
Shin Yoo

Code Review
CS350 Introduction to Software Engineering

Code Inspection
Michael Fagan, IBM Systems Journal, 1976

• A systematic inspection of both design and code between each important
phase (e.g., inspect design before implementation, inspect code before
testing)

• Inspection

• Six stages: planning, overview, preparation, inspection meeting, rework,
follow-up

• Four roles: moderator (manages the process and leads the team), designer,
implementor, tester

Code Inspection
Michael Fagan, IBM Systems Journal, 1976

• Preparation (whole team): designer describes the overall area, moderator
picks up specific aspects of scrutiny

• Preparation (individual): understand the design as well as recent error types

• Inspection (whole team): first, collectively review the design, and
subsequently, try to find errors in the code

• Rework: address all problems, either design or implementation

• Follow-up: moderator ensures that all issues are properly addressed

Code Inspection

• Properly done, this would be very effective!

• Also, slow (as in not very agile), time-consuming, and synchronous (involving
multiple individuals)

• What are the modern equivalent?

Modern Code Review
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Informal: much fewer fixed roles, fewer steps, etc, when compared to Fagan

• Tool-based: logistics are handled by tools, instead of the moderator

• Asynchronous: no meetings, done via online communication

• Focused on code changes: rather than inspecting an entire lifecycle stage

• The paper is a strongly recommended read, if you want to understand the
modern software development lifecycle and the daily activities of developers.

https://research.google/pubs/pub47025/

Motivation
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Original adoption: “to force developers to write code that other developers
could understand”, which was considered important since code is the
“teacher for future developers”

• Additional benefits: checking for consistent style and design, ensuring
adequate test cases, and improved security (no one can commit arbitrary
code without oversight)

• Current expectations: education, maintaining the norm, gatekeeping, and
accident prevention

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Creating the change by adding, removing, editing the code

• Preview: using the code review tool, Critique, the developer analyses the
change (static code analysis is involved); then the diff is sent out for review

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Commenting: reviewers use GUI to comment on the change and the analysis
results

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Addressing the feedback: developer either updates the code change, or
respond to the comments, until all are resolved

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Creating the change by adding, removing, editing the code

• Preview: using the code review tool, Critique, the developer analyses the
change (static code analysis is involved); then the diff is sent out for review

• Commenting: reviewers use GUI to comment on the change and the analysis
results

• Addressing the feedback: developer either updates the code change, or
respond to the comments, until all are resolved

• Approving: the change is finally approved, and the commit is made

https://research.google/pubs/pub47025/

Process
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Creating the change by adding, removing, editing the code

• Preview: using the code review tool, Critique, the developer analyses the
change (static code analysis is involved); then the diff is sent out for review

• Commenting: reviewers use GUI to comment on the change and the analysis
results

• Addressing the feedback: developer either updates the code change, or
respond to the comments, until all are resolved

• Approving: the change is finally approved, and the commit is made

https://research.google/pubs/pub47025/

Reviewer Suggestion
Modern Code Review: A Practice at Google, ICSE SEIP 2018

• Within a team: typically round robin, without any need for tool support,
pending holidays and current reviewing load

• Outside the team: Critique identifies the smallest set of reviewers that can
process the change under consideration

• Prioritises people who recently modified/reviewed the changed file

• Prioritises people who are new members of the team that owns the file (so
that they can gain reviewing credits)

https://research.google/pubs/pub47025/

Let’s look at a real world example

• In GitHub Workflow, code review is typically performed for incoming PRs

• Here are a few recent PRs:

• https://github.com/pandas-dev/pandas/pull/52974

• https://github.com/google/guava/pull/6308

https://github.com/pandas-dev/pandas/pull/52974
https://github.com/google/guava/pull/6308

Use of Automated Bots

• If we are to enforce some checks, easy and obvious ones should be
automated!

• There are many bots that automatically act on incoming PRs.

• https://github.com/reviewboard/ReviewBot

• This is an up-and-coming, active research area: http://botse.org/

https://github.com/reviewboard/ReviewBot
http://botse.org/

Okay, what to look out for?

• Language specific patterns are perhaps better detected by static analysis

• Humans are better at detecting higher level concerns

• (Potential) bugs

• Better coding style

• Inappropriate design concepts

Potential Bugs

• Off-by-one errors

• Deviations from the specification

• Variable scopes (misuse of global, for example)

• Magic numbers

• Optimistic coding

• Do not Repeat Yourself (DRY)

Better Coding Style

• Inadequate variable naming

• Inconsistent formatting

• Too long/complicated method/control flow

• Having too much/too few comments :)

Inappropriate Design Concepts

• Incomplete/inconsistent specification

• Mutability/immutablity

• Incomplete data abstraction (revealing inner representation)

Example
Taken from https://web.mit.edu/6.005/www/fa15/classes/04-code-review/
public static int dayOfYear(int month, int dayOfMonth, int year) {
 if (month == 2) {
 dayOfMonth += 31;
 } else if (month == 3) {
 dayOfMonth += 59;
 } else if (month == 4) {
 dayOfMonth += 90;
 } else if (month == 5) {
 dayOfMonth += 31 + 28 + 31 + 30;
 } else if (month == 6) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31;
 } else if (month == 7) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30;
 } else if (month == 8) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31;
 } else if (month == 9) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31;
 } else if (month == 10) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30;
 } else if (month == 11) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31;
 } else if (month == 12) {
 dayOfMonth += 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 31;
 }
 return dayOfMonth;
}

What would you comment on?

https://web.mit.edu/6.005/www/fa15/classes/04-code-review/

Example
Taken from https://github.com/MinBZK/woo-besluit-broncode-digid-app/

Dutch government was forced to reveal the source of their
DigiID authentication app on iOS.

This is a code snippet from their code repository. Is this good
or bad? :)

https://github.com/MinBZK/woo-besluit-broncode-digid-app/

Exercise For You (5~10 minutes)
public class Account {
 double principal,rate; int daysActive,accountType;
 public static final int STANDARD=0, BUDGET=1, PREMIUM=2, PREMIUM_PLUS=3;
}

// ...

public static double calculateFee(Account[] accounts) `{
 double totalFee = 0.0;
 Account account;
 for (int i=0;i<accounts.length;i++) {
 account=accounts[i];
 if(account.accountType==Account.PREMIUM|| account.accountType == Account.PREMIUM_PLUS)
 totalFee += .0125 * (// 1.25% broker's fee
 account.principal*Math.pow
 (account.rate,(account.daysActive/365.25))
 - account.principal); // interest-principal
 }
 return totalFee;
}

/** An individual account. Also see CorporateAccount. */
public class Account {
 private double principal;

 /** The yearly, compounded rate (at 365.25 days per year). */
 private double rate;

 /** Days since last interest payout. */
 private int daysActive;
 private Type type;

 /** The varieties of account our bank offers. */
 public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

 /** Compute interest. **/
 public double interest() {
 double years = daysActive / 365.25;
 double compoundInterest = principal * Math.pow(rate, years);
 return compoundInterest â€“ principal;
 }

 /** Return true if this is a premium account. **/
 public boolean isPremium() {
 return accountType == Type.PREMIUM || accountType == Type.PREMIUM_PLUS;
 }

 /** The portion of the interest that goes to the broker. **/
 public static final double BROKER_FEE_PERCENT = 0.0125;

/** Return the sum of the broker fees for all the given accounts. **/
 public static double calculateFee(Account accounts[]) {
 double totalFee = 0.0;
 for (Account account : accounts) {
 if (account.isPremium()) {
 totalFee += BROKER_FEE_PERCENT * account.interest();
 }
 }
 return totalFee;
 }
}

Code Review is also communication

• Remember that one major motivation of code review is education

• Be polite: no sarcasm, insults, and any other derogative behavior. It is not
okay to say you only meant that the “code” is stupid…

• Be constructive: the aim is not to evaluate, but to build something together -
suggest improvements.

• Be positive: code review does not only have to be about fault-finding - I think
it is okay to compliment exceptionally good/elegant design and creative
solution; also you can thank people on specific feature sets, if the context is
open source

