
CS453: Automated 
Software Testing
Admins & Introduction



COINSE@KAIST

• Associate Professor, KAIST


• Assistant Professor, UCL, UK (2012~2015)


• PhD from King’s College London, supervised by 
Prof. Mark Harman


• Associate Editor at ACM Transactions on 
Software Engineering and Methodology 
(TOSEM) Springer Journal of Empirical Software 
Engineering (EMSE), and Springer Genetic 
Programming and Evolvable Machines (GPEM)


• IEEE International Conference on Software 
Testing, Verification & Validation - Steering 
Committee Chair


• ICSE 2024 Area Co-chair - Testing and Analysis

Shin Yoo

2



Computational Intelligence for SE

3

• At the intersection of machine 
intelligence and software 
engineering


• Traditional root in the use of 
optimisation for SE tasks (i.e., 
search-based software 
engineering)


• Gradually adopting more deep 
learning and NLP into the fold



CS453: Automated Software Testing

• We focus on various concepts and techniques in automated software testing 
and debugging.


• We will cover the mainstream software testing techniques: most of them 
have a heavy emphasis on automation (we will see why).


• With an emphasis on learning how to do meta programming.



Class Communication

• We are trying out Slack workspace as the class communication channel this 
semester.


• All class announcements, as well as Q&A, will take place on a dedicated workspace: 
https://cs453-2024-spring.slack.com.


• You must join! It is strongly recommended that you install either a desktop or a 
mobile client, to get notifications. Invitation link has been sent in an email from KLMS.


• When you join, use “[Full Name]([STUDENT ID #])” as your username, e.g., “Shin Yoo 
(20201234)”.


• #questions for questions, #teams for finding teammates, #random for jokes and 
memes, #general for anything else

https://cs453-2024-spring.slack.com


Learning Objectives

• Know fundamental concepts, principles, activities and techniques for 
software validation and be able to justify appropriate use of techniques for a 
particular project


• Understand a range of approaches to testing that can be applied to software 
systems and can apply them appropriately


• Appreciate the limitations of the current tools and have insights in ongoing 
research topics to overcome them



Schedule

• Please refer to http://coinse.github.io/teaching/2024/cs453


• Spring 2024 courses will be physical.


• I have pre-committed conference attendances


• one during mid-term week, so no skipped lectures


• another potential one in late May (will update the schedule)

http://coinse.github.io/teaching/2024/cs453


Grading

• CS453 gets rid of exams in 2024; instead, we put more focus on 
implementing stuffs.


• 60% Assignments (five, each with varying grades)


• 30% Course Project


• 10% Quiz



Requirements

• Strong programming skills: you are required to actively contribute to group 
and individual project, which involves serious implementation. There will be 
also a number of hands-on sessions where we will program together during 
the class.


• Unix/Linux-savvy: you should be familiar with the usual build tools and Unix/
Linux command line environments.


• Git-aware: you will be required to submit a github repository as part of your 
project deliverable. Plus, all coursework will be handled on GitHub 
Classroom.



Requirements

• Ideally, CS350 Introduction to Software Engineering.


• Lifecycle activities: requirements engineering, design, modelling, 
implementation, integration, testing, evolution


• Experience of software design and programming (you will do some)


• Also, a computer, as we will do some live coding and hands-on activities.


• If this is an issue, please contact me via email.



Assignments

• All five assignments will be handled by GitHub Classroom:


• You will be given public test cases that you can freely execute


• All assignments are to be done individually.



Assignments

• Assignment 0: onboarding to GitHub Classroom - due March 4th (no marks)


• Assignment 1: Introduction to Metaprogramming - due March 13th (5%)


• Assignment 2: Coverage Profiler - due April 10th (20%)


• Assignment 3: Concolic Engine - due May 8th (15%) 

• Assignment 4: Mutation Analysis - due May 22th (10%) 

• Assignment 5: Hierarchical Delta Debugging - due June 10th (10%) 

• Assignment 0 is open now; 1~5 will be open later, asap.



Assignments

• All assignments will come with grading test cases for GitHub Classroom: 
these will make up for 60% of the grade reserved to that assignment


• The remaining 40% is based on report and coding quality.


• Report quality: good writing and formatting, detailed description of what was 
done, etc


• Coding quality: good formatting, helpful commenting whenever appropriate, 
good design / architecture, etc



Projects and Teams

• Project: implement, and evaluate, an automated software testing technique and 
report the findings


• Submission and participation: I will receive a GitHub repository as a deliverable, 
and I expect to see everyone contributing to the project implementation.


• Don’t say “we worked on a single machine, which is why all commits are 
from X”


• Don’t say “I just worked on documentation and presentation”


• Until the number of remaining people makes it necessary, I intend to only 
accept teams of four people.



Projects and Teams

• We will start talking about teams once course registration is final - after those 
who want to drop actually drop :)


• Instead of mid-term, you will submit one page document of project ideas; 
after mid-term, you will read each other’s project ideas and form teams.


• Start thinking about what you want to implement now; feel free to discuss 
with me.



What is software testing?



• “Try tapping the bridge before 
you cross, even if it is made of 
stone (돌다리도 두드려보고 건너라)”


• Roughly equivalent to “look 
before you leap” but… why 
tapping? :)

Old Korean Saying



How do we know whether a software system is correct?
Rationalists vs. Empiricists

“It is correct because I tried it several

times and it ran okay” 

(Software Testing)

“It is correct because I proved that certain

errors do not exist in the system” 

(Formal Verification)



How do we know whether a software system is correct?
Rationalists vs. Empiricists

dynamicstatic



Overapproximation

• A naive static analysis will raise 
an alarm for division by zero 
here.


• Not being naive is expensive.

Static Analysis

def foo(n): 
    if n > 0: 
        print(bar(n)) 
    else: 
        return 
  
def bar(a): 
    return 42 / a



Underapproximation

• Testing inherently under-
approximates program behaviour 
because we only make a partial 
observation (of the entire space 
of possible behaviour).

Dynamic Analysis

def bar(a): 
    return 42 / a 
  
def test_bar(): 
    assert bar(42) == 1



Why do we still keep doing it? :)



Assignment 0 is due next 
Monday!



References

• Strictly recommended for your reference: we do not teach these books and these books do not contain 
answers to this course.


• Paul Ammann and Jeff Offutt. Introduction to Software Testing (2nd Ed.)


• Andreas Zeller. Why Programs Fail (2nd Ed.)


• Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE transactions on 
software engineering, 37(5):649–678.


• P. McMinn. Search-based software test data generation: A survey. Software Testing, Verification and 
Reliability, 14(2):105–156, June 2004.


