CS453 - Automated Software Testing

Project Report

for

DV WA attacker

Yunju Park
Truc Anh Nguyen Phan
Diba Vosta

June 18, 2019

Contents

(1 Introductionl

2 Problem|
2.1 SQL Injections| oo
2.1.1 xample|. oL
2.2 Most Common SQL Injection Techniques|
2.3 Available SQL Injection Prevention Methods|
231 Built-in Fanctionl

2.3.2 Parameterized Queries| oL

3 Solving the Proble
3.1 inding a Vulnerable Website]
3.2 escription of Tool| oo

B.2.1 PHP fileparser|
13.2.2 Injection simulator with Selenium|
8.2.3 Feedback to developer| o0

[Github Repository]

DO

w

1 Introduction

The purpose of this report is to present the project that was carried out for
the CS453 Automated Software Testing course. The aim of the project was to
develop or implement an automated software testing tool which solves a problem
that exists within software development and testing. This report will cover the
problem that we aim to solve and discuss why it is a problem in the first place.
Following that, the automated testing tool that was developed will be described
in detail. The report ends with a section that covers the evaluation of the tool
and how well it works.

2 Problem

The problem that was chosen for this project was about making software devel-
opers aware of if there are any vulnerable text input fields in their web applica-
tions that could be susceptible to SQL injections. By making a developer aware
of any vulnerable input fields, the intention was that the developer should be
able to use the output from the testing tool in order to re-write their code to
become more safe as to avoid SQL injections.

2.1 SQL Injections

SQL is the abbreviation of Structured Query Language and is used when han-
dling a connection to a database and retrieving, altering, deleting or adding any
information to the database. A so-called SQL injection is when someone with
bad intentions try to access data from the database. The main entry point for
SQL injections is a text field on a web application (or other application) where
the user can enter anything that they wish. To simplify this, let’s consider the
following example.

2.1.1 Example

Imagine you have written a web application for a library system. To access
the library, you have to have an account that you log onto using a username
and password. To keep track of this information together with which user has
borrowed which books and other relevant information, you enter the data into
a database that you access via SQL queries. On your web application, you've
added a text search field so that the user can search for authors or titles of
books. The information that the user enters into the text input field is then
processed to look through the tables in the database after a book title that
matches it or an author’s name that matches it. In other words, the input from
the user is used in the query to be able to retrieve the relevant information.

To illustrate this, the process in the backend of the web application would
look something like this:

user_input = get_request_string()

query

user_input user_input

The above example shows how the input from the user is directly concatenated
with the query string that will be run. This is an example of how an input field
should not be written as it is very vulnerable to harmful inputs. If an attacker
wanted to, they could enter a string such as ”"Harry Potter OR 1=1”, which
would give them an entry to the database. The reason behind this is that the
query will always check the OR statement, which in this case is 1=1, which will
always be true. When the database then processes this query, it will output all
the data that is stored in both the authors table and the books table. If an
attacker can access this data, it means that they could also alter their input
in order to get access to more sensitive data. This sensitive data could include
data such as usernames and passwords of all registered library users.

2.2 Most Common SQL Injection Techniques

As mentioned in the example above, one of the common injection techniques is
to write an "OR 1=1" clause in the input field to get access to the database.
However, this is not always as easy as just writing ”OR 1=1" and be done with
it. In most cases, the attacker would have to try a few different variation of
this before getting a correct statement that is able to run (if there is no mean
of prevention or the prevention method is done improperly). For example, the
query that were to be run would look like this:

user_input = get_request_string()
query user_input

In this case, the attacker would have to pay extra attention to the single quotes
that are used in order to produce a syntactically correct query in the end. For an
attacker to beat this vulnerable input field, they would have to use the following
input to make the query vulnerable:

user_input

The resulting query to be run would look like this:

query

As the above query is syntactically correct, the attacker would be able to retrieve
data that notifies him of the successful intrusion to the database. With this,
the attacker could then use other queries to learn more about the contents of
the database and apply that to retrieve the sensitive data.

2.3 Available SQL Injection Prevention Methods

Since most developers are aware of the possibility of SQL injections, there are
several ways in which to protect text input fields from being vulnerable. As
will be described in the next section of this report, the tool that was built was
analysing a web application that was written in PHP. For that reason, the report
will cover the prevention methods available in PHP. There are two methods that
are used for protecting input fields against SQL injections when writing code in
PHP. These methods are described in the two following subsections.

2.3.1 Built-in Function

In PHP, there is a built-in function called mysqli_real_escape_string() that
takes an input string as an argument and outputs a ”safe” version of the same
string. What this function does is that it prepends a backslash in front of all
so-called special characters[I]. These special characters include but are not lim-
ited to single quotes, double quotes and new-line symbols. When appending a
backslash before symbols as these, the attacker will not be able to penetrate
the database because the potential single quotes that they use (as described in
section 2.2) will not be processed as ”SQL single quotes”, but will be processed
as a string instead, which makes it impossible to access the database.

However, just because a developer uses this method of protection it does not
mean that their databases are completely safe. The reason behind this is that
there are certain weaknesses when it comes to the use of mysqli_real_escape_string()
that the developer has to know about in order to be able to protect their web
application in a proper way. When using mysqli_real_escape_string(), the de-
veloper has to make sure that they add single quotes in their string query
between the user’s input [2], like this:

$param = mysql_real_escape_string($_GETI 1
$query $param

When using it like this, the resulting query that is run would look like this:

However, when the developer omits the surrounding single quotes, the following
query would be run:

When this is the resulting query that is run, it is possible to inject is since it
will treat the injection as regular SQL, like in the following example.

So for a developer to be on the safe side, it is recommended for them to use
parameterized queries instead.

2.3.2 Parameterized Queries

A parameterized query is a means of pre-compiling a SQL statement so that
all you need to supply are the parameters that need to be inserted into the
statement for it to be executed. It’s commonly used as a means of preventing
SQL injection attacks.

3 Solving the Problem

3.1 Finding a Vulnerable Website

The website we found vulnerable is Damn Vulnerable Web Application (DVWA).
The main goal of this PHP/MySQL web application is to help security educa-
tion in a legal environment. That’s why we could develop our tool based on
this application. This website has different levels of difficulty to hack. ’Low’,
'Medium’ and ’Impossible’ level corresponds to each prevention type that we
pre-defined. The prevention type would be Type 0 for the low level, Type 1 for
the medium level, and Type 2 for the impossible level.

Also, we modified the source code of this application little. One reason was
that we should remove and update functions which were deprecated in PHP
7. Also, we modified Medium-level source code slightly to make the input field
as text field. It was selection input which needs additional application to be
hacked before modifying.

3.2 Description of Tool
3.2.1 PHP file parser

When running the tool, first, the user is required to set up the necessary envi-
ronments. These steps are described in the repository link in section 5. When
running the necessary file, the user is required to input the path to the PHP
source file which contains the query with actual connection to the database.
The PHP file parser ’fileParser.php’ located under tool/ determines poten-
tial prevention type by reading each line of the PHP source file and finding

Yy A

"real_escape_string”, ”prepare” or "bind_param”. This process is implemented
from line 20 to line 28 in figure

for i in ((lines)):

if "SELECT lines[i] lines[i]:
self.get table name(lines[i])
self.get param _nums(lines[i])

if lines[i]:
self.preventions.append()
self.prevention_type

if lines[i]:
self.preventions.append()
self.prevention_type

if lines[i]:
self.preventions.append()
self.prevention type

Figure 1: Potential prevention type

Also, extracting information from SQL query like table name and the num-
ber of parameters is implemented. When reading each line, we try to find
SQL query in line 17 in the figure. If we succeed to find, get_table_name()
and get_param_nums() functions extract the information from that line, as de-
scribed in figure[2} These variables will be later used during the actual injection
to build the injection string.

def get table name(self, line):
query split = line.split(Y[-11

self.table name = query split.split()[0]

def get param_nums(self, line):

select_and params = line.split() [9]
params = select and params.split("SELECT")[-1]
if params:
self.num_params_output
else:
self.num_params_output (params.split(”,"))

Figure 2: Table name and param nums

3.2.2 Injection simulator with Selenium

In order to inject the website, the tool use Selenium to automate the injection
process on the Chrome web browser. The Selenium webdriver accepts com-
mands written in Python, and send them to a browser, making it possible to
automate the testing process instead of manually typing in injections in text
fields.

The commands send to the browser are as follow:
1. Go to the injection site: http://localhost/dvwa,/vulnerabilities/sqli/

2. Login to the DVWA website using predefined username and password
(correspondingly ”admin” and ”password”)

3. Based on the user input which contains a path to the PHP source file, the
level of difficulty will be determined

4. Go to the injection site with text input field with the chosen difficulty
level

5. Inject the set of injection strings and gather results on number of successful
injections

6. When done injecting, close browser and display results

3.2.3 Feedback to developer

When injection process is finished, the terminal will display the injection results.
It contains the number of successful injections in relation to the total number of
injections. Based on the prevention type, the developer also gets different types
of feedback. For example, for Type 1 error, the user would get the following
feedback: You use mysql_real_escape_string() as a prevention, but it is not being
used in a proper way.

4 Evaluation of Tool

4.1 Does it work well?

When we ran tests automatically through Selenium, we were able to get expected
outputs. Here, expected output means the number of successful injections de-
pending on prevention type. For example, for Type 0, the user should get “3
out of 4 were successful”. Here 3 is the number of all possible injection that
we defined for Type 0 succeeded. For improper use of Type 1, all injections for
Type 1 should succeed, while they should not for proper use of typel. For Type
2, none of these should fail.

We could get these expected outputs, which means that our tool works well. For
example, after executing the tool for the DVWA with low, medium, impossible
difficulty by typing file name ’low.php’,’medium.php’ and ’impossible.php’ as
console input(here, for convenience to debug, we positioned these files in the
same folder with python files), user gets messages like figure 3,4 and 5.

Plus, one of the benefits which our tool brought is that based on the result we
could give different feedback like ” You were not using any mean of protection.”

file path:
inject string is:
inject =tring is:
inject string is:
inject string is:

low.php

1

" OR 1=1g
1 0R 1=1

1

RE COLUMN_MNAME LIKE

iniect string is:

1

OR 1=1 UMION SELECT NULL. COLUMM_NAME FROM IMFORMATION_SCHEMA . COLUMNS=users WHE

‘password '

OR 1=1 UMIOM SELECT NULL. rassword FROM users

Finished injecting

Out of total 4 potential injections, 3 were successful.

You were not using any mean of protection. Consider implementing prevention toward SOL iniection.
Use measures such as parameterised query!

B
Figure 3: after executing for ’low.php’
file path: medium.php i
inject strina is: 1
inject strina is: ' OR 1=1#
inject strina is: 1 OR 1=1
inject string is: 1' OR 1=1 UNION SELECT » FROM INFORMATION_SCHEMA COLUMNS=users;"; WHERE COLUMN_MNAM
E LIKE "'#
inject string is: 1' OR 1=1 UNION SELECT # FROM users;"i#

Finished injecting

Out of total 4 potential iniections. 1 were successful.

You use mysal_real_sscape_stringl) as a erevention, but it is not being used in a proper way.

o

file path:
inject string is:
inject string is:
inject string is:
inject string is:

1

" OR 1

Figure 4: after executing for 'medium.php’

impossible.php

14

1T 0R 1=1

1

RE COLUMN_MAME LIKE

inject string is:

7

OR 1=1 UMION SELECT MULL. COLUMN_MAME FROM IMFORMAT |OM_SCHEMA . COLUMME=users WHE

‘password'#

OR 1=1 UMION SELECT MULL, FROM users#

Finished injecting

Out of total 4 potential injections. O were successful

Your code is well protected against SOL injection.

P3|

4.2

Figure 5: after executing for 'impossible.php’

Future work

Our tool works, but only for the DVWA for now. In the future, we should
generalize some processes to make the tool available to handle general vulnerable
website. First, we should remove possibly unnecessary log-in process or modify
possibly different log-in process. Second, we should remove changing-level-of-
difficulty process which is unnecessary because the level of difficulty exists only
in DVWA for educational purpose. Third, we should generalize finding-input-
field process. For now we assumed there is only one prevention type in one
file when implementing the file parser. We will be able to fix this by adding
iterations. Lastly, now we pre-defines several further possible injections to check
further hacking to crack important data from database like this:

But this should contain more. For example, in the code, we did not yet pre-
define this for improper Type 1.

5 Github Repository

Github repository contains the code and installation guide:
https://github.com/taphan/ast-project

Link to demo: https://youtu.be/PM9IIMOUtpk4

https://github.com/taphan/ast-project
https://youtu.be/PM99MOUfpk4

References

1]

Php: mysqli::real_escape_string - manual.
https://php.net /manual /en/mysqli.real-escape-string.php, 2019. Accessed
2019-06-15.

mysql_real_escape_string sql injection - correct usage and attacks.
http://www.sqlinjection.net/advanced /php/mysql-real-escape-string/,
2019. Accessed 2019-06-15.

William G Halfond, Jeremy Viegas, Alessandro Orso, et al. A classification
of sql-injection attacks and countermeasures. In Proceedings of the IEEE

International Symposium on Secure Software Engineering, volume 1, pages
13-15. IEEE, 2006.

Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D Ernst.
Automatic creation of sql injection and cross-site scripting attacks. In Pro-
ceedings of the 31st International Conference on Software Engineering, pages
199-209. IEEE Computer Society, 2009.

	Introduction
	Problem
	SQL Injections
	Example

	Most Common SQL Injection Techniques
	Available SQL Injection Prevention Methods
	Built-in Function
	Parameterized Queries

	Solving the Problem
	Finding a Vulnerable Website
	Description of Tool
	PHP file parser
	Injection simulator with Selenium
	Feedback to developer

	Evaluation of Tool
	Does it work well?
	Future work

	Github Repository

