
Shin Yoo

Debugging
CS350 Introduction to Software Engineering

Mark II at Harvard University, 9th September 1947

https://www.reddit.com/r/interestingasfuck/comments/10ys42d/
airport_software_allowed_negative_tip_to_cancel/

https://www.reddit.com/r/interestingasfuck/comments/10ys42d/airport_software_allowed_negative_tip_to_cancel/
https://www.reddit.com/r/interestingasfuck/comments/10ys42d/airport_software_allowed_negative_tip_to_cancel/

https://www.cnet.com/culture/did-a-bug-in-deep-blue-lead-to-kasparovs-defeat/

https://www.cnet.com/culture/did-a-bug-in-deep-blue-lead-to-kasparovs-defeat/

https://en.wikipedia.org/wiki/Therac-25

https://en.wikipedia.org/wiki/Therac-25

A couple of more classic bug stories

• Emails being sent to only up to 500 miles: https://www.ibiblio.org/harris/
500milemail.html

• A car that is allergic to vanilla ice cream: https://www.digitalrepublik.com/
digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-
vanilla-ice-cream-said-a-man-to-general-motors/

https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.ibiblio.org/harris/500milemail.html
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/
https://www.digitalrepublik.com/digital-marketing-newsletter/2015/05/10/my-car-does-not-start-when-i-buy-vanilla-ice-cream-said-a-man-to-general-motors/

Bugs

• Developer makes a mistake and creates a defect/fault in the source code.

• During execution, this leads to an infected program state.

• The infected state is propagated to observable behaviour and becomes a
failure.

Debugging

• The process of finding and resolving bugs (wikipedia)

• Goes hand in hand with testing; the earlier, the better.

NIST Report: The Economic Impacts of Inadequate Infrastructure for Software Testing, 2002 
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf

Seven Steps in Debugging
taken from “Why programs fail: a guide to systematic debugging” by A. Zeller

• Track the problem in the database: record, deduplicate, manage

• Reproduce the failure

• Automate and simplify the test

• Find possible infection origins

• Focus on the most likely origin (known infections, causes in state, code, and input,
anomalies, and code smells)

• Isolate the infection chain

• Correct the defect

Failure Reproduction

• If the bug is detected by one of your test cases, chances are you can already
reproduce it. If you cannot reproduce the behaviour of your own tests, it may
be flaky, or there may be an unknown factor in your testing.

• If the bug is reported by someone else:

• Ideally, the bug report should contain steps required for reproduction, even
if it is only in natural language. You can reconstruct this as a test case.

• If there is no such information, you still have to reproduce the reported
behaviour.

Automated Failure Reproduction

• Note that failure reproduction also requires a test oracle, i.e., we need a
mechanism that can tell us whether we have reproduced the same bug or not.

• Implicit oracle: we have techniques that can reproduce crashes
automatically - intuitively, we try to automatically generate the same input
that results in a similar call-stack or execution trace as the crash.

• Explicit oracle: still difficult - people are investigating whether ML can help
with the oracle problem, but it is still very early days. There are also
research that aim to reduce human efforts in oracle evaluation.

• “Cannot reproduce” is one of the common answers to bug reports…

Finding the Origins of Infection
Don’t do the ritualistic debugging

Finding the Origins of Infection

• “Once you eliminate the impossible, whatever
remains, no matter how improbable, must be the
truth.”

• Essentially debugging is the art of elimination. To be
successful, you need a couple of tricks:

• Thorough observation: you should be able to
observe any aspect of the system that you suspect

• Systematic elimination: analyse everything in an
organised approach

Scientific Debugging - A. Zeller
A framework for systematic “narrowing down”

• Adopt the process of scientific discovery

• Observe the failure

• Hypothesize a potential cause that matches the observation

• Use the hypothesis to make a prediction

• Test the hypothesis by performing an experimentation

• If the hypothesis is backed by the experimentation, debug is successful;
otherwise, repeat with an alternative hypothesis

Lower Level Debugging
Techniques and Aids

Observation: Tracing

• AKA “printf debugging”: easy, intuitive, effective… we have all done this.

• However, printf can also be problematic:

• In some environment, the I/O itself is very complicated or even unavailable.

• We are modifying program behaviour to observe something: this can result
in so-called Heisenbugs.

• If you want to modify what you want to observe, you need to insert new
statements, or modify and build the program, which is costly.

Observation: Debuggers

• Debuggers allow us to execute the
target program under controlled
condition, and to pause the execution
and make observations.

• Consider, the example of python
debugger, pdb.

• We will immediately pause the
execution at the beginning. Then we will
conditionally pause next time when we
are about to attempt a division by zero.

import pdb
breakpoint()

vals = [2, 4, 7, 4, 3, 0, 9]

def inverse(x):
 return 1 / x

for val in vals:
 print(f"Inverse of {val} is {inverse(val)}.")

Heisenbugs
Observation itself can affect the bug (examples from Zeller)

int f(){
 int i;
 return i
}

Okay in real executions, weird in debuggers… why?

A problem goes away if you observe it using printf, but
comes back if you do not observe… why?

printf("$d\n", suspicious_variable);

Tracing vs. Debugger

• Both have pros and cons.

• Modern IDEs come equipped with very powerful debuggers: get familiar with
the basics of the debugger of your favourite language.

• Printf is simple and intuitive, but use proper logging whenever possible.

How to simplify and/or narrow down origins?

• Along the temporal axis

• When did this bug come into the codebase? (bisection)

• Along the spatial axis

• Where in the input is the trigger? (input minimisation)

• Where in the source code is the actual bug?(fault localisation)

Bisection
(Remember VCS: git bisect?)
• Perform binary search between the last known good point, and the latest bad point

?

?

?

Delta Debugging
A systematic input minimisation technique by Zeller

• Bisection is narrowing down a segment of time

• Delta Debugging is narrowing down a segment of input that causes the
problem. However, unlike time segments, problematic inputs can be
discontinuous.

F
P
P

• Line 1: if there is a single input left, return
it.

• Line 2-7: see if program still fails with
halves of the given input - if it does,
continue halving recursively

• Line 8-10: otherwise, make two recursive
calls

• First: keep the first half of the given
input, and apply DD to the second half

• Second: keep the second half of the
given input, and apply DD to the first
half

Delta Debugging

DD(P, {i1, . . . , in})
(1) if n == 1 then return i1
(2) P1 =

�
P +

�
i1, . . . , in

2

 �

(3) P2 =
�
P +

�
in2 + 1, . . . , in

 �

(4) if P1 fails
(5) return DD

�
P,
�
i1, . . . , in

2

 �

(6) else if P2 fails
(7) return DD

�
P,
�
in2 + 1, . . . , in

 �

(8) else
(9) return DD

�
P2,

�
i1, . . . , in

2

 �
+

(10) DD
�
P1,

�
in

2 +1, . . . , in
 �

<latexit sha1_base64="oaLJudrK9f9Rvi0Qh2HaGwGrsOc=">AAAEsnicnVNda9swFFUTb+uyr3R7HAyxeNCREOxQ6F4CZcvDXjYyWNqyKgRZkR1RWTaSPAjCv2u/Zc/7I5Mc06ZOYSMC46sr3XOODvdGOWdKB8Hvg1bbe/Dw0eHjzpOnz56/6B69PFdZIQmdkYxn8jLCinIm6EwzzellLilOI04voutP7vziJ5WKZeK7Xud0nuJEsJgRrG1qcdT6hSKaMGEwTzLJ9CotO8jGAqfUTCal8acDZNjChOUAIr7MtBpAuxUlKn179aZY42hTyWK9osL4YjwO/dK4lKS6kAL6FYyt8qcuGCNOY3087Vf/W5IbDhRLTCyTGZUlkixZaVT/3/sIVSijXRS4VdYPm6J3YTaazUaTD2PMuCo7EG4LRynWK5k6Q2q6QUM0/1/VDpZyRWvK0R6U+7zQUf6TwcnZ62F9RwPvhwy3Ie8o3+mohvQOomJ521v1pu7SRbcXDINqwd0grIMeqNd00f1jO4sUKRWacKzUVRjkem6w1IxwavELRXNMrnFCr2zoBkDNTTVhJXxnM0sYZ9J+QsMqu11hcKrUOo3sTWeBap655P1nPGlQ6/jD3DCRF5oKsmGOCw51Bt38wiWTlGi+tgEm1gpGIFlh66q2U96xroRND3aD89EwPBmefhv1zj7W/hyC1+AtOAYhOAVn4DOYghkg7TftSftL+6t34v3wsEc2V1sHdc0rcGd5/C/UlJBT</latexit>

F
P
P
F
F
F
F
F
F
F

Fault Localisation

• Static & dynamic analysis that aims to locate where the fault is.

• Typically statistical approach (i.e., they are heuristics):

• Spectrum Based Fault Localisation: if a statement is executed more frequently by
failing tests, and less frequently by passing tests, it is more suspicious.

• Information Retrieval Based Fault Localisation: if a file or a method is lexically
more similar to the bug report, it is more suspicious.

• Mutation Based Fault Localisation: if mutating location X produces test results that
are similar to the current failure, X is more suspicious.

• Naturally, many advanced machine learning approaches have been proposed.

Spectrum Based Fault Localisation

• Program Spectrum: for each structural unit (i.e. statements or branches),
summarise the test result AND coverage into a tuple of the following four
numbers

• ep: # of test cases that execute this unit and pass

• ef: # of test cases that execute this unit and fail

• np: # of test cases that do not execute this unit and pass

• nf: # of test cases that do not execute this unit and fail

Spectrum Based Fault Localisation

Structural Test Test Test Spectrum Tarantula Rank
Elements t1 t2 t3 ep ef np nf

s1 • 1 0 0 2 0.00 9
s2 • 1 0 0 2 0.00 9
s3 • 1 0 0 2 0.00 9
s4 • 1 0 0 2 0.00 9
s5 • 1 0 0 2 0.00 9
s6 • • 1 1 0 1 0.33 4
s7 (faulty) • • 0 2 1 0 1.00 1
s8 • • 1 1 0 1 0.33 4
s9 • • • 1 2 0 0 0.50 2

Result P F F

Tarantula =

ef
ef+nf

ep
ep+np

+ ef
ef+nf

Repair

• Once you have a theory of the bug (via scientific debugging), you can also design
a fix.

• Good practice of writing a patch (a fix):

• Close the loop that started with “Track”: go back to the bug report if there is
one, and close the issue. Explicitly link the “closure” with the bug fixing commit.

• Patch should be maintainable: use appropriate comments and documentation.

• A fix should be accompanied by a test, to avoid regression.

• Can we automate the patching itself?

Automated Program Repair

• In theory, fully automated, perfectly correct repair is not possible due to the oracle
problem, as well as the undecidability of program semantics.

• However, there are still many fixes that we can find automatically!

• GenProg (2009)

• Uses fault localisation techniques to identify likely targets to patch

• Apply random edits (copying & inserting a statement from somewhere else,
swapping two statements, deleting a statement) until test results gradually
improve (okay, in reality there is an algorithm called genetic programming).

• If no test fails, you have a candidate patch!

Automated Program Repair

• Some of the changes we apply to our source code are… typical or repetitive.

• “Plastic Surgery Hypothesis”: changes to a codebase contain snippets that
already exists in the codebase at the time of the change. (Barr et al., FSE
2014)

• Template Based Program Repair

• Collect frequent code modifications as templates (e.g., adding a check for
null pointer)

• Find applicable templates for a given failure, apply, and validate using test
cases

https://research.facebook.com/publications/sapfix-automated-end-to-end-repair-at-scale/

https://research.facebook.com/publications/sapfix-automated-end-to-end-repair-at-scale/

Summary

• Debugging should be a systematic process of elimination.

• Adopt scientific methods; there are various automated supporting techniques.

• Automated Program Repair is growing mature.

