Program Analysis

CS350 Introduction to Software Engineering

Shin Yoo

Analysis noun. a detailed examination of
the elements or structure of something.

Analysing a Program... for what purpose?

 Many different objectives can be considered, for example (all real):
* Violation of any Intellectual Property and Licensing
* Authorship for software forensic

 But two major objectives are;:

* Correctness: you want to analyze and check specific properties to argue
and reason about program correctness

* Optimisation: you want to extract information required for optimization, or
to ensure that optimization does not affect correctness

Static vs. Dynamic

o Static Analysis: your analysis is simply based on source code, without any
actual execution

 Examples: compiler optimisation, static code warning, linters

 Dynamic Analysis: your analysis includes information extracted from
concrete executions of the target program

 Examples: software testing

Static vs. Dynamic

» Static Analysis: considers program behavior against all possible inputs.

 Consequently, this is over-approximation of actual program behavior (because
certain input may not ever be used in concrete executions).

e Accuracy is limited due to scope of analysis and differences that can only be
captured dynamically.

 Dynamic Analysis: considers only the actual executions observed.

 Consequently, this is under-approximation of the actual program behavior
(because inputs we haven’t seen may result in different outcome).

e Accuracy is limited because of executions you did not observe.

Dynamic Under-Approximation

* Potential division by zero error that we can plainly see in the source code

 Without an input that triggers the condition, we cannot find out dynamically

() :

Static Over-Approximation

* Intra-procedural analysis of 5 /b
compute_density will raise an
alarm for division by zero () :
y .
« However, if you consider the ()

entire program, this may never '
d (X, y)
happen (d)

Focus Today

* We will mainly discuss static analysis today.

 Program analysis is a concept that encapsulates both static and dynamic
analysis, but the absolute majority of dynamic analysis is now software
testing, which can be treated independently in itself.

Scopes of Static Analysis

* |ntra-procedural Analysis: considers a single procedure (function, method)
one by one Iin isolation

 Simple, but often imprecise (e.g., our example)
* |nter-procedural Analysis: analysis is performed over the entire program
* |nlining can be used to make analysis inter-procedural

* A key issue is alias analysis: the same memory address can be referred to
by different variable names at different locations, affecting the precision

Context Sensitivity

* Context-insensitive Analysis: ignores the
calling context. In the example, d is either
3,8, 13, or 18. That Is, it knows there are
three calls from bar to foo with

arguments 0, 5, and 5, but cannot
differentiate them.

» Context-sensitive Analysis: can
differentiate the three calls. The value of d
IS 18.

O Q

(%) :

():

N\ N N

N N\

Other forms of polyvariance

* Polyvariance: the degree to which an analysis structurally differentiates
approximations of program values

* Flow-sensitivity: can account for the order of statements, e.g., “after line X,
variable a and b point to the same memory address”

 Path-sensitivity: can account for branch predicates and the resulting paths,
e.g., “in the false branch of if x > 0:, x is assumed to be less then or
equal to 0”

Types of Static Program Analysis

* Abstract Interpretation: maps program states to specific properties via
abstraction

 Symbolic Execution: executes the program symbolically, i.e., with groups of
iInputs that share the same execution path

 Formal Verification: converts both the program and the property you want to
prove into sets of logical statements, and proves the satisfiablility of the

conjunction of both (i.e., [A F

program ermr)

Types of Static Program Analysis

* Pointer Analysis / Shape Analysis: analyses which pointer/heap reference can
point to which actual memory locations.

o Dataflow Analysis: analyses information about sets of values calculated at
various points in program, e.g., liveliness analysis, forward/backward
dependence analysis, constant propagation...

 Program Slicing: a specific instance of dependence analysis that identifies
parts of program that are related to a specific variable at a specific location

e Dead Code Elimination: identifies and removes code that cannot affect
program execution

. Predicted Value
False Positives Postive Negative

« “Positive” here means that the True Positive False Negative

source code actually has an
ISssue

Positive

* “False Positive™:; static analysis

predicts an issue, but the
prediction Is based on over-
approximation, therefore the
prediction is “false” —> false
positive

Actual Value

False Positive True Negative

Negative

 Why is this bad?

Let’s look at a few real world
examples...

Classifying False Positive Static Checker Alarms in Continuous Integration Using Convolutional Neural Networks,
Lee, S., Hong, S., Yi, J., Kim, T., Kim, C. and Yoo, S., 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST), 391-401.

HANDLE LEAK

(a) A false alarm with a value-sensitive error-handling path

01l: int create_file_attr() {
o A: ret |S 710 Only When 05: //J;itquzsciir;irzic_load(&func_handle);
dynamic_load fails. However, 06: if (ret == 0) |
_ _ 07: debug ("loading error\n");
the static analys|s does not know 08: return FILE_ERROR; // expiration
this SemantiC, and raises (b) A false alarm with a domain-specific resource-release operation
HANDLE_LEAK warning at line 8.
11: int write_profile () {
12 fd = open (fpath, O_RDWR); // acquisition

e B: _C-LOSG('Fd) IN line 18 does . lose (£d) -
release the handle, but the static 19: return n; } // expiration
analysis does know know this
domain-specific function and its
semantic.

Fig. 2: Examples of false alarms from the Resource Handle
Leak checkers

DEREF

Null-pointer Dereference

* Analysis thinks that after line 1-2,

. . : 01: if (obj_list)

Obj —-L-I St can be pO'.ten'“a”y 02: length = g_list_length(obj_list);

null (because there is the 03: for (i = length; i < capacity; i++){

. 04: obj] = g_new(obj_t, 1);
check at line 1) 05: obj_list = g_list_append(obj_list, obj);
06:)

e So it raises null-pointer

dereference at line 5 Fig. 4: A Null Pointer Dereference After Null false alarm

« However, g_list_append
accepts null as a valid input
that represents an empty list

DOUBLE_FREE

e Static analysis raises an alarm if
it thinks free is called twice on
two aliases to the same memory
location.

* |n the example, the analysis
misses the alias update that
takes place at line 3.

 Consequently, it considers line 5
as a double free.

01:
02 :
03:
04 :
05:
06:

len =
for (1
node

node
node

J

length (node_1l1ist)

= 0; 1 < len; 1++) {

= get_element_at (node_1list, 0);
list = node list—->next;

free (node) ;

Fig. 3: A Double Free talse alarm

Common Limitations

* |n all previous examples, it seems that the weak analysis itself is the problem
- scope/context of analysis, lack of knowledge about semantics of domain
specific functions, imprecise alias analysis, etc...

* But are those all the reasons”? We can make perfect static analysis tools if we
just try harder?

* |et’s look at a more fundamental example.

Program Slicing

* Produces a subset of the given
program that is related to the
computation of a value at a
specific location

e (value, location) is called the
slicing criterion

» Useful for debugging, program
comprehension, reuse...

read

prod

(n)

prod
1 += 1

prod

_i

Static Program Slicing

» Construct Program Dependence !- N

Graph (PDG)

* \ertices: statements

 Edges: control dependence

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ \
\ \
\ \
\
\ \\
\ \
\
\ \
\ \
\ \
\
\
N
N
N
N

(dashed lines), data @

dependence (solid lines)

» Slicing: start from the criterion,
get the backward closure!

* Predicate p and g only depends on
1 and c, respectively; T() and g()
return constant values.

e X@11 data-depends on x@6, which
control-depends on c@5, which
control depends on both c@7 and
1@3. 1@3 data-depends on 1@9.

* Nothing to delete!

e |Sit? :)

Now consider this program

O1:

02:4

03:
04 :
©5:
06:
O7:
08:
©9:
10:
11:
12:}

(P (1))
(q(c))d

e If g(c) is initially false, it remains
false (as we never enter the body of
if). Also, c Iis not written over, so x
retains its original value.

e If g(c) is true one or more times, X

will be overwritten with () in line 6.

As long as this happens at least
once, it is not important how often

g (c) is true. Consequently, line 7
DOES NOT affect x in line 11!

Now consider this program

O1:

02:4

03:
04 :
©5:
06:
O7:
08:
©9:
10:
11:
12:}

(P (1))
(q(c))d

The (in)famous SCAM Mug

Source Code Analysis and Manipulation (SCAM) Workshop 2001

o Static slicing cannot get the minimum slice of this program.

* But the souvenir from SCAM Workshop in 2001 can slice it :)

{0
Which Lines do not affec

. " "hile (p(i))
3!‘. P X [= q :
. Source Code iglio" & 4 LQ y ‘{ =
Alysis and ManipV yy Shn

Workshop B
g5
C°"ted with ICSE and w

Rice’s Theorem

The Fundamental Limitation

* Any non-trivial semantic
properties of programs are
undecidable.

* Proof sketch by reduction to
halting problem: suppose we
have an algorithm that can
decide whether a given

program p has a property q.
Then we can construct a

solution to the halting
problem...

():
(1)

(t)

(t)

Does this mean that static analysis is useless? NO.

* Theoretical limitation against arbitrary programs and inputs does not prevent
us these techniques from being useful to many practical programs.

 Many industrial-strength static analysis tools exist.

@ nier ©COVERITY PolySpace

BY SYNOPSYS # NTECHNOLOGIES

Clang Static
Analyzer

SOonarQu be\\» CS/OQZ“[“OTZh{Z? S

Infer by Facebook

* A static analysis tool for Java, C++, Objective C, and C

e Written in OCaml

» https://qgithub.com/facebook/infer

https://github.com/facebook/infer

Static Bug Finder Tools (e.g., SpotBugs)

* These tools have a large catalogue of potential programming errors, and
statically scan your program to match them

 SpotBugs, earlier known as FindBugs, is a well known such tool for Java: its

bug description page can be found here: https://spotbugs.readthedocs.io/en/
latest/bugDescriptions.html

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

Lint

o Static analysis tools that flags up
programming errors, bugs,
stylistic/coding convention
errors, and suspicious patterns.

* [ypically more useful for
dynamically typed languages,
such as JavaScript and Python,
as compilers/runtimes do much
less checking

Popular Lints

* Python: PyLint (https://github.com/pylint-dev/pvlint), flake8 (https://
github.com/PyCQA/flake8)

» JavaScript: JSLint (https://www.jslint.com/), ESLint (https://eslint.org/)

https://github.com/pylint-dev/pylint
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://www.jslint.com/
https://eslint.org/

Style Guides

* TJells a programmer how to work with a specific programming language

* Rules can range from simply formatting rules and naming convention to
common bugs that can be checked statically

 PEP 8: Python Style Guide (https://peps.python.org/pep-0008/)

« MISRA C: development guideline for C maintained by MISRA Consortium,
especially for embedded systems (https://www.misra.org.uk/)

https://peps.python.org/pep-0008/
https://www.misra.org.uk/

Summary

 Program Analysis aims to automatically analyse program behaviour.

o Static program analysis is cheap (no execution) and typically used as a universal
quality filter (e.g., lint in CI/CD pipeline).

e (General static analysis tools/bug detectors can analyse the program for common
errors (e.g., null pointer deference), but cannot check for any errors in the business
logic (i.e., any semantic that is specific only to your program)

 |If you're interested :)

¢ CS524 Program Analysis (Prof. Kihong Heo)

¢ CS492 Program Reasoning (Prof. Kihong Heo)

