Debugging

CS350 Introduction to Software Engineering

Shin Yoo

99

JJ00

F‘\T.ST C\C*'\ a

reF /oo &W sbands .

[Jye

.. A— e eam——

{/-1700 7.0372 gyy 015

9.037 §YC 7985 covud
| réﬂ Y-6/5725055(-2)
2. l3ay76y:5

2. 130676”;

4 {Sine ‘.k“;)

S e R
Ao cl LA Té'ﬁ"f‘._

e, P F

\MOTQ ' n ri\qu\ ;

Mark Il at Harvard University, 9th September 1947

Tab/Check #7624

Jan 24, 2023, 9:38 AM

1 CAROLINA BISCUIT

1 OMLT BUFF GRLD

TEXAS TST

Select a Tip Amount

Show More w

22%

Cash Tip $6.79

20%
$6.17

18%
$5.56

TIP AMOUNT

-38.59

Subtotal

Tax

Additional Tip
Srvc Chrg 18%

Amount Due

Pay Now

$12.99

$14.19

$-38.59

$30.87
$2.16
$-38.59
$5.56

$0.00

By placing your order, you agree to HMSHost's terms of use and privacy agreement.

HMS

Feeling Good on the Move®

An Autogrill Company

https://www.reddit.com/r/interestingasfuck/comments/10ys42d/

airport software allowed negative tip to cancel/

https://www.reddit.com/r/interestingasfuck/comments/10ys42d/airport_software_allowed_negative_tip_to_cancel/
https://www.reddit.com/r/interestingasfuck/comments/10ys42d/airport_software_allowed_negative_tip_to_cancel/

~F=16 Problems (from Usenet net.aviation)

Bill Janssen <janssen@mcc.com>
Wed, 27 Aug 86 14:31:45 CDT

A friend of mine who works for General Dynamics here in Ft. Worth wrote some
of the code for the F-16, and he is always telling me about some
neato-whiz-bang bug/feature they keep finding in the F-16:

o Since the F-16 is a fly-by-wire aircraft, the computer keeps the pilot fror
doing dumb things to himself. So if the pilot jerks hard over on the
joystick, the computer will instruct the flight surfaces to make a nice anc
easy 4 or 5 G flip. But the plane can withstand a much higher flip than ths
So when they were 'flying' the F-16 in simulation over the equator, the
computer got confused and instantly flipped the plane over, killing the

pilot [in simulation]. And since it can fly forever upside down, it would
do so until it ran out of fuel.

(The remaining bugs were actually found while flying, rather than in
simulation):

0 One of the first things the Air Force test pilots tried on an early F-16
was to tell the computer to raise the landing gear while standing still on
the runway. Guess what happened? Scratch one F-16. (my friend says there
is a new subroutine in the code called 'wait_on_wheels' now...) [weight?]

o0 The computer system onboard has a weapons management system that will
attempt to keep the plane flying level by dispersing weapons and empty
fuel tanks 1n a balanced fashion. So if you ask to drop a bomb, the
computer will figure out whether to drop a port or starboard bomb in order
to keep the load even. One of the early problems with that was the fact
that you could flip the plane over and the computer would gladly let you
drop a bomb or fuel tank. It would drop, dent the wing, and then roll off.

Watch Google 1/0 This Week = Best Gifts for Mom = Find Movers You Can Trust = Compare Mortgage Rates = 15 Best Face Sunscreens Best Satellite ISPs = Using LastPass? Do These 5 Things = Best Solar

G N E T Your guide to a better future [Join/Login]

Culture

Did a bug in Deep Blue lead to
Kasparov's defeat?

In his new book, Nate Silver writes that a glitch in IBM's
chess terminator may have spooked Garry Kasparov in his
famous 1997 loss. But he was more likely psyched out by its
surprising brilliance.

‘, ’ Tim Hornyak 2 mi d &
A min rea
(\",, Sept. 27, 2012 1:38 p.m. PT

Under pressure: The second game proved pivotal in Kasparov's 1997 match against Deep Blue.
Video screenshot by Tim Hornyak/CNET

https://www.cnet.com/culture/did-a-bug-in-deep-blue-lead-to-kasparovs-defeat/

https://www.cnet.com/culture/did-a-bug-in-deep-blue-lead-to-kasparovs-defeat/

S T

ARhbhp uld-l-sl.ﬂo -

e st

IR

AY o-v:aonntwv-..---wm

TTTI 1L LR L LLETTA:

g, ettt

https://en.wikipedia.org/wiki/Therac-25

https://en.wikipedia.org/wiki/Therac-25

A couple of more classic bug stories

 Emails being sent to only up to 500 miles: https://www.ibiblio.org/harris/
500milemail.nhtm|

* A car that is allergic to vanilla ice cream: https://www.digitalrepublik.com/
digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-
vanilla-ice-cream-said-a-man-to-general-motors/

https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/

Bugs

 Developer makes a mistake and creates a defect/fault in the source code.
* During execution, this leads to an infected program state.

* The infected state is propagated to observable behaviour and becomes a
fallure.

Debugging

* The process of finding and resolving bugs (wikipedia)

» (Goes hand in hand with testing; the earlier, the better.

Relative cost to fix bugs,

0 based on time of detection

25x

20x

NIST Report: The Economic Impacts of Inadequate Infrastructure for Software Testing, 2002

15X https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

10x

5x

0x

System/
Acceptance
Testin

Production /
Post-release

Requirements /
Architecture

Integration /

Coding Component Testing

https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

Seven Steps in Debugging

taken from “Why programs fail: a guide to systematic debugging” by A. Zeller

* Track the problem in the database: record, deduplicate, manage
* Reproduce the failure

 Automate and simplify the test

* Find possible infection origins

* Focus on the most likely origin (known infections, causes in state, code, and input,
anomalies, and code smells)

e |solate the infection chain

e Correct the defect

Failure Reproduction

* |f the bug is detected by one of your test cases, chances are you can already
reproduce it. If you cannot reproduce the behaviour of your own tests, it may
be flaky, or there may be an unknown factor in your testing.

* |f the bug is reported by someone else:

» |deally, the bug report should contain steps required for reproduction, even
If it is only in natural language. You can reconstruct this as a test case.

 |f there is no such information, you still have to reproduce the reported
behaviour.

Automated Failure Reproduction

* Note that failure reproduction also requires a test oracle, i.e., we need a
mechanism that can tell us whether we have reproduced the same bug or not.

* |mplicit oracle: we have technigues that can reproduce crashes
automatically - intuitively, we try to automatically generate the same input
that results in a similar call-stack or execution trace as the crash.

» Explicit oracle: still difficult - people are investigating whether ML can help
with the oracle problem, but it is still very early days. There are also
research that aim to reduce human efforts in oracle evaluation.

o “Cannot reproduce” is one of the common answers to bug reports...

Finding the Origins of Infection
Don’t do the ritualistic debugging

| -,,.

." " —. .I“ A)s \ - /-' / "’-p",‘-‘ .
-~ : ‘ ,// '
y N ' '-'/\.

~
’
‘ Q
. .
> % 3 :
- ‘.
.

Finding the Origins of Infection

* “Once you eliminate the impossible, whatever

remains, no matter how improbable, must be the
truth.”

* Essentially debugging is the art of elimination. To be
successful, you need a couple of tricks:

* Thorough observation: you should be able to
observe any aspect of the system that you suspect

o Systematic elimination: analyse everything in an

organised approach /

Scientific Debugging - A. Zeller

A framework for systematic “narrowing down”

 Adopt the process of scientific discovery
* Observe the failure
 Hypothesize a potential cause that matches the observation
* Use the hypothesis to make a prediction
* Jest the hypothesis by performing an experimentation

* |f the hypothesis is backed by the experimentation, debug is successful;
otherwise, repeat with an alternative hypothesis

Lower Level Debugging
Techniques and Aids

Observation: Tracing

o AKA “printf debugging”: easy, intuitive, effective... we have all done this.
 However, printf can also be problematic:
* |n some environment, the |/O itself is very complicated or even unavailable.

 We are modifying program behaviour to observe something: this can result
INn so-called Heisenbugs.

* |f you want to modify what you want to observe, you need to insert new
statements, or modify and build the program, which is costly.

Observation: Debuggers

 Debuggers allow us to execute the
target program under controlled
condition, and to pause the execution
and make observations.

* Consider, the example of python
debugger, pdb.

 We will mmediately pause the
execution at the beginning. Then we will
conditionally pause next time when we
are about to attempt a division by zero.

Heisenbugs

Observation itself can affect the bug (examples from Zeller)

Okay in real executions, weird in debuggers... why?

A problem goes away Iif you observe it using printf, but
comes back if you do not observe... why?

Tracing vs. Debugger

 Both have pros and cons.

 Modern IDEs come equipped with very powerful debuggers: get familiar with
the basics of the debugger of your favourite language.

* Printf is simple and intuitive, but use proper logging whenever possible.

How to simplify and/or narrow down origins?

* Along the temporal axis

 When did this bug come into the codebase? (bisection)
* Along the spatial axis

 Where in the input is the trigger? (input minimisation)

 Where in the source code is the actual bug?(fault localisation)

Bisection
(Remember VCS: git bisect?)

* Perform binary search between the last known good point, and the latest bad point

Delta Debugging

A systematic input minimisation technique by Zeller

* Bisection is narrowing down a segment of time

* Delta Debugging is narrowing down a segment of input that causes the
problem. However, unlike time segments, problematic inputs can be
discontinuous.

HEEEEEEE EEEN EEE

ENEEEEE P
b

Delta Debugging

Line 1: if there Is a single input left, return
it.

Line 2-7: see if program still fails with
halves of the given input - if it does,
continue halving recursively

Line 8-10: otherwise, make two recursive
calls

* First: keep the first half of the given
input, and apply DD to the second half

 Second: keep the second half of the
given input, and apply DD to the first
half

-,

O© 00 ~J O O i W N

N S NS NS NS NSNS NN NN
O N’ N v N N e N N N

 —

D(P,{i1,...,in})

if n == 1 then return i,
Py = (P+ {i,..., iz })
Py=(P+{i%Z+1,...,0})
if P; fails

return DD (P, {il, SN 20 })
else if P fails

return DD (P, {z% +1,... ,zn})
else

return DD (Pg, {il, o, ln }) +

DD (Py, {izt1,.--in})

HEEEEEEE EEEN EEE
ENEEEEE P
HEEEETEEN -

Fault Localisation

o Static & dynamic analysis that aims to locate where the fault is.

o Typically statistical approach (i.e., they are heuristics):

o Spectrum Based Fault Localisation: if a statement is executed more frequently by
failing tests, and less frequently by passing tests, it is more suspicious.

* Information Retrieval Based Fault Localisation: if a file or a method is lexically
more similar to the bug report, it is more suspicious.

 Mutation Based Fault Localisation: if mutating location X produces test results that
are similar to the current failure, X is more suspicious.

* Naturally, many advanced machine learning approaches have been proposed.

Spectrum Based Fault Localisation

 Program Spectrum: for each structural unit (i.e. statements or branches),
summarise the test result AND coverage into a tuple of the following four
numbers

e ep: # of test cases that execute this unit and pass
e ef: # of test cases that execute this unit and fall
 np: # of test cases that do not execute this unit and pass

e nf: # of test cases that do not execute this unit and falil

Spectrum Based Fault Localisation

Structural | Test Test Test Spectrum Tarantula | Rank
Elements tq to ts3 ep €f Ny Ny

S1 o 1 0 0 2 0.00 9
S9 0.00 9
S3 0.00 9
54 Tarantula = 0.00)
Sx 0.00 9
s7 (faulty) 1.00
S8 0.33 4
S9 0.50 2
Result P F F

Repair

* Once you have a theory of the bug (via scientific debugging), you can also design
a fix.

* Good practice of writing a patch (a fix):

* Close the loop that started with “Track”: go back to the bug report if there is
one, and close the issue. Explicitly link the “closure” with the bug fixing commit.

 Patch should be maintainable: use appropriate comments and documentation.
* A fix should be accompanied by a test, to avoid regression.

* Can we automate the patching itself?

Automated Program Repair

* |In theory, fully automated, perfectly correct repair is not possible due to the oracle
problem, as well as the undecidability of program semantics.

 However, there are still many fixes that we can find automatically!

 GenProg (2009)
» Uses fault localisation techniques to identify likely targets to patch

* Apply random edits (copying & inserting a statement from somewhere else,
swapping two statements, deleting a statement) until test results gradually
improve (okay, in reality there is an algorithm called genetic programming).

 |f no test fails, you have a candidate patch!

Automated Program Repair

 Some of the changes we apply to our source code are... typical or repetitive.

e “Plastic Surgery Hypothesis”: changes to a codebase contain snippets that
already exists in the codebase at the time of the change. (Barr et al., FSE

2014)
 [emplate Based Program Repair

* Collect frequent code modifications as templates (e.g., adding a check for
null pointer)

* Find applicable templates for a given failure, apply, and validate using test
cases

O\ Meta

Meta Research | Programs Y Requests for Proposals v Research Areas v Publications Our People Blog Careers Q

SapFix: Automated End-to-End Repair at Scale

International Conference on Software Engineering (ICSE)

Abstract

We report our experience with SAPFIX: the first deployment of automated .

. . . Download Paper
end-to-end fault fixing, from test case design through to deployed repairs in
production code’. We have used SAPFIX at Facebook to repair 6 production

systems, each consisting of tens of millions of lines of code, and which are E,) Copy PDF URL
collectively used by hundreds of millions of people worldwide.

https://research.facebook.com/publications/sapfix-automated-end-to-end-repair-at-scale/

https://research.facebook.com/publications/sapfix-automated-end-to-end-repair-at-scale/

Summary

 Debugging should be a systematic process of elimination.

* Adopt scientific methods; there are various automated supporting techniques.

 Automated Program Repalr is growing mature.

