
Shin Yoo

Program Analysis
CS350 Introduction to Software Engineering

Analysis noun. a detailed examination of
the elements or structure of something.

Analysing a Program… for what purpose?

• Many different objectives can be considered, for example (all real):

• Violation of any Intellectual Property and Licensing

• Authorship for software forensic

• But two major objectives are:

• Correctness: you want to analyze and check specific properties to argue
and reason about program correctness

• Optimisation: you want to extract information required for optimization, or
to ensure that optimization does not affect correctness

Static vs. Dynamic

• Static Analysis: your analysis is simply based on source code, without any
actual execution

• Examples: compiler optimisation, static code warning, linters

• Dynamic Analysis: your analysis includes information extracted from
concrete executions of the target program

• Examples: software testing

Static vs. Dynamic

• Static Analysis: considers program behavior against all possible inputs.

• Consequently, this is over-approximation of actual program behavior (because
certain input may not ever be used in concrete executions).

• Accuracy is limited due to scope of analysis and differences that can only be
captured dynamically.

• Dynamic Analysis: considers only the actual executions observed.

• Consequently, this is under-approximation of the actual program behavior
(because inputs we haven’t seen may result in different outcome).

• Accuracy is limited because of executions you did not observe.

Dynamic Under-Approximation

• Potential division by zero error that we can plainly see in the source code

• Without an input that triggers the condition, we cannot find out dynamically

def compute_density(a, b):
 return a / b

def test_compute_density():
 assert compute_density(1, 2) == 0.5
 assert compute_density(2, 8) == 0.25

• Intra-procedural analysis of
compute_density will raise an
alarm for division by zero

• However, if you consider the
entire program, this may never
happen

Static Over-Approximation

def compute_density(a, b):
 return a / b

def process_data(x, y):
 if y <= 0:
 do_something()
 else:
 d = compute_density(x, y)
 do_something_else(d)

Focus Today

• We will mainly discuss static analysis today.

• Program analysis is a concept that encapsulates both static and dynamic
analysis, but the absolute majority of dynamic analysis is now software
testing, which can be treated independently in itself.

Scopes of Static Analysis

• Intra-procedural Analysis: considers a single procedure (function, method)
one by one in isolation

• Simple, but often imprecise (e.g., our example)

• Inter-procedural Analysis: analysis is performed over the entire program

• Inlining can be used to make analysis inter-procedural

• A key issue is alias analysis: the same memory address can be referred to
by different variable names at different locations, affecting the precision

Context Sensitivity

• Context-insensitive Analysis: ignores the
calling context. In the example, d is either
3, 8, 13, or 18. That is, it knows there are
three calls from bar to foo with
arguments 0, 5, and 5, but cannot
differentiate them.

• Context-sensitive Analysis: can
differentiate the three calls. The value of d
is 18.

def foo(x):
 return x + 1

def bar():
 a = foo(0)
 b = foo(5)
 c = foo(5)

 d = a + b + c # what is d here?

Other forms of polyvariance

• Polyvariance: the degree to which an analysis structurally differentiates
approximations of program values

• Flow-sensitivity: can account for the order of statements, e.g., “after line X,
variable a and b point to the same memory address”

• Path-sensitivity: can account for branch predicates and the resulting paths,
e.g., “in the false branch of if x > 0:, x is assumed to be less then or
equal to 0”

Types of Static Program Analysis

• Abstract Interpretation: maps program states to specific properties via
abstraction

• Symbolic Execution: executes the program symbolically, i.e., with groups of
inputs that share the same execution path

• Formal Verification: converts both the program and the property you want to
prove into sets of logical statements, and proves the satisfiability of the
conjunction of both (i.e.,)Fprogram ∧ ¬Ferror

Types of Static Program Analysis

• Pointer Analysis / Shape Analysis: analyses which pointer/heap reference can
point to which actual memory locations.

• Dataflow Analysis: analyses information about sets of values calculated at
various points in program, e.g., liveliness analysis, forward/backward
dependence analysis, constant propagation…

• Program Slicing: a specific instance of dependence analysis that identifies
parts of program that are related to a specific variable at a specific location

• Dead Code Elimination: identifies and removes code that cannot affect
program execution

Okay, what is not to like?

• “Positive” here means that the
source code actually has an
issue

• “False Positive”: static analysis
predicts an issue, but the
prediction is based on over-
approximation, therefore the
prediction is “false” —> false
positive

• Why is this bad?

False Positives

Let’s look at a few real world
examples…

Classifying False Positive Static Checker Alarms in Continuous Integration Using Convolutional Neural Networks,
Lee, S., Hong, S., Yi, J., Kim, T., Kim, C. and Yoo, S., 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST), 391–401.

• A: ret is zero only when
dynamic_load fails. However,
the static analysis does not know
this semantic, and raises
HANDLE_LEAK warning at line 8.

• B: _close(fd) in line 18 does
release the handle, but the static
analysis does know know this
domain-specific function and its
semantic.

HANDLE_LEAK
(a) A false alarm with a value-sensitive error-handling path

01: int create_file_attr() {
...
05: ret = dynamic_load(&func_handle);

//acquisition
06: if (ret == 0) {
07: debug("loading error\n");
08: return FILE_ERROR; // expiration

(b) A false alarm with a domain-specific resource-release operation

11: int write_profile() {
12: fd = open(fpath, O_RDWR); // acquisition
...
18: _close(fd);
19: return n; } // expiration

Fig. 2: Examples of false alarms from the Resource Handle
Leak checkers

2) Double Free: The Double Free checker, DOUBLE_FREE,
attempts to detect a path where the free operation is invoked
with the same memory address twice. In such a path, the
second free invocation would try to deallocate an invalid
memory address, potentially resulting to a crash. Using an
interprocedural data-flow analysis, the double free checker
raises an alarm if the arguments of two free invocations alias
each other. A double free alarm contains two witnesses, each
pointing to a call site where the call sequence that includes an
invocation of free begins.

01: len = length(node_list)
02: for (i = 0; i < len; i++) {
03: node = get_element_at(node_list, 0);
04: node_list = node_list->next;
05: node_free(node);
06: }

Fig. 3: A Double Free false alarm

However, if the underlying analysis fails to capture aliases
precisely, DOUBLE_FREE may produce false positive alarms.
The example in Figure 3 shows one such case. For this alarm,
the double free checker will place both witnesses on Line 5,
which will executed repeatedly with the loop iteration. If the
checker misses the update to node in Line 3, it will incorrectly
conclude that node is being freed twice.

3) Null Pointer Dereference After Null: The Null Pointer
Dereference checker, DEREF, raises an alarm if it detects
an execution path that first evaluates a pointer p to null

and subsequently uses p. A warning by DEREF has two
contradictory witnesses, wcheck and wref : wcheck points to
an instruction that checks whether a pointer p is null, while
wref points to an instruction that uses p.

Figure 4 shows an example of a false positive alarm gener-
ated by DEREF. The checker decides that obj_list is possibly
null at Line 1, because the if statement at Line 1 explicitly
checks obj_list being null. Based on this, DEREF concludes
that the value of obj_list passed to g_list_append() at Line
5 can be null, because a path can reaches Line 5 after taking

the false branch at Line 1. However, the warning is a false
positive because it is valid to pass null to g_list_append():
the GList library uses null to represent an empty list.

01: if (obj_list)
02: length = g_list_length(obj_list);
03: for (i = length; i < capacity; i++){
04: obj = g_new(obj_t, 1);
05: obj_list = g_list_append(obj_list, obj);
06: }

Fig. 4: A Null Pointer Dereference After Null false alarm

4) Tainted Loop Termination Condition: The Tainted Loop
Termination Condition checker, TAINT_INT.LOOP, checks
whether the termination condition of a loop relies on a tainted
value, such as unvalidated input from environment variables,
files, or networks: such termination condition may cause the
loop to go over the bound, resulting in a buffer overrun. To
detect this, TAINT_INT.LOOP checks whether a value from
unvalidated source (e.g., getenv()) may reach a loop condition
without checking it against lower and upper bounds. If so,
TAINT_INT.LOOP generates two witnesses: wtaint points to
the introduction of the unvalidated value, and wuse points to
the use of the tainted value in a loop termination condition.
TAINT_INT.LOOP may produces a false positive alarm

when the loop itself is free from any harmful behaviour. Fig-
ure 5 shows such an example of this case. TAINT_INT.LOOP
finds that n in Line 4 is a tainted value as it originates from an
external source in Line 1, and is never validated. However, the
loop at Lines 4–5 does not induce any error due to n, because
the loop iterates on arr whose size is the same as n.

01: str = getenv("NUM_DATA");
02: n = strtoul(str, NULL, 10));
03: arr = malloc(sizeof(int) * n);
04: for (i = 0; i < n; i++)
05: arr[i] = receive_data();

Fig. 5: A Tainted Loop Condition false alarm

5) Unintentional Fall Through: The checker for Uninten-
tional Fall Through, FALL_THROUGH, detects a case block
in a switch statement that does not end with a break.
Since fall-through case blocks are often used intentionally,
FALL_THROUGH is designed to skip analysis if the beginning
of a code block is annotated with //fall through. Otherwise,
the checker generates an alarm with two witnesses: wfall

points to the location of the case block without break, and
wswitch points to the beginning of the switch statement.

Currently, apart from the annotation via comments, there
is no way of determining whether a fall-through case block
is intended or not. However, in the pilot study, we observed
that there are lexical patterns developers use to communicate
their intentions regarding fall-through case blocks. Figure 6
shows a simplified code snippet of a false alarm. Here, the
fall-through case blocks at Line 2 and Line 6 are intended
to fall-through to blocks at Line 3 and Line 7, respectively.

Null-pointer Dereference

• Analysis thinks that after line 1-2,
obj_list can be potentially
null (because there is the
check at line 1)

• So it raises null-pointer
dereference at line 5

• However, g_list_append
accepts null as a valid input
that represents an empty list

DEREF
(a) A false alarm with a value-sensitive error-handling path

01: int create_file_attr() {
...
05: ret = dynamic_load(&func_handle);

//acquisition
06: if (ret == 0) {
07: debug("loading error\n");
08: return FILE_ERROR; // expiration

(b) A false alarm with a domain-specific resource-release operation

11: int write_profile() {
12: fd = open(fpath, O_RDWR); // acquisition
...
18: _close(fd);
19: return n; } // expiration

Fig. 2: Examples of false alarms from the Resource Handle
Leak checkers

2) Double Free: The Double Free checker, DOUBLE_FREE,
attempts to detect a path where the free operation is invoked
with the same memory address twice. In such a path, the
second free invocation would try to deallocate an invalid
memory address, potentially resulting to a crash. Using an
interprocedural data-flow analysis, the double free checker
raises an alarm if the arguments of two free invocations alias
each other. A double free alarm contains two witnesses, each
pointing to a call site where the call sequence that includes an
invocation of free begins.

01: len = length(node_list)
02: for (i = 0; i < len; i++) {
03: node = get_element_at(node_list, 0);
04: node_list = node_list->next;
05: node_free(node);
06: }

Fig. 3: A Double Free false alarm

However, if the underlying analysis fails to capture aliases
precisely, DOUBLE_FREE may produce false positive alarms.
The example in Figure 3 shows one such case. For this alarm,
the double free checker will place both witnesses on Line 5,
which will executed repeatedly with the loop iteration. If the
checker misses the update to node in Line 3, it will incorrectly
conclude that node is being freed twice.

3) Null Pointer Dereference After Null: The Null Pointer
Dereference checker, DEREF, raises an alarm if it detects
an execution path that first evaluates a pointer p to null

and subsequently uses p. A warning by DEREF has two
contradictory witnesses, wcheck and wref : wcheck points to
an instruction that checks whether a pointer p is null, while
wref points to an instruction that uses p.

Figure 4 shows an example of a false positive alarm gener-
ated by DEREF. The checker decides that obj_list is possibly
null at Line 1, because the if statement at Line 1 explicitly
checks obj_list being null. Based on this, DEREF concludes
that the value of obj_list passed to g_list_append() at Line
5 can be null, because a path can reaches Line 5 after taking

the false branch at Line 1. However, the warning is a false
positive because it is valid to pass null to g_list_append():
the GList library uses null to represent an empty list.

01: if (obj_list)
02: length = g_list_length(obj_list);
03: for (i = length; i < capacity; i++){
04: obj = g_new(obj_t, 1);
05: obj_list = g_list_append(obj_list, obj);
06: }

Fig. 4: A Null Pointer Dereference After Null false alarm

4) Tainted Loop Termination Condition: The Tainted Loop
Termination Condition checker, TAINT_INT.LOOP, checks
whether the termination condition of a loop relies on a tainted
value, such as unvalidated input from environment variables,
files, or networks: such termination condition may cause the
loop to go over the bound, resulting in a buffer overrun. To
detect this, TAINT_INT.LOOP checks whether a value from
unvalidated source (e.g., getenv()) may reach a loop condition
without checking it against lower and upper bounds. If so,
TAINT_INT.LOOP generates two witnesses: wtaint points to
the introduction of the unvalidated value, and wuse points to
the use of the tainted value in a loop termination condition.
TAINT_INT.LOOP may produces a false positive alarm

when the loop itself is free from any harmful behaviour. Fig-
ure 5 shows such an example of this case. TAINT_INT.LOOP
finds that n in Line 4 is a tainted value as it originates from an
external source in Line 1, and is never validated. However, the
loop at Lines 4–5 does not induce any error due to n, because
the loop iterates on arr whose size is the same as n.

01: str = getenv("NUM_DATA");
02: n = strtoul(str, NULL, 10));
03: arr = malloc(sizeof(int) * n);
04: for (i = 0; i < n; i++)
05: arr[i] = receive_data();

Fig. 5: A Tainted Loop Condition false alarm

5) Unintentional Fall Through: The checker for Uninten-
tional Fall Through, FALL_THROUGH, detects a case block
in a switch statement that does not end with a break.
Since fall-through case blocks are often used intentionally,
FALL_THROUGH is designed to skip analysis if the beginning
of a code block is annotated with //fall through. Otherwise,
the checker generates an alarm with two witnesses: wfall

points to the location of the case block without break, and
wswitch points to the beginning of the switch statement.

Currently, apart from the annotation via comments, there
is no way of determining whether a fall-through case block
is intended or not. However, in the pilot study, we observed
that there are lexical patterns developers use to communicate
their intentions regarding fall-through case blocks. Figure 6
shows a simplified code snippet of a false alarm. Here, the
fall-through case blocks at Line 2 and Line 6 are intended
to fall-through to blocks at Line 3 and Line 7, respectively.

• Static analysis raises an alarm if
it thinks free is called twice on
two aliases to the same memory
location.

• In the example, the analysis
misses the alias update that
takes place at line 3.

• Consequently, it considers line 5
as a double free.

DOUBLE_FREE

(a) A false alarm with a value-sensitive error-handling path

01: int create_file_attr() {
...
05: ret = dynamic_load(&func_handle);

//acquisition
06: if (ret == 0) {
07: debug("loading error\n");
08: return FILE_ERROR; // expiration

(b) A false alarm with a domain-specific resource-release operation

11: int write_profile() {
12: fd = open(fpath, O_RDWR); // acquisition
...
18: _close(fd);
19: return n; } // expiration

Fig. 2: Examples of false alarms from the Resource Handle
Leak checkers

2) Double Free: The Double Free checker, DOUBLE_FREE,
attempts to detect a path where the free operation is invoked
with the same memory address twice. In such a path, the
second free invocation would try to deallocate an invalid
memory address, potentially resulting to a crash. Using an
interprocedural data-flow analysis, the double free checker
raises an alarm if the arguments of two free invocations alias
each other. A double free alarm contains two witnesses, each
pointing to a call site where the call sequence that includes an
invocation of free begins.

01: len = length(node_list)
02: for (i = 0; i < len; i++) {
03: node = get_element_at(node_list, 0);
04: node_list = node_list->next;
05: node_free(node);
06: }

Fig. 3: A Double Free false alarm

However, if the underlying analysis fails to capture aliases
precisely, DOUBLE_FREE may produce false positive alarms.
The example in Figure 3 shows one such case. For this alarm,
the double free checker will place both witnesses on Line 5,
which will executed repeatedly with the loop iteration. If the
checker misses the update to node in Line 3, it will incorrectly
conclude that node is being freed twice.

3) Null Pointer Dereference After Null: The Null Pointer
Dereference checker, DEREF, raises an alarm if it detects
an execution path that first evaluates a pointer p to null

and subsequently uses p. A warning by DEREF has two
contradictory witnesses, wcheck and wref : wcheck points to
an instruction that checks whether a pointer p is null, while
wref points to an instruction that uses p.

Figure 4 shows an example of a false positive alarm gener-
ated by DEREF. The checker decides that obj_list is possibly
null at Line 1, because the if statement at Line 1 explicitly
checks obj_list being null. Based on this, DEREF concludes
that the value of obj_list passed to g_list_append() at Line
5 can be null, because a path can reaches Line 5 after taking

the false branch at Line 1. However, the warning is a false
positive because it is valid to pass null to g_list_append():
the GList library uses null to represent an empty list.

01: if (obj_list)
02: length = g_list_length(obj_list);
03: for (i = length; i < capacity; i++){
04: obj = g_new(obj_t, 1);
05: obj_list = g_list_append(obj_list, obj);
06: }

Fig. 4: A Null Pointer Dereference After Null false alarm

4) Tainted Loop Termination Condition: The Tainted Loop
Termination Condition checker, TAINT_INT.LOOP, checks
whether the termination condition of a loop relies on a tainted
value, such as unvalidated input from environment variables,
files, or networks: such termination condition may cause the
loop to go over the bound, resulting in a buffer overrun. To
detect this, TAINT_INT.LOOP checks whether a value from
unvalidated source (e.g., getenv()) may reach a loop condition
without checking it against lower and upper bounds. If so,
TAINT_INT.LOOP generates two witnesses: wtaint points to
the introduction of the unvalidated value, and wuse points to
the use of the tainted value in a loop termination condition.
TAINT_INT.LOOP may produces a false positive alarm

when the loop itself is free from any harmful behaviour. Fig-
ure 5 shows such an example of this case. TAINT_INT.LOOP
finds that n in Line 4 is a tainted value as it originates from an
external source in Line 1, and is never validated. However, the
loop at Lines 4–5 does not induce any error due to n, because
the loop iterates on arr whose size is the same as n.

01: str = getenv("NUM_DATA");
02: n = strtoul(str, NULL, 10));
03: arr = malloc(sizeof(int) * n);
04: for (i = 0; i < n; i++)
05: arr[i] = receive_data();

Fig. 5: A Tainted Loop Condition false alarm

5) Unintentional Fall Through: The checker for Uninten-
tional Fall Through, FALL_THROUGH, detects a case block
in a switch statement that does not end with a break.
Since fall-through case blocks are often used intentionally,
FALL_THROUGH is designed to skip analysis if the beginning
of a code block is annotated with //fall through. Otherwise,
the checker generates an alarm with two witnesses: wfall

points to the location of the case block without break, and
wswitch points to the beginning of the switch statement.

Currently, apart from the annotation via comments, there
is no way of determining whether a fall-through case block
is intended or not. However, in the pilot study, we observed
that there are lexical patterns developers use to communicate
their intentions regarding fall-through case blocks. Figure 6
shows a simplified code snippet of a false alarm. Here, the
fall-through case blocks at Line 2 and Line 6 are intended
to fall-through to blocks at Line 3 and Line 7, respectively.

Common Limitations

• In all previous examples, it seems that the weak analysis itself is the problem
- scope/context of analysis, lack of knowledge about semantics of domain
specific functions, imprecise alias analysis, etc…

• But are those all the reasons? We can make perfect static analysis tools if we
just try harder?

• Let’s look at a more fundamental example.

def func:
 read(n)
 i = 1
 sum = 0
 prod = 1
 while i <= n:
 sum += i
 prod *= i
 i += 1
 print sum
 print prod # slice here

Program Slicing

• Produces a subset of the given
program that is related to the
computation of a value at a
specific location

• (value, location) is called the
slicing criterion

• Useful for debugging, program
comprehension, reuse…

Static Program Slicing

• Construct Program Dependence
Graph (PDG)

• Vertices: statements

• Edges: control dependence
(dashed lines), data
dependence (solid lines)

• Slicing: start from the criterion,
get the backward closure!

Entry

read(n) sum = 0 prod = 1 while
i <= n

sum+=i prod*=i

print(sum) print(prod)i =1

i+=1

Now consider this program

• Predicate p and q only depends on
i and c, respectively; f() and g()
return constant values.

• x@11 data-depends on x@6, which
control-depends on c@5, which
control depends on both c@7 and
i@3. i@3 data-depends on i@9.

• Nothing to delete!

• Is it? :)

01:int mug(int i, int c, int x)
02:{
03: while(p(i))
04: {
05: if(q(c)){
06: x = f();
07: c = g();
08: }
09: i = h(i);
10: }
11: printf("@%d\n", x); //slice here for x
12:}

Now consider this program

• If q(c) is initially false, it remains
false (as we never enter the body of
if). Also, c is not written over, so x
retains its original value.

• If q(c) is true one or more times, x
will be overwritten with f() in line 6.
As long as this happens at least
once, it is not important how often
q(c) is true. Consequently, line 7
DOES NOT affect x in line 11!

01:int mug(int i, int c, int x)
02:{
03: while(p(i))
04: {
05: if(q(c)){
06: x = f();
07: c = g();
08: }
09: i = h(i);
10: }
11: printf("@%d\n", x); //slice here for x
12:}

The (in)famous SCAM Mug
Source Code Analysis and Manipulation (SCAM) Workshop 2001

• Static slicing cannot get the minimum slice of this program.

• But the souvenir from SCAM Workshop in 2001 can slice it :)

Rice’s Theorem
The Fundamental Limitation

• Any non-trivial semantic
properties of programs are
undecidable.

• Proof sketch by reduction to
halting problem: suppose we
have an algorithm that can
decide whether a given
program has a property .
Then we can construct a
solution to the halting
problem…

p q

def halt(a, i):
 def t():
 a(i)
 return
 return does_it_have_q(t)

def halt(a, i):
 def t(n):
 a(i)
 return n * n
 return does_it_compute_squares(t)

Does this mean that static analysis is useless? NO.

• Theoretical limitation against arbitrary programs and inputs does not prevent
us these techniques from being useful to many practical programs.

• Many industrial-strength static analysis tools exist.

Infer by Facebook

• A static analysis tool for Java, C++, Objective C, and C

• Written in OCaml

• https://github.com/facebook/infer

https://github.com/facebook/infer

Static Bug Finder Tools (e.g., SpotBugs)

• These tools have a large catalogue of potential programming errors, and
statically scan your program to match them

• SpotBugs, earlier known as FindBugs, is a well known such tool for Java: its
bug description page can be found here: https://spotbugs.readthedocs.io/en/
latest/bugDescriptions.html

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

• Static analysis tools that flags up
programming errors, bugs,
stylistic/coding convention
errors, and suspicious patterns.

• Typically more useful for
dynamically typed languages,
such as JavaScript and Python,
as compilers/runtimes do much
less checking

Lint

Popular Lints

• Python: PyLint (https://github.com/pylint-dev/pylint), flake8 (https://
github.com/PyCQA/flake8)

• JavaScript: JSLint (https://www.jslint.com/), ESLint (https://eslint.org/)

https://github.com/pylint-dev/pylint
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://www.jslint.com/
https://eslint.org/

Style Guides

• Tells a programmer how to work with a specific programming language

• Rules can range from simply formatting rules and naming convention to
common bugs that can be checked statically

• PEP 8: Python Style Guide (https://peps.python.org/pep-0008/)

• MISRA C: development guideline for C maintained by MISRA Consortium,
especially for embedded systems (https://www.misra.org.uk/)

https://peps.python.org/pep-0008/
https://www.misra.org.uk/

Summary

• Program Analysis aims to automatically analyse program behaviour.

• Static program analysis is cheap (no execution) and typically used as a universal
quality filter (e.g., lint in CI/CD pipeline).

• General static analysis tools/bug detectors can analyse the program for common
errors (e.g., null pointer deference), but cannot check for any errors in the business
logic (i.e., any semantic that is specific only to your program)

• If you’re interested :)

• CS524 Program Analysis (Prof. Kihong Heo)

• CS492 Program Reasoning (Prof. Kihong Heo)

