from King’s College London, supervised by
Prof. Mark Harman

* Associate Editor at ACM Transactions on
Software Engineering and Methodology
(TOSEM) Springer Journal of Empirical Software
Engineering (EMSE), and Springer Genetic
Programming and Evolvable Machines (GPEM)

 |EEE International Conference on Software
Testing, Verification & Validation - Steering
Committee Chair

* ICSE 2024 Area Co-chair - Testing and Analysis

Computational Intelligence for SE

* At the intersection of machine
intelligence and software
engineering

e Traditional root in the use of
optimisation for SE tasks (i.e.,
search-based software
engineering)

» (Gradually adopting more deep
learning and NLP into the fold

Computational Intelligence

Local Search
Genetic Algorithm

Genetic Programming

Machine Learning
Monte Carlo Method

Search-Based

Software Engineering

Optimise

Formulate software
engineering
problems as
optimisation

and apply
computational
intelligence.

Unbiased

Support decision
making process
with quantitative
and data-driven
alternative
solutions.

Software Engineering

Automated Test Generation
Software Self-Adaptation
Fault Localisation
Regression Testing

Code Transplantation

Automate Insight

Automate SE tasks Provide insights

so that human into problem spaces
engineers can focus that are too large

on high level and complicated for
abstraction. human engineers to
Machines are good navigate unguided.
at trial and error.

CS453: Automated Software Testing

* We focus on various concepts and techniques in automated software testing
and debugging.

* We will cover the mainstream software testing techniques: most of them
have a heavy emphasis on automation (we will see why).

* With an emphasis on learning how to do meta programming.

Class Communication

* We are trying out Slack workspace as the class communication channel this
semester.

* All class announcements, as well as Q&A, will take place on a dedicated workspace:
https://cs453-2025-spring.slack.com.

 You must join! It is strongly recommended that you install either a desktop or a
mobile client, to get notifications. Invitation link has been sent in an email from KLMS.

 When you join, use “[Full Name|([STUDENT ID #])” as your username, e.g., “Shin Yoo
(20201234)”.

* #questions for questions, #teams for finding teammates, #random for jokes and
memes, #general for anything else

https://cs453-2025-spring.slack.com

Schedule

* Please refer to http://coinse.qithub.io/teaching/2025/cs453

* | have pre-committed conference attendances: ICST and ICSE

http://coinse.github.io/teaching/2025/cs453

Grading

o« CS453 got rid of exams in 2024, instead, we put more focus on implementing
stuffs.

 50% Assignments (five, each with varying grades)
« 30% Course Project

e 20% Quiz (will take place at random time)

Requirements

» Strong programming skills: you are required to actively contribute to group
and individual project, which involves serious implementation. There will be
also a number of hands-on sessions where we will program together during
the class.

* Unix/Linux-savvy: you should be familiar with the usual build tools and Unix/
Linux command line environments.

* Git-aware: you will be required to submit a github repository as part of your
project deliverable. Plus, all coursework will be handled on GitHub
Classroom.

Requirements

» |deally, CS350 Introduction to Software Engineering.

» Lifecycle activities: requirements engineering, design, modelling,
Implementation, integration, testing, evolution

* EXxperience of software design and programming (you will do some)
* Also, a computer, as we will do some live coding and hands-on activities.

e |f this is an issue, please contact me via email.

Assignments

* All five assignments will be handled by GitHub Classroom:
* You will be given public test cases that you can freely execute

» All assignments are to be done individually.

Assignments

* Assignment O: onboarding to GitHub Classroom - due March 4th (no marks)
* Assignment 1: Introduction to Metaprogramming - due March 13th (5%)

* Assignment 2: Coverage Profiler - due April 10th (20%)

* Assignment 3: Concolic Engine - due May 8th (15%)

* Assignment 4: Mutation Analysis - due May 22th (10%)

* Assignment 5: Hierarchical Delta Debugging - due June 10th (10%)

 Assignment O is open now; 1~5 will be open later, asap.

Assignments

* All assignments will come with grading test cases for GitHub Classroom:
these will make up for 60% of the grade reserved to that assignment

 The remaining 40% is based on report and coding quality.

* Report quality: good writing and formatting, detailed description of what was
done, etc

 Coding quality: good formatting, helpful commenting whenever appropriate,
good design / architecture, interesting and meaningful algorithmic extensions,
elc

Projects and Teams

* Project: implement, and evaluate, an automated software testing technique and
report the findings

 Submission and participation: | will receive a GitHub repository as a deliverable,
and | expect to see everyone contributing to the project implementation.

 Don’t say “we worked on a single machine, which is why all commits are
from X”

 Don’t say “l just worked on documentation and presentation”

* Until the number of remaining people makes it necessary, | intend to only
accept teams of four people.

Projects and Teams

 We will start talking about teams once course registration is final - after those
who want to drop actually drop :)

* |nstead of mid-term, you will submit one page document of project ideas;
after mid-term, you will read each other’s project ideas and form teams.

o Start thinking about what you want to implement now; feel free to discuss
with me.

Basic Rules

* CS453 does not allow any use of generative Al models. Do your own thinking and
programming.

* All assignments and reports are to be written and submitted in English.

 CS453 uses GitHub Classroom to collect assignment deliverables. Assignments
should be pushed to the branch main (NOT master).

* Reports should be submitted in PDF format: do not submit raw Markdown files, text
files, MS Word files, etc.

 Late submissions are allowed for one extra week from the deadline, and a penalty

multiplier of 0.7 will be applied. Submissions thare are more than one week late will not
be graded.

What is software testing?

Old Korean Saying

e “Try tapping the bridge before
YOU Cross, even if it is made of
stone (BLIE|E FEED ZLH2])”

 Roughly equivalent to “look
before you leap” but... why

tapping? :)

How do we know whether a software system is correct?
Rationalists vs. Empiricists

o
-

N T
5o - T

“It is correct because | proved that certain “It is correct because | tried it several
errors do not exist in the system” times and it ran okay”

(Formal Verification) (Software Testing)

How do we know whether a software system is correct?
Rationalists vs. Empiricists

static dynamic

Static Analysis

Overapproximation

* A nailve static analysis will raise
. foo(n):
an alarm for division by zero
here. (bar(n))

* Not being naive Is expensive.

bar(a):
42 / a

Dynamic Analysis

Underapproximation

* [esting inherently under-
approximates program behaviour
because we only make a partial
observation (of the entire space
of possible behaviour).

bar(a):
42 / a

test bar():
bar(42)

1

Why do we still keep doing it? :)

Learning Objectives

 Know fundamental concepts, principles, activities and techniques for
software validation and be able to justify appropriate use of techniques for a

particular project

 Understand a range of approaches to testing that can be applied to software
systems and can apply them appropriately

* Appreciate the limitations of the current tools and have insights in ongoing
research topics to overcome them

Assignment O Iis due next
Tuesday!

References

e Strictly recommended for your reference: we do not teach these books and these books do not contain
answers to this course.

 Paul Ammann and Jeff Offutt. Introduction to Software Testing (2nd Ed.)

* Andreas Zeller. Why Programs Fail (2nd Ed.)

* Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE transactions on
software engineering, 37(5):649-678.

 P. McMinn. Search-based software test data generation: A survey. Software Testing, Verification and
Reliability, 14(2):105-156, June 2004.

