
Shin Yoo

System Level Metamorphic
Testing & GUI Automation
Hands-on
CS453 Automated Software Testing

Testing Search Engines

• Understandably complicated task

• A primary component is human raters, who rate URLs good or bad

• If a new change in search algorithm results in bad URLs moving up w.r.t. the
same query string, the change becomes a problem

• Can we do better?

Metamorphic Testing for Search Engines

• Not the final answer to testing, as MT generally is, but a helping hand
nonetheless.

• Metamorphic Testing for Software Quality Assessment: A Study of Search
Engines, Zhi Quan Zhou, Shaowen Xiang, and Tsong Yueh Chen, TSE
42(3):264-284, 2016

MRs Explained

• MPSite: if original query Q finds page P in domain D, the follow-up query “Q
site:D” should still find page P

• MPTitle: if P and Q are known synonyms, queries P and Q should produce the
same set of pages

• MPReverseJD: if P is a set of query terms, and Q is the reverse of P, they
should return the same set of pages

Let’s add our own

• MPSpecific: if query P returns X pages, the follow up query P AND Q should
return Y pages where Y <= X

How do we automate this?

• This is the top level system testing. We would like to go through the GUI to
emulate the user experience.

• We will briefly cover the evolution of GUI automation tools.

Capture and Replay

• Record system events by injecting event handler hooks

• Replay later

• Pro

• Intuitive, simple, automates the most tedious part

• Con

• Can be fragile, as the capability to perform replay depends on how the tool
records the events

UI Scripting

• Allows identification of UI elements using internal information (e.g., XPath, DOM)

• Probably the current mainstream (Selenium)

• Pro

• Precise automation

• Con

• You have to know the code to write automation

• Can still break (although rarer than capture and replay)

Visual Automation

• Lauded as the next generation automation method

• Use computer vision to recognise UI elements: no need for the knowledge of internal
structures

• Pro

• Intuitive, can be written by non-developers

• Con

• Possibly fragile again (graphical elements may change), but can be tied to resources
systematically

• Computationally expensive

Bleeding Edge: Multi-Modal Transformers?

• It has been shown that LLMs can help GUI testing:

• Generating realistic string inputs

• Predicting the next human-like GUI events (https://arxiv.org/abs/
2305.09434)

• Coming up with test scenarios autonomously (https://arxiv.org/abs/
2311.08649)

• Next target would be being multi-modal :)

https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2305.09434
https://arxiv.org/abs/2311.08649
https://arxiv.org/abs/2311.08649
https://arxiv.org/abs/2311.08649
https://arxiv.org/abs/2311.08649

Agency 🤖
Back to Yoon et al., ICST 2024 (https://arxiv.org/abs/2311.08649)

 Task History Memory (Long-term Memory)

Initial Knowledge

Planner
Actor

Observer

 Working Memory (Short-term Memory)

Task
Termination

Current GUI StateGUI State
Describer Previous GUI State

Current
Task action observation action observation

+critique
…

Task Summary
Summary of Task 1

(Success)
Summary of Task 2

(Failure)
… New Task

Summary

Task Reflection 1

Task Reflection 2

Task Reflection 3

Task Reflection 1

Task Reflection 2

Task Reflection 3

Task Reflection 1

Task Reflection 2

Task Reflection 3

 Widget Knowledge Memory (Spatial Memory)

Widget-wise observations

touch

scroll
...

Task
Initiation

[PERSONA] started [APP_NAME]

[New Task] Create a new flashcard in
the "My Deck" deck

Count: 3

Count: 1

[Reflection] The app allows users to add
images, audio, and advanced[...]

[ACTION] Fill a textfield that has content_desc
"Front" with "What is the capital city of France?"
[OBSERVATION] [...] has been filled with the text
“What is the capital city of France?”
[ACTION] Fill a textfield [...] with “Paris”

…

[Task Result] Person X successfully
created a new flashcard in the "My Deck"
deck with the question[...]

[Reflection] The app provides a
dropdown field to select the deck[...]

A ReflectorC

Save
Retrieve

Virtual User Profile
of “[PERSONA]”

Ultimate Goal of [PERSONA]

[New Task] Attach a photo to the
flashcard

[New Task] Attach an audio clip to the
flashcard[...]

Widget Retriever

self-
critique

Task Retriever

B

Fig. 1. Overview of DROIDAGENT with a task example.

have struggled with detecting loading screens, often using
prolonged wait times after each action. The loading screen’s
presence can be identified by checking for loading messages or
icon resource identifiers, and we discovered that the LLMs we
used can quite effectively detect loading screens and decide to
wait. So, instead of a fixed long wait, we let the Actor decide
when to wait. The “back” action is for navigating back, and
the “end task” action allows the Actor to conclude the task
before the fixed max action limit (13 in our experiments).

3) Observing and summarising the outcome(s): The state
of GUI may change after taking an action. DROIDAGENT
updates its perception of a screen with a structured textual
representation (JSON). However, for the Actor to capture the
current task context, it needs to be informed about the outcome
of the previous action. We use a separate Observer agent to
summarise the pertinent outcome of an action based on a diff
of the prior and updated GUI states represented as multi-line
strings. This is because representing both the prior and updated
state would lead to long prompts that may confuse the LLM.

4) Self-critique: The Actor may not always choose the
desired action. Once Actor starts down a wrong path by
initiating an undesirable action, it becomes challenging to
“escape” from that incorrect exploration trajectory. Therefore,
besides offering action results as observations, we incorporate
an additional element called “self-critique” into the Actor
of DROIDAGENT. Periodically (after every three actions in
the experiments), the self-critique element generates feedback
based on the task execution history up to that point and the
current GUI state description. This involves a separate prompt,
which explicitly asks for both a review of the task execution
history and, if the Actor appears to be struggling, a suggested

workaround plan. The prompt is sent to a more advanced
model, GPT-4, while the “main” conversation querying the
next action is handled by GPT-3.5. Consequently, the gener-
ated critique is injected to the Actor’s prompting context for
selecting the next action.

C. Task Reflector

Once a task execution round finishes, either by the Actor
calling the “end task” function or reaching the maximum
action length limit, Reflector is activated to reflect on and
create a concise description of the results of trying to perform
the task (binary label indicating task success or failure as
well). The input to this process is the entire task execution
history including the self-critique and all observations from
the working memory, the current GUI state, and the ultimate
goal (from task planning). We instruct the Reflector to “derive
memorable reflections to help planning next tasks and to
be more effective to achieve the ultimate goal”. We found
that this elaborate reflection process can help avoid that the
overall system “forgets” useful knowledge acquired during
task execution, given that individual agents summarise their
knowledge. We also found that having different agents focused
on specific tasks also helps avoid that involved LLM instances
drifts from their purpose, i.e. starts hallucinating or straying
from their intended function.

D. Memory Retrieval Modules

1) Task Retriever: Long-term memory contains a history
of performed task, i.e. task-specific knowledge as well as
reflections on whether the task succeeded (indicates this task
is supported by the app) or not. DROIDAGENT uses the

Juyeon Yoon

(PhD Candidate)

Prof. Robert Feldt

(Chalmers)

https://arxiv.org/abs/2311.08649

Agency 🤖
Back to Yoon et al., ICST 2024 (https://arxiv.org/abs/2311.08649)

Juyeon Yoon

(PhD Candidate)

Prof. Robert Feldt

(Chalmers)

Critique of task execution so far: Jade Green has correctly filled in

the question and answer fields, but the flashcard seems to be saved in

the "Default" deck instead of the intended "My Deck". This might have

happened because Jade Green changed the selected deck from "My Deck" to

"Default" after creating the flashcard.

Need a workaround plan?: Yes

Workaround plan for Jade Green: Jade Green needs to ensure that the

correct deck ("My Deck") is selected before saving the flashcard.

D. Reflecting on the task

At the end of the task execution, the reflector generates a
summary of the task result, and derives the knowledge from
the task execution history. The following is the example of the
task result and knowledge derivation with the given template
for the step-by-step reflection.

Summary of the task result: Jade Green successfully created a new

flashcard in the "My Deck" deck with the question "What is the capital

city of France?" [...truncated...]

Task done successfully?: Yes

Reflections on the task:

- Jade Green has learned how to create a new flashcard by filling the ’

Front’ and ’Back’ fields with question and answer respectively and then

saving it.

- Jade Green has learned that the app provides a dropdown field to

select the deck where the flashcard will be saved.

- Jade Green has learned that the app shows a popup message indicating

the number of cards added.

E. Planning another task with learnt knowledge

As an exploration continues on and discovers more widgets
and activities, ideally, the task planning process should benefit
from information about the past task executions. The subse-
quent task, “attaching a photo to the flashcard”, illustrated in
Figure 1, is based on previously creating a new flashcard. The
new task derives new knowledge from the observation that the
app allows users to add images, audio clip, recording audio,
and so on, to the flashcard. In future task planning, Planner
retrieves such knowledge and generate a new task, “Attach an
audio clip to the flashcard” with the following reasoning steps.

Reasoning about Jade Green’s new task: To provide a diverse and

realistic task that makes use of the core functionality of the app, Jade

Green should try to add an audio clip to a flashcard, which is an

important feature of AnkiDroid to enhance learning efficiency. This task

is not too difficult as it is similar to the previous task of adding an

image to a flashcard.

Jade Green’s next task: Add an audio clip to a flashcard.

V. EVALUATION

This section describes our experimental setup.

A. Research Questions

Our evaluation aims to answer the following questions.
1) RQ1. Testing Effectiveness: How does DROIDAGENT

compare to existing exploration techniques in exploring di-
verse functions within a limited time budget? With RQ1,
we aim to assess the diversity and depth of DROIDAGENT’s
exploration, primarily based on screen coverage.

2) RQ2. Usefulness: How effectively do the tasks generated
by DROIDAGENT serve as maintainable testing scenarios, re-
flecting the supported functionalities of AUTs? With RQ2, we
aim to find out whether the tasks generated by DROIDAGENT
are useful as valid test scenarios, which can be used for
regression testing or further test case generation.

3) RQ3. Ablation: How does each component of the agent
architecture impact the agent’s exploration effectiveness? With
RQ3, we aim to assess the contribution of each component of
the agent architecture to the overall exploration effectiveness.

4) RQ4. Cost: What is the monetary cost of running
DROIDAGENT with the latest state-of-the-art large language
models? With RQ4, we aim to present the present-day cost
of running DROIDAGENT, and provide a view for adopting
DROIDAGENT in practice.

B. Experimental Setup

In this section, we describe our experimental setup.
1) Subjects: Table I shows the 15 subject apps we study.

We start the app selection from the widely used Themis
benchmark [16], which originally contains 23 open-source
Android apps. We are forced to exclude eight apps due to
deprecated servers or APIs, three apps whose functionalities
depend heavily on remote servers and are not easily resettable,
one app that crashes on startup, and another that has only a sin-
gle activity. We selected five additional apps from FDroid [35]
to broaden the range of our subject app categories.

2) Metrics: Our primary metric is screen coverage, with
a specific focus on activity coverage in Android serving as
an indicator for exploration diversity. Activity coverage is
typically defined by the number of activities accessed during
the exploration of the AUT. We only take account of internal
activities that include the package name of the target applica-
tion, since there can be external activities that do not represent
any accessible screens within the AUT (they typically exist to
detect memory leaks or to perform crash reports).

While activity coverage is widely used and effective in
evaluating the “breadth” of exploration, it doesn’t necessarily
capture the desired “depth” of the exploration. For instance, an
exploration technique might navigate to a specific activity, it
may also return to the previous one without any additional
interaction. To further evaluate if the test cases generated
by each technique encompass the target app’s comprehensive
functionality, we employ the concept of “feature coverage”.
This represents the fraction of functional features covered
by test cases, as delineated in the taxonomy suggested by
Coppola et al. [36]. Given that we do not have precise
specifications for the subject apps, we categorise all discerned
functional features of each app identified by all comparison
target techniques, until the consensus of three authors. We
then report the number of features covered by each technique.

3) Baselines: We compare DROIDAGENT with the follow-
ing four baselines described below:

• Monkey [17]: Monkey is a widely used random Android
GUI exploration tool for Android.

Task 1: Create a new
account in the Chat App

Task 2: Create a second user
account on the Chat App

Feedback: Email
length limit

Adaptation: Fix
email address

Task 3: Initiate a chat with
the second account created

Fig. 10. Example of testing scenarios by DROIDAGENT for creating multiple
accounts in a simple chat app.

D. Cost (RQ4)

Having demonstrated DROIDAGENT’s ability to effectively
explore app screens, a vital question arises: what is the cost
of running the agent for app exploration and testing? We
measured the total number of tokens contained in the prompt
and the generated output both for GPT-3.5 and GPT-4 models,
as shown in Figure 9. The number of tokens for the prompt
depend on the complexity of GUI layout of each application.
Accordingly, the present-time cost for running DROIDAGENT
on a single application with a two-hour budget ranges between
$13 to $22, summing up the cost from both the GPT-3.5 and
GPT-4 models, averaging $18.1. Given the trend of decreasing
cost per token charged by OpenAI, as well as the rapid
advancements of open source LLMs, we expect the cost of
running DROIDAGENT to be reduced and affordable.

VII. DISCUSSION

This section decribes a couple of observed behaviour of
DROIDAGENT that warrants some discussion and future work.

A. Testing social applications

So far, testing of social applications that would require
multiple accounts has been considered out of scope for the
existing exploration techniques. We demonstrate the potential
of applying DROIDAGENT on testing multi-user interactions
in Figure 10, which contains testing scenarios generated by
DROIDAGENT with a custom goal of “testing multiple user
interactions”. The first account created follows the persona
profile, and the credentials for the second account is newly
synthesised as a variation of the persona profile. Moreover,
while creating the second account, DROIDAGENT encounters a
truncated email address due to the length limit of the textfield,

but later it successfully works around the issue by using a
shorter email address.

B. Testing external use of an mobile application
A mobile application is not always used in isolation. In

fact, it is both possible to temporarily navigate out of the
app under test and return to the app (e.g., selecting a picture
from the gallery app, share an app data via email), and start
the app from the external app (e.g., opening a link from a
browser). In the former case (temporary navigation to the
external app), to avoid accidentally being out of the app
too long, DROIDAGENT currently imposes a fixed interaction
limit on external apps and returns to the target app automat-
ically. However, we observe some cases that DROIDAGENT
prematurely terminated essential interactions in the external
app due to this limit. Additionally, some activities among
the subject apps were exclusively triggered by external apps,
such as the WidgetConfiguration activity, which is only
accessed by an app launcher. By design, DROIDAGENT is not
limited to the target app. Broadening DROIDAGENT’s scope
to test functionalities of AUT across multiple apps presents a
promising avenue for future exploration.

VIII. THREATS TO VALIDITY

Internal Validity. Our study might have been affected by
the inherent randomness associated with LLMs. Given the
monetary constraints linked to API requests, we could not
conduct multiple runs, potentially leaving biases. Additionally,
one of the baselines, our version of GPTDroid, includes mod-
ifications to some of its components. In our implementation,
we observed that the LLM context limit was reached post ten
actions, forcing a reset of the preceding conversation prompt,
an issue not tackled in the original paper.
External Validity. Our study utilised a relatively limited set
of benchmarks as well as underlying LLMs, and therefore
may not generalise. We tried to use an existing benchmark
of Android apps, Themis [16]. Another potential threat is data
contamination. The inclusion of knowledge about the subject
applications in the training data may bias the results. Further
studies of more apps and other open source LLMs are needed
to address this threat.

IX. CONCLUSION

We present DROIDAGENT, an autonomous testing agent
for Android GUI testing. Unlike existing automated GUI
testing tools for Android, DROIDAGENT sets its own mean-
ingful tasks according to the functionalities of the app under
test, and subsequently seeks to achieve them. Our empirical
evaluation of DROIDAGENT against four baselines shows
that DROIDAGENT is capable of exploring more Android
activities on average, and it does so while concurrently trying
to achieve meaningful app specific tasks. DROIDAGENT also
exhibits some novel behaviour, such as reusing data it created
earlier for later interactions with the app, or creating multiple
accounts to test the app. We believe autonomous agents can
make significant contributions to automation of GUI testing.

https://arxiv.org/abs/2311.08649

Back to hands-on..

Tools

• Selenium https://www.selenium.dev (Our focus today)

• Can drive popular browsers automatically

• Has driver wrappers for many languages

• Apparition https://github.com/twalpole/apparition

• A headless driver that works in conjunction with Capybara (UI automation
language)

• SikuliX https://sikulix.github.io

• Visual automation tool (demo)

https://www.selenium.dev
https://github.com/twalpole/apparition
https://sikulix.github.io

Goal

• To hack a test script for our MR for Google Search

• Implement an end-to-end metamorphic test case using the MPSpecific
metamorphic relationship

• First, make a Google search query P, and store the number of pages
returned, X

• Second, make a search query P and Q, and store the number of pages
returned, Y

• Check X >= Y

Selenium: Installation

• The easiest way for today’s hack would be to use Python wrapper and a
driver for your main web-browser

• You can do pip install selenium

• Plus you need an executable that will drive your choice of web browser.
See https://selenium-python.readthedocs.io/installation.html#drivers for
download links; you need to put the executable on your PATH

• Windows users: https://selenium-python.readthedocs.io/
installation.html#detailed-instructions-for-windows-users

https://selenium-python.readthedocs.io/installation.html#drivers
https://selenium-python.readthedocs.io/installation.html#detailed-instructions-for-windows-users
https://selenium-python.readthedocs.io/installation.html#detailed-instructions-for-windows-users

Selenium Starting Point

from selenium import webdriver
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By

driver = webdriver.Chrome()
driver.get("http://www.python.org")
assert "Python" in driver.title
elem = driver.find_element(By.NAME, ”q”)
elem.clear()
elem.send_keys("pycon")
elem.send_keys(Keys.RETURN)
assert "No results found." not in driver.page_source
driver.close()

… and then see: https://selenium-python.readthedocs.io/index.html

https://selenium-python.readthedocs.io/index.html

