
Shin Yoo

Software Testing Part 2
CS350 Introduction to Software Engineering

Software Testing Techniques & Approaches

• There are many variable factors when you are “testing” a software system…
to the point that you go to an academic conference on software testing and
really do not understand a particular presentation :)

• Domain (embedded, web, app, enterprise middleware, education…),
foundational background (symbolic execution, static analysis, search-
based, random, manual…), abstraction level (unit testing, system testing,
GUI testing…),…

• A justifiable holistic taxonomy is probably too much to attempt here; we will
look at some of the major ideas in no particular order.

Random Testing / Fuzzing

• Randomness can be a good thing when applied properly to software testing:
it will induce program behavior that you did not expect!

• Similarly, we highly value diversity in testing: both low-level diversity (as in
diverse test input) and high-level diversity (as in diversity in your
developers, testers, and users).

• More formally, random search/optimisation is a good strategy when there is
no gradient, and the target function is not continuous / differentiable.

• Our ultimate objective function when finding a test input is to find a test
input that will reveal a fault: this objective is clearly not differentiable.

@Test
public void test168() throws Throwable {
 if (debug)
 System.out.format("%n%s%n", "RegressionTest4.test168");
 My my1 = new My((int) 'a');
 java.lang.Class<?> wildcardClass2 = my1.getClass();
 java.lang.Class<?> wildcardClass3 = my1.getClass();
 java.lang.Class<?> wildcardClass4 = my1.getClass();
 my1.testMe((int) (short) 10, (int) (short) 0);
 java.lang.Class<?> wildcardClass8 = my1.getClass();
 java.lang.Class<?> wildcardClass9 = my1.getClass();
 my1.testMe((int) (byte) 1, (int) (byte) 0);
 my1.testMe((int) (short) 100, 0);
 my1.testMe((int) (short) 10, (int) (short) 1);
 java.lang.Class<?> wildcardClass19 = my1.getClass();
 java.lang.Class<?> wildcardClass20 = my1.getClass();
 java.lang.Class<?> wildcardClass21 = my1.getClass();
 org.junit.Assert.assertNotNull(wildcardClass2);
 org.junit.Assert.assertNotNull(wildcardClass3);
 org.junit.Assert.assertNotNull(wildcardClass4);
 org.junit.Assert.assertNotNull(wildcardClass8);
 org.junit.Assert.assertNotNull(wildcardClass9);
 org.junit.Assert.assertNotNull(wildcardClass19);
 org.junit.Assert.assertNotNull(wildcardClass20);
 org.junit.Assert.assertNotNull(wildcardClass21);
}

https://randoop.github.io/randoop/ https://netflix.github.io/chaosmonkey/

https://www.gremlin.com/chaos-monkey/the-origin-of-chaos-monkey/

https://randoop.github.io/randoop/
https://netflix.github.io/chaosmonkey/
https://www.gremlin.com/chaos-monkey/the-origin-of-chaos-monkey/

Fuzzing

• Fuzzing is a testing technique that involves providing unexpected random
input to the target program.

• Apparently “fuzz” originated from 1988 class project in U. of Wisconsin,
where Prof. Barton Miller told students to generate random inputs and
parameters to Unix utilities.

• During 90s, fuzzing was shown to be effective at revealing security bugs
(note: the objective is not differentiable).

• Now, at least in industry, any type of automated non-deterministic testing
technique tend to be called “fuzzing” 🫠

Strengths/Weaknesses

• To really benefit from the randomness, we need to sample a lot of inputs.

• This is easy to do, as we are going to do it randomly 🤠

• Random testing is intuitive, easy to implement, and effective when used right.

• However, if we are to execute a massive number of random inputs…

• We need a massive number of oracles…? 🥺

• Typically we do random testing against implicit oracles only (security issues
are often detected by segfaults or other crashes!)

Structural Testing

• If we cannot formulate “fault detection” as an objective, we can at least try to
execute all code at least once - since execution is the necessary condition for
dynamic analysis to find faults (what is the sufficient condition?)

• Structural Testing aims to achieve various executions: statements, branches,
particular condition in branch, etc…

• We can quantify the progress of structural testing as “structural coverage”:
out of X enumerable objectives, my testing actually executes Y:

Y
X

⋅ 100 %

Structural Testing & Coverage

• What does 100% coverage tell you?

• Very little - as it is only necessary condition.

• What does the 60% coverage tell you?

• The unmistakable fact that you are currently NOT testing 40% of your code.

• Okay, next day, I have improved by coverage up to 90%. How many brownie
points do I get?

• Not much - ideally, coverage itself should not be a goal. Have you simply
executed the increase of 30%, or have you really tested it?

Coverage Criteria

• You can target different structural elements

• Statements and branches: popular choices

• Condition coverage: are all boolean subexpressions evaluated as both True
and False?

• Function: are all functions being called?

• Path: not practical, as loops can produce an exponentially large number of
paths

• …

Automated Test Input Generation for Structural Testing

• The problem of achieving specific coverage can be solved automatically at
least - there are two major approaches: concolic testing & search-based
approaches.

• Oracle problems still remain: “Okay, input (x, y, z) does execute the False
branch of this specific if statement.. but what should be the return value?”

• Automated Test Input Generation typically target unit level testing - so
humans should write assertions.

• You can capture current behavior.

Concolic Testing
Concrete + Symbolic Execution Testing

• First, execute the program with random concrete inputs:
x = 0, y = 0

• During execution, collect any condition observed
symbolically: z = 2 * y && x != 100000

• Negate the last part, and solve the condition using an
SMT solver: z = 2 * y && x == 100000 —> You
get x =100000, y = 0

• Execute again, and collect conditions: z = 2 * y &&
x == 100000 && x >= z

• Negate and solve: z = 2 * y && x == 100000 &&
100000 < z —> x == 100000, y = 50001, z =
100002

void f(int x, int y) {
 int z = 2*y;
 if (x == 100000) {
 if (x < z) {
 assert(0); /* error */
 }
 }
}

https://en.wikipedia.org/wiki/Concolic_testing

https://en.wikipedia.org/wiki/Concolic_testing

Search-Based Test Data Generation
Formulate the problem as optimisation

• Define a fitness (objective) function that
measures the distance between current
execution path and your target: then use an
optimisation technique to minimize this.

• First, we need to penetrate x == 100000.
This is equivalent to minimizing the function

 to zero.

• Then we subsequently find out that increasing
y helps making x < z more true, so the
optimisation algorithm will increase y until x <
z.

f(x, y) = |x − 100000 |

void f(int x, int y) {
 int z = 2*y;
 if (x == 100000) {
 if (x < z) {
 assert(0); /* error */
 }
 }
}

https://en.wikipedia.org/wiki/Concolic_testing

https://en.wikipedia.org/wiki/Concolic_testing

GUI Testing

• How do we ensure that various use cases are correctly implemented? How do
we do this automatically?

• We need a mechanism to execute user interaction automatically.

• Monkeys (again!)

• Scripting (via structural handles in the UI frameworks)

• Visual GUI Testing

Monkey Testing

• Supply a stream of random user events to the GUI, see if it crashes

• A form of stress testing with a long history

• https://developer.android.com/studio/test/other-testing-tools/monkey

https://developer.android.com/studio/test/other-testing-tools/monkey

GUI Scripting
Example is based on Selenium (https://www.selenium.dev/)

• Identify GUI widgets by
their properties (CSS
selector, HTML element
type, etc)

• Interact with widgets by
creating events for them
(text input, click, etc)

• You essentially do web
browsing via a script

from selenium import webdriver
from selenium.webdriver.common.by import By

def test_eight_components():
 driver = webdriver.Chrome()

 driver.get("https://www.selenium.dev/selenium/web/web-form.html")

 title = driver.title
 assert title == "Web form"

 driver.implicitly_wait(0.5)

 text_box = driver.find_element(by=By.NAME, value="my-text")
 submit_button = driver.find_element(by=By.CSS_SELECTOR, value="button")

 text_box.send_keys("Selenium")
 submit_button.click()

 message = driver.find_element(by=By.ID, value="message")
 value = message.text
 assert value == "Received!"

 driver.quit()

https://www.selenium.dev/

Visual Scripting

• A scripting language that can take
images as arguments + a script
runtime that will use computer
vision to interpret the image
arguments = GUI scripting without
internal structure knowledge

• SikuliX from MIT

• The idea was proven to be useful
in industrial contexts (see for
example: https://
ieeexplore.ieee.org/abstract/
document/8048660)

https://ieeexplore.ieee.org/abstract/document/8048660
https://ieeexplore.ieee.org/abstract/document/8048660
https://ieeexplore.ieee.org/abstract/document/8048660

GUI Exploration

• What if you want to automatically “cover” the GUIs, i.e., I want to reach all
views in this Android app?

• The GUI as a whole can be represented as a kind of state machine: each
activity is a state, each event triggers its own transition to another state (i.e.,
activity).

• Many automated techniques have been suggested to explore this state space
automatically. Once you have the state machine representation, it can help
you automatically derive further testing scenarios and scripts.

Regression Testing

• A regression fault refers to a feature that used to be okay, but is now indirectly
broken due to recent addition/modification of other features.

• To detect regressions, you need to execute all previous test cases (that
correspond to all existing features); however, there may be too many of them.

• How do you optimize this process without losing fault detection capabilities?

• Select test cases that are guaranteed to execute any changed parts

• Prioritize execution order based on achieved coverage / diversity

Mutation Testing

• “All my test passes!” - does it mean that…

• my program is perfect and bug free! 🤠, or

• my test suite is very bad 🫠

• But if we do not know which bugs are out there, how do we know whether our
tests are any good?

• A brilliant answer to this is came out back in 1978: we can create our own
bugs!

Richard A. DeMillo, Richard J. Lipton, and Fred G. Sayward. Hints on test data selection: Help for the practicing programmer. IEEE Computer, 11(4):34-41. April 1978

Mutation Testing

• Simply create syntactic variants of the program: swapping + to -, changing
the function argument order, changing logical operator && to II, etc… (these
are called mutation operators)

• Two underlying assumptions

• Competent Programmer Hypothesis: most programmers are good, and the
mistakes they make are relatively small

• Coupling Effect Hypothesis: the small syntactic mistakes we inject are
semantically linked to more complex real faults

Mutation Testing

• Create mutants

• Execute your test suite against each of the mutants

• If a test case fails, you killed the mutant (i.e., your test can discern the
difference)

• If a test case passes, you did not kill it

• Report the percentage of the killed mutants (which is called mutation score)

N

N

Mutation Testing

• For a long time, people thought mutation testing is a wonderful thing except
for a couple of real drawbacks

• Cost is really high: tens of thousands of mutants to build and test against

• Equivalent mutants: some syntactic variants are still semantically equivalent,
but we cannot filter them out (semantic equivalence is undecidable)

• Yet practical adoption is slowly happening!

• CI/CD automatically applies only a small number of mutations and reports
the results as part of automated code review: if any mutation to the
incoming change is not killed by tests, it becomes an warning.

G. Petrović, M. Ivanković, G. Fraser and R. Just, "Practical Mutation Testing at Scale: A view from Google," in IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 3900-3912, 1 Oct. 2022, doi: 10.1109/TSE.2021.3107634.

Testing ML-based Systems
One of the hottest testing topics right now

• Most of testing techniques assume that the system under test is
deterministic, and we can decide whether the test outcome is correct or
incorrect.

• Suddenly we have a surge of ML-based systems that use some machine
learning model as (part of) the core business logic.

• Their outputs are often not binary or even discrete.

• We cannot realistically expect 100% correctness.

• How do we ensure their functional behavior?

Testing ML-based Systems
Fearfully large size of input space

Number of

stars in the universe

Number of

inputs for a program

that can be the coursework

for Programming 101

(three 32bit integers)

≃ 280 = 284

Number of

possible 28 by 28 B&W images,

(the size of an MNIST input)

= 23136

Testing ML-based Systems
Ambiguities in inputs

• In case of DNNs, we often rely on them because they are so good at
perceptive tasks (vision, speech recognition, …)

• These inputs cannot be easily abstracted into equivalence classes: too
much degree of freedom in the input space.

• Certain inputs are genuinely difficult to classify for humans, i.e., we do not
know what the oracles should be.

• Oracle here is human labelling, which is not only expensive but sometimes
even ethically questionable.

Testing ML-based Systems
State of the Art

• Most research efforts are focused on the concept of robustness, i.e., the ML-
system should be resilient to minor perturbations in inputs.

• For example, if an autonomous driving system correctly turns right at a
specific crossing to reach a destination, it should do the same on a rainy day
(rain = perturbation to normal circumstances).

• ML-systems should be also resilient to adversarial examples, i.e., inputs with
injected noise with the intention of tricking the ML model.

• Robustness testing can be reasonably automated, but is still fundamentally
limited in its completeness (i.e., we cannot anticipate all possible
perturbations)

Taxonomy of Real Faults in
Deep Learning Systems

MODEL

(29+45)

GPU USAGE

(10+1)
API (20+0)

TENSORS &
INPUTS (53+20)

TRAINING

(37+160)

Model Type &
Properties (6+20)

Layers
(23+25)

Activation
Function (3+2) wrong model

initialisation
(1+2)

wrong
weights

initialisation
(1+0)

wrong
selection of

model
(2+1)

multiple
initialisations

of CNN
(1+0)

suboptimal
network
structure

(1+15)

wrong
network

architecture
(0+2)

wrong type
of activation

function
(1+2)

missing
softmax

activation
function
(1+0)

missing relu
activation
function

(1+0)

wrong input
sample size

for linear layer
(5+0)

wrong
defined input

shape
(2+0)

wrong amount &
type of pooling
in convolutional

layer
(0+1)

wrong
defined

output shape
(3+1)

wrong defined
input & output

shape
(1+0)

wrong filter size
for a

convolutional
layer
(1+1)

layers'
dimensions
mismatch

(0+9)

suboptimal
number of

neurons in the
layer
(0+6)

bias needed
in a layer

(1+0)

missing
destination
GPU device

(1+0)

incorrect
state

sharing
(1+0)

wrong
reference to
GPU device

(2+0)

missing
transfer of

data to GPU
(1+0)

wrong data
parallelism on

GPUs
(1+0)

calling
unsupported
operations on
CUDA tensors

(1+0)

conversion to
CUDA tensor

inside the
training/test loop

(1+0)

wrongly	
implemented	data	
transfer	function	
(CPU-GPU)

(0+1)

wrong
position of
data shuffle
operation

(1+0)

deprecated
API
(1+0)

wrong usage
of image

decoding API
(1+0)

wrong usage
of placeholder
restoration API

(1+0)

missing
argument
scoping

(1+0)

wrong tensor
transfer to

GPU
(1+0)

missing global
variables

initialisation
(3+0)

wrong API
usage
(10+0)

missing API
call
(1+0)

wrong
reference to
operational

graph
(1+0)

Wrong Tensor
Shape (21+5)

Wrong Input
(32+15)

wrong tensor
shape (missing

squeeze)
(5+0)

wrong tensor
shape (wrong

indexing)
(2+0)

wrong tensor
shape (wrong

output
padding)

(1+0)

wrong tensor
shape (other)

(13+3)

tensor shape
mismatch

(0+2)

Wrong Shape of
Input Data (22+7)

Wrong Type of
Input Data (5+3)

Wrong Input
Format (5+5)

wrong shape
of input data
for a method

(6+0)

wrong shape
of input data

for a layer
(16+2)

wrong shape
of input data

(0+5)

wrong type
of input data
for a method

(4+0)

wrong type
of input data

for a layer
(1+0)

wrong type
of input data

(0+3)

wrong input
format
(1+5)

wrong input
format for

RNN
(2+0)

wrong format
of passed
weights

(1+0)

incompatible
tensor type

(1+0)

Hyperparameters
(10+26)

suboptimal
number of

epochs
(2+4)

data batching
required

(2+7)

suboptimal
batch size

(2+1)

wrongly
implemented
data batching

(1+0)

missing
regularisation
(loss	and
weight)
(0+1)

suboptimal
learning rate

(1+5)

suboptimal
hyper-

parameters
tuning
(2+8)

Loss Function
(7+16)

missing
masking of

invalid values
to zero
(1+0)

wrong loss
function

calculation
(5+4)

missing loss
function

(0+1)

wrong
selection of
loss function

(1+11)

Validation/Testing
(2+4)

missing
validation set

(1+0)

incorrect
train/test
data split

(0+3)

wrong
performance

metric
(1+1)

Preprocessing of Training
Data (13+37)

Missing
Preprocessing (11+22)

missing preprocessing
step (subsampling,

normalisation,
input scaling,

resize of the images,
 oversampling,

 encoding of categorical
data, padding,

 ... skip ...,
 data shuffling,
interpolation)

Wrong Preprocessing
(2+15)

wrong preprocessing
step (pixel encoding,

padding,
text segmentation,

normalisation,
 ... skip ...,

 positional encoding,
character encoding)

Optimiser (3+3)

wrong
optimisation

function
(1+3)

epsilon for
Adam

optimiser too
low
(2+0)

Training Data
Quality (2+60)

low quality
training data

(0+11)

not enough
training data

(0+14)

overlapping
output

classes in
training data

(0+1)

too many
output

categories
(0+1)

small range of
values for a

feature
(0+2)

unbalanced
training data

(0+11)

wrong
selection of

features
(1+6)

wrong labels
for training

data
(1+12)

discarding
important
features

(0+2)

Training Process
(0+14)

model too big to
fit into available

memory
(0+5)

reference for
non-existing
checkpoint

(0+1)

missing data
augmentation

(0+3)

redundant
data

augmentation
(0+1)

wrong
management of

memory
resources

(0+4)

missing
dropout layer

(1+1)

missing
normalisation

layer
(1+0)

missing
average

pooling layer
(0+1)

missing
softmax

layer
(1+0)

redundant
softmax

layer
(1+0)

wrong layer
type
(1+2)

wrong type
of pooling

layer
(0+1)

missing
dense layer

(1+0)

missing
flatten layer

(1+0)

Missing/Redundant/
Wrong Layer (7+5)

Layer Properties
(13+18)

GPU tensor is
used instead of

CPU tensor
(1+0)

Figure
1:FinalTaxonom

y

7

Taxonomy of Real Faults in Deep Learning Systems, N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,

The 42nd International Conference on Software Engineering, 2020

Taxonomy of Real Faults in
Deep Learning Systems

MODEL

(29+45)

GPU USAGE

(10+1)
API (20+0)

TENSORS &
INPUTS (53+20)

TRAINING

(37+160)

Model Type &
Properties (6+20)

Layers
(23+25)

Activation
Function (3+2) wrong model

initialisation
(1+2)

wrong
weights

initialisation
(1+0)

wrong
selection of

model
(2+1)

multiple
initialisations

of CNN
(1+0)

suboptimal
network
structure

(1+15)

wrong
network

architecture
(0+2)

wrong type
of activation

function
(1+2)

missing
softmax

activation
function
(1+0)

missing relu
activation
function

(1+0)

wrong input
sample size

for linear layer
(5+0)

wrong
defined input

shape
(2+0)

wrong amount &
type of pooling
in convolutional

layer
(0+1)

wrong
defined

output shape
(3+1)

wrong defined
input & output

shape
(1+0)

wrong filter size
for a

convolutional
layer
(1+1)

layers'
dimensions
mismatch

(0+9)

suboptimal
number of

neurons in the
layer
(0+6)

bias needed
in a layer

(1+0)

missing
destination
GPU device

(1+0)

incorrect
state

sharing
(1+0)

wrong
reference to
GPU device

(2+0)

missing
transfer of

data to GPU
(1+0)

wrong data
parallelism on

GPUs
(1+0)

calling
unsupported
operations on
CUDA tensors

(1+0)

conversion to
CUDA tensor

inside the
training/test loop

(1+0)

wrongly	
implemented	data	
transfer	function	
(CPU-GPU)

(0+1)

wrong
position of
data shuffle
operation

(1+0)

deprecated
API
(1+0)

wrong usage
of image

decoding API
(1+0)

wrong usage
of placeholder
restoration API

(1+0)

missing
argument
scoping

(1+0)

wrong tensor
transfer to

GPU
(1+0)

missing global
variables

initialisation
(3+0)

wrong API
usage
(10+0)

missing API
call
(1+0)

wrong
reference to
operational

graph
(1+0)

Wrong Tensor
Shape (21+5)

Wrong Input
(32+15)

wrong tensor
shape (missing

squeeze)
(5+0)

wrong tensor
shape (wrong

indexing)
(2+0)

wrong tensor
shape (wrong

output
padding)

(1+0)

wrong tensor
shape (other)

(13+3)

tensor shape
mismatch

(0+2)

Wrong Shape of
Input Data (22+7)

Wrong Type of
Input Data (5+3)

Wrong Input
Format (5+5)

wrong shape
of input data
for a method

(6+0)

wrong shape
of input data

for a layer
(16+2)

wrong shape
of input data

(0+5)

wrong type
of input data
for a method

(4+0)

wrong type
of input data

for a layer
(1+0)

wrong type
of input data

(0+3)

wrong input
format
(1+5)

wrong input
format for

RNN
(2+0)

wrong format
of passed
weights

(1+0)

incompatible
tensor type

(1+0)

Hyperparameters
(10+26)

suboptimal
number of

epochs
(2+4)

data batching
required

(2+7)

suboptimal
batch size

(2+1)

wrongly
implemented
data batching

(1+0)

missing
regularisation
(loss	and
weight)
(0+1)

suboptimal
learning rate

(1+5)

suboptimal
hyper-

parameters
tuning
(2+8)

Loss Function
(7+16)

missing
masking of

invalid values
to zero
(1+0)

wrong loss
function

calculation
(5+4)

missing loss
function

(0+1)

wrong
selection of
loss function

(1+11)

Validation/Testing
(2+4)

missing
validation set

(1+0)

incorrect
train/test
data split

(0+3)

wrong
performance

metric
(1+1)

Preprocessing of Training
Data (13+37)

Missing
Preprocessing (11+22)

missing preprocessing
step (subsampling,

normalisation,
input scaling,

resize of the images,
 oversampling,

 encoding of categorical
data, padding,

 ... skip ...,
 data shuffling,
interpolation)

Wrong Preprocessing
(2+15)

wrong preprocessing
step (pixel encoding,

padding,
text segmentation,

normalisation,
 ... skip ...,

 positional encoding,
character encoding)

Optimiser (3+3)

wrong
optimisation

function
(1+3)

epsilon for
Adam

optimiser too
low
(2+0)

Training Data
Quality (2+60)

low quality
training data

(0+11)

not enough
training data

(0+14)

overlapping
output

classes in
training data

(0+1)

too many
output

categories
(0+1)

small range of
values for a

feature
(0+2)

unbalanced
training data

(0+11)

wrong
selection of

features
(1+6)

wrong labels
for training

data
(1+12)

discarding
important
features

(0+2)

Training Process
(0+14)

model too big to
fit into available

memory
(0+5)

reference for
non-existing
checkpoint

(0+1)

missing data
augmentation

(0+3)

redundant
data

augmentation
(0+1)

wrong
management of

memory
resources

(0+4)

missing
dropout layer

(1+1)

missing
normalisation

layer
(1+0)

missing
average

pooling layer
(0+1)

missing
softmax

layer
(1+0)

redundant
softmax

layer
(1+0)

wrong layer
type
(1+2)

wrong type
of pooling

layer
(0+1)

missing
dense layer

(1+0)

missing
flatten layer

(1+0)

Missing/Redundant/
Wrong Layer (7+5)

Layer Properties
(13+18)

GPU tensor is
used instead of

CPU tensor
(1+0)

Figure
1:FinalTaxonom

y

7

Taxonomy of Real Faults in Deep Learning Systems, N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,

The 42nd International Conference on Software Engineering, 2020

Who writes the tests?

• Two traditional views on who should test your system

• Dedicated testers: resulting in a dedicated role of QA testers, whose job is simply
to test implemented system

• Testing requires creativity, domain expertise, broad knowledge of regression
history… so dedicated QA engineers are necessary!

• Developer themselves: developers are typically required to write unit tests at least,
but some organizations require them to write all tests

• If tests break, then who else is going to fix them? If developers can bring the
mindset of dedicated QA engineers into programming, perhaps the best!
DevOps and other automations also support this trend.

Summary

• Testing is a dynamic analysis: it is sound (i.e., if testing finds a problem, it is
real) but not complete (i.e., testing will not find all problems).

• Typically we define an alternative, practical and achievable adequacy criterion
and try to satisfy it - ideally using some automation in the process.

• Test oracle problem is fundamentally difficult, and will not easily go away - but
we are making progress wherever possible.

• Various testing techniques tackle different aspects of quality criteria, domains,
and lifecycle stages.

