
Shin Yoo

Lightweghted Concolic
Execution Hands-on
CS453 Automated Software Testing

void testme(int[] a)
{
if(a == null) return;
if(a.length > 0)
{
if(a[0] == 42)
throw new Exception(“bug”);

}
}

Constraints to Solve Data Observed Path Condition

No more path!

a!=null && a.length > 0
&& a[0] != 42

a!=null && !(a.length > 0)

a==nullnull

{}

{0}

{42}

a!=null

a!=null && a.length > 0

a!=null && a.length > 0 &&
a[0] == 42

Execute

a==null
truefalse

Negate last condition and choose another path

a.length > 0
truefalse

a[0] == 42
truefalse

Solve

Let’s build a small concolic engine
…for a small subset of Python

• We will handle a single function only

• The function only takes integers

• Only if statements, no loops

• Only a single comparison between arguments

• No assignments, no local variables

def foo(x, y):
 if x - y > 5:
 print("foo")
 if x == y * 10 + 2:
 print("bar")
 else:
 print("zoo")

Primer: Z3 SMT Solver

• Install the solver

• $ brew install z3

• $ sudo apt install z3

• Install the python wrapper

• $ pip install z3-solver

from z3 import *

x = Int("x")
y = Int("y")

s = Solver()

s.add(x + 45 < y)
s.add(x * 3 == y)

s.check()

print("x =", s.model()[x].as_long())
print("y =", s.model()[y].as_long())

Implementing Symbolic Execution

• You can modify existing interpreter or compiler.

• You can instrument the entire program, so that you rewrite and inject the
symbolic layer

• For example, change x = y + 1 to assign(x, add(y, 1)) and
implement assign() and add() to handle the symbols

• You can (at least partially) exploit the dynamic dispatching of languages like
Python 👈 (today)

def foo(x, y):
 if x - y > 5:
 print("foo")
 if x == y * 10 + 2:
 print("bar")
 else:
 print("zoo")

Python does not really care whether x and y are int or not…

What happens if we use a fake int?

• The fake int should carry the symbols.

• But it should also carry concrete values, because we want the vanilla Python
code to run based on these fake int values.

class SymInt():
 def __init__(self, symb, conc):
 self.symbolic = symb
 self.concrete = conc

What about operations?

• We need to override magic methods so that symbolic semantic can be
recorded.

• SymInt(“x”, 1) + SymInt(“y”, 4) should be?

• And this can be implemented where? 🤠

Where do we capture path constraints?

• Since we do not expect any loops, we can simply record whenever we
actually compute a Boolean predicate.

• Symbolic comparison

• __bool__

Finally, the concolic algorithm

• We will not do any book-keeping of executed paths.

• Instead, let’s record all solved path constraints - if we start repeating
ourselves, it means that we have solved everything.

